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PREDGOVOR MULTIKONFERENCI  

INFORMACIJSKA DRUŽBA 2019 
 
Multikonferenca Informaci družba (http://is.ijs.si) je z dvaindvajseto zaporedno prireditvijo tradicionalni osrednji 

srednjeevropski dogodek na področju informacijske družbe, računalništva in informatike. Informacijska družba, 

znanje in umetna inteligenca so - in to čedalje bolj – nosilci razvoja človeške civilizacije. Se bo neverjetna rast 

nadaljevala in nas ponesla v novo civilizacijsko obdobje? Bosta IKT in zlasti umetna inteligenca omogočila nadaljnji 

razcvet civilizacije ali pa bodo demografske, družbene, medčloveške in okoljske težave povzročile zadušitev rasti? 

Čedalje več pokazateljev kaže v oba ekstrema – da prehajamo v naslednje civilizacijsko obdobje, hkrati pa so notranji 

in zunanji konflikti sodobne družbe čedalje težje obvladljivi.  

 

Letos smo v multikonferenco povezali 12 odličnih neodvisnih konferenc. Zajema okoli 300 predstavitev, povzetkov 

in referatov v okviru samostojnih konferenc in delavnic in 500 obiskovalcev. Prireditev bodo spremljale okrogle mize 

in razprave ter posebni dogodki, kot je svečana podelitev nagrad. Izbrani prispevki bodo izšli tudi v posebni številki 

revije Informatica (http://www.informatica.si/), ki se ponaša z 42-letno tradicijo odlične znanstvene revije.  

 

Multikonferenco Informacijska družba 2019 sestavljajo naslednje samostojne konference: 

• 6. študentska računalniška konferenca  

• Etika in stroka 

• Interakcija človek računalnik v informacijski družbi 

• Izkopavanje znanja in podatkovna skladišča  

• Kognitivna znanost 

• Kognitonika 

• Ljudje in okolje 

• Mednarodna konferenca o prenosu tehnologij 

• Robotika 

• Slovenska konferenca o umetni inteligenci 

• Srednje-evropska konferenca o uporabnih in teoretičnih računalniških znanostih 

• Vzgoja in izobraževanje v informacijski družbi 

 

Soorganizatorji in podporniki konference so različne raziskovalne institucije in združenja, med njimi tudi ACM 

Slovenija, SLAIS, DKZ in druga slovenska nacionalna akademija, Inženirska akademija Slovenije (IAS). V imenu 

organizatorjev konference se zahvaljujemo združenjem in institucijam, še posebej pa udeležencem za njihove 

dragocene prispevke in priložnost, da z nami delijo svoje izkušnje o informacijski družbi. Zahvaljujemo se tudi 

recenzentom za njihovo pomoč pri recenziranju. 

 

V 2019 bomo sedmič podelili nagrado za življenjske dosežke v čast Donalda Michieja in Alana Turinga. Nagrado 

Michie-Turing za izjemen življenjski prispevek k razvoju in promociji informacijske družbe je prejel prof. dr. Marjan 

Mernik. Priznanje za dosežek leta pripada sodelavcem Odseka za inteligentne sisteme Instituta »Jožef Stefan«. 

Podeljujemo tudi nagradi »informacijska limona« in »informacijska jagoda« za najbolj (ne)uspešne poteze v zvezi z 

informacijsko družbo. Limono je dobil sistem »E-zdravje«, jagodo pa mobilna aplikacija »Veš, kaj ješ?!«. Čestitke 

nagrajencem! 

 

 

Mojca Ciglarič, predsednica programskega odbora 

Matjaž Gams, predsednik organizacijskega odbora 

http://is.ijs.si/


 

FOREWORD - INFORMATION SOCIETY 2019 
 

The Information Society Multiconference (http://is.ijs.si) is the traditional Central European event in the field of 

information society, computer science and informatics for the twenty-second consecutive year. Information society, 

knowledge and artificial intelligence are - and increasingly so - the central pillars of human civilization. Will the 

incredible growth continue and take us into a new civilization period? Will ICT, and in particular artificial 

intelligence, allow civilization to flourish or will demographic, social, and environmental problems stifle growth? 

More and more indicators point to both extremes - that we are moving into the next civilization period, and at the 

same time the internal and external conflicts of modern society are becoming increasingly difficult to manage. 

 

The Multiconference is running parallel sessions with 300 presentations of scientific papers at twelve conferences, 

many round tables, workshops and award ceremonies, and 500 attendees. Selected papers will be published in the 

Informatica journal with its 42-years tradition of excellent research publishing.  

 

The Information Society 2019 Multiconference consists of the following conferences:  

• 6. Student Computer Science Research Conference  

• Professional Ethics 

• Human – Computer Interaction in Information Society  

• Data Mining and Data Warehouses  

• Cognitive Science 

• International Conference on Cognitonics 

• People and Environment 

• International Conference of Transfer of Technologies – ITTC 

• Robotics 

• Slovenian Conference on Artificial Intelligence 

• Middle-European Conference on Applied Theoretical Computer Science  

• Education in Information Society 

 

 

The Multiconference is co-organized and supported by several major research institutions and societies, among them 

ACM Slovenia, i.e. the Slovenian chapter of the ACM, SLAIS, DKZ and the second national engineering academy, 

the Slovenian Engineering Academy. In the name of the conference organizers, we thank all the societies and 

institutions, and particularly all the participants for their valuable contribution and their interest in this event, and the 

reviewers for their thorough reviews.  

 

For the fifteenth year, the award for life-long outstanding contributions will be presented in memory of Donald 

Michie and Alan Turing. The Michie-Turing award was given to Prof. Marjan Mernik for his life-long outstanding 

contribution to the development and promotion of information society in our country. In addition, a recognition for 

current achievements was awarded to members of Department of Intelligent Systems of Jožef Stefan Institute. The 

information lemon goes to the “E-Health” system, and the information strawberry to the mobile application “Veš, 

kaj ješ?!” (Do you know what you eat?!). Congratulations! 

 

Mojca Ciglarič, Programme Committee Chair 

Matjaž Gams, Organizing Committee Chair 
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PREDGOVOR 

 

Pod okriljem multikonference »Informacijska družba« po letu premora zopet organiziramo 

tudi konferenco Robotika, s katero nadaljujemo tradicijo raziskovalne robotike v Sloveniji.  

 

Robotika je v vzponu in čeprav jo mnogi še zmeraj dojemajo kot znanstveno fantastiko, je 

tudi uporabniška robotika že nekaj časa nekaj povsem realnega in oprijemljivega, kmalu pa bo 

tudi že nekaj običajnega. Robotika je tudi skorajda vseprisotna. Brez robotskih manipulatorjev 

si ne znamo več predstavljati sodobnih industrijskih procesov, ki pa se z razvojem znanosti 

tudi spreminjajo. Niso več nemi, neodzivni mehanizmi v kletkah temveč sodelavci, zaenkrat v 

industriji, kmalu pa že doma. Tako sodelovanje ima svoje varnostne zahteve, ki so postale 

pomemben del moderne robotike. Hkrati s razvojem robotike v industrijskih okoljih, se 

razvija tudi robotika povsod drugod. Ne presenečajo kirurški roboti ali servisni mobilni 

roboti, ki dostavljajo pakete in hrano ter čistijo in stražijo javno infrastrukturo. Domišljija in 

pa želje ljudi ne poznajo mej, zato se raziskovalna robotika trudi z razvojem velikih 

večnamenskih robotskih hišnih pomočnikov. Pri razvoju tako kompleksnih in avtonomnih 

sistemov, kar nekateri ocenjujejo, da je težje kot raketna znanost, je pomembna izmenjava 

idej in mnenj, kar je tudi namen konference Robotika. 

 

V zborniku so zbrani prispevki raziskovalcev Odseka za avtomatiko, biokibernetiko in 

robotiko na Inštitutu Jožef Stefan, veseli pa smo, da imamo letos prispevke s svetovno 

priznanega in Instituta za robotika in mehatroniko z JOANNEUM Research Inštututa v 

Celovcu. Upamo, da bo izmenjava idej in raziskovalnih rezultatov vodila v nadaljnje skupne 

podvige, ki bodo še naprej pomagali soustvarjati trende raziskovalne robotike. 

  

Andrej Gams in Aleš Ude 
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FOREWORD 

 

Robotics conference in the scope of the Information Society is continuing its biannual 

tradition, is again a part of the multiconference, and continues the rich tradition of research 

robotics in Slovenia. 

 

Robotics is on the rise and even though many people still perceive it as science fiction, even 

consumer robotics has passed from the realm of fiction to something real, tangible. Robotics 

is also omnipresent. Many industrial processes today simply cannot be conceived without the 

use of robotic manipulators. However, with advances of science, industrial processes and the 

role of robots are also changing. Robots are not anymore mute, unresponsive mechanisms in 

cages, but coworkers. Thus far in the industry, but sooner rather than later, they will take this 

role in our homes as well. Such collaborative robotics brings about also its own demands for 

safety, which are becoming an important topic of modern robotics. Together with the change 

of robotic role in industrial processes, robotics is changing everywhere. The use of surgical 

and mobile service robots, which deliver packages and food and clean and guard public 

infrastructure is not a surprise anymore. As human imagination and wishes do not know any 

borders, research robotics is working hard towards the development of multipurpose, 

autonomous, robotic household assistants. The development of such systems, which some 

consider more complex than rocket science, requires cooperation between researchers and the 

exchange of ideas and opinions. Exchange of ideas and opinions is also the main aim and goal 

of the Robotics conference in the scope of the Information Society multiconference. 

 

The conference proceedings contain papers from researchers of the Department for 

Automatics, Biocybernetics and Robotics of Jožef Stefan Institute. We are delighted to have 

attracted contributions from researchers of the world-renowned Institute for Robotics and 

Mechatronics from JOANNEUM Research, Klagenfurt, Austria. We hope that the exchange 

of ideas will lead to joint undertakings and will help to co-shape the trends of research 

robotics in the future. 

 

Andrej Gams and Aleš Ude 
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Autonomous learning of assembly policy
Mihael Simonič
Jožef Stefan Institute
Ljubljana, Slovenia

mihael.simonic@ijs.si

Aleš Ude
Jožef Stefan Institute
Ljubljana, Slovenia
ales.ude@ijs.si

Bojan Nemec
Jožef Stefan Institute
Ljubljana, Slovenia
bojan.nemec@ijs.si

ABSTRACT
In the paper, we propose to learn an assembly task from the corre-
sponding disassembly. Autonomous learning of disassembly can
be easier than learning of the corresponding assembly task, be-
cause the admissible set of motions during disassembly is initially
fully constrained by the environment. During the disassembly the
robot exploits its compliance in order to detect admissible mo-
tions and takes appropriate decisions when multiple options exist.
Learning of the disassembly was realized using hierarchical rein-
forcement learning. The disassembly policy is then used to derive
the corresponding assembly policy. The proposed approach was
experimentally validated on the case of light-bulb assembly.

KEYWORDS
reinforcement learning, robot learning, autonomous assembly

1 INTRODUCTION
Developing robust assembly skills is one of the main challenges
in contemporary robotics. Assembly skills are needed not only in
production plants, but will also be important for the future gen-
eration of home and service robots. For fast deployment of such
tasks, new user-friendly tools for programming robot operations
are needed. Ideally, a robot would be able to derive assembly policy
autonomously.

Autonomous policy learning, is usually accomplished by utiliz-
ing reinforcement learning. Starting from an existing parameter-
ized policy, a robot tries to adapt to a new situation by randomly
changing task parameters and find out how to modify the policy to
maximize the reward function [9, 12]. However, the main challenge
is huge search space which characterizes an assembly policy. For
that reason, there were very few successful attempts of completely
autonomous learning of assembly tasks in robotics [4, 7]. Existing
techniques for reducing the search space of reinforcement learn-
ing usually assume prior information about process, either in an
explicit form or inherited from previous experiments and therefore
still rely on skilled robot operators that guide the robot through
the learning process [5].

In our previous research, we proposed an alternative approach to
autonomous policy learning, which unifies compliant motion con-
trol and reinforcement learning. Tasks that involve interaction with
the environment are traditionally considered as extremely hard to
learn due to the unknown and possibly changing environment. On

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IS2019, October 7–11, 2019, Ljubljana, Slovenia, Europe
© 2019 Copyright held by the owner/author(s).

the other hand, interacting with the environment can be advanta-
geous to accelerate the learning process. Namely, if appropriately
addressed, learning of physically constrained tasks is more efficient
than the learning of tasks, where a robot canmove completely freely
in space. The reason is that the environment limits the admissible
movement directions. Consequently, the number of parameters
that need to be learned can be greatly reduced. To implement this
type of learning, we need to make use of the natural robot motion
along with the constraints imposed by the environment. Compliant
robot control provides a suitable framework for implementing such
a strategy. This concept has been already successfully applied to
the learning of tasks such as autonomous learning for doors and
drawers opening [8].

In this paper, we present how the above-described methodology
can be extended to autonomous learning of assembly operations.
The main idea is that robot first learns the reverse action – dis-
assembly of an object. In an assembled object, the set of possible
motions is constrained, and typically only a single motion or oper-
ation is possible. During the disassembly, the motion becomes less
and less constrained until the part is completely disassembled and
the environment no more constrains motion of individual parts.
The situation is opposite during the assembly. The initially vir-
tually unlimited set of possible motions becomes more and more
constrained as the assembly process advances. Given no previous
knowledge about the task, learning of disassembly is therefore more
straightforward than learning of the assembly task. Imagine generic
peg-in-hole task: by removing a peg from a hole, we also learn the
exact pose of the hole, whereas we would first have to guess where
the hole is if we are to insert the peg into the hole without any
prior knowledge.

Similarly, we transfer the knowledge obtained during disassem-
bly to the corresponding assembly process. We assume that the
initial assembly policy can be obtained by reverse execution of
the learned disassembly policy. This is possible because in most
cases assembly and disassembly are mutually reversible operations.
Common assembly tasks such as putting/placing, peg-in-hole, or
screwing are directly reversible [6]. Tasks that result in structural
deformations or require external equipment (e.g. riveting pistol
and rivets) are not directly reversible, but can be omitted for the
purposes of disassembly learning and manually added to the final
assembly policy.

This paper is structured as follows. We first introduce our al-
gorithm for hierarchical reinforcement learning on the example
of maze learning in Section 2. Then we present the underlying
intelligent controller in Section 3. In section 4, we present our
methodology to learn assembly policy from disassembly policy,
along with experiential verification of the proposed framework in
Section 5. We conclude with a short summary.

7



IS2019, October 7–11, 2019, Ljubljana, Slovenia, Europe Mihael Simonič, Aleš Ude, and Bojan Nemec

2 HIERARCHICAL REINFORCEMENT
LEARNING

In the reinforcement learning (RL) literature, maze learning has
been traditionally used as a benchmark for validating learning
algorithms. Maze learning also bears a lot of similarities with dis-
assembly process, where the robot should come from an initially
fully contained state into the final unconstrained state. Within a
maze, the agent mostly follows the corridors and only has to take
decisions in the crossings.

Traditional approaches rely on discrete state-space with prede-
fined set of actions as illustrated in Figure 1.

Figure 1: An example of maze with 9 × 11 cells. White cells
represent corridors where the agent canmove, whereas gray
cells are walls. The state space for maze learning is repre-
sented with a graph. In each state (represented as node), the
agent can choose from a fixed set of possible actions (repre-
sented with edges): relative left, right, up and down move-
ment. The agent starts in the yellow node and should learn
to exit maze (arrive at green node).

In contemporary robotics we need continuous policies. Within
the traditional RL framework, an approximation of continuous pol-
icy can be achieved by increasing the number of states and actions,
which substantively deceases the performance of the learning.

Considering the example in Figure 1, we can notice that in the
discretization of the maze many of the states are redundant and the
robot can not access them (wall cells). Following the corridor, the
agent eventually arrives either at a crossing, in a dead-end or to the
target. This suggests, that also the states between two crossings
and between a crossing and a dead-end or the target can be left out.

Therefore, we propose to dynamically assign states rather than
allocate them in advance. A suitable framework to achieve this is
hierarchical reinforcement learning, where we combine RL with
control algorithm as shown in Figure 2.

The upper hierarchical level is classical RL algorithm, where
the states are discovered online by the lower hierarchical level.
The later consists of an intelligent compliant controller, which au-
tonomously moves within the environment constraints and detects
where multiple movement options exist. The states for the upper
level are only assigned when multiple options are possible.There
are two main benefits of using such approach:

• The generated policies are inherently continuous.
• The number of states is greatly reduced.

Search 
algorithm

Intelligent 
compliant 
controller

Reinforcement learning

policy learning

Figure 2: Block scheme of the proposed hierarchical pol-
icy learning algorithm. The upper level is RL of the policy,
where the states and actions are represented with a directed
graph. The lower level is an intelligent controller, consisting
of a search algorithm and a Cartesian impedance controller.

The states and actions of hierarchical RL can be also represented
with nodes and edges, respectively, of a directed graph as shown in
the upper blue box in Figure 2.

3 INTELLIGENT COMPLIANT CONTROLLER
The lower level of the hierarchical learning utilizes a compliant
control framework. As the robot moves along the boundaries, the
controller searches for possible alternative movement directions.

In general, the physical constraints of the system are not known
in advance. To find a feasible initial motion direction, the controller
keeps applying force in random directions until this results in a
movement. We then use operational space compliant controller to
continue the motion in the initiated direction. The control parame-
ters make the robot more compliant in directions orthogonal to the
movement direction.

a b

tp

np

bp

fc,n

fc,b

Figure 3: Searching path and possible states in restricted en-
vironment. The left part (a) shows Frenet-Serret frame at-
tached to the end effector in the labyrinth. The right part (b)
shows an instance, when the controller discovers a new state
for reinforcement learning. Both parts show how search
forces are applied in the normal and binormal direction.

We specify these directions using Frenet-Serret frames along the
resulting motion trajectory [10] as illustrated in Figure 3 a. The
Frenet-Serret frame can be expressed Rp =

[
tp np bp

]
with

8
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• the unit vector tp =
Ûp

∥ Ûp ∥ tangent to the curve, pointing in
the direction of motion,

• the normal unit vector np =
Ûp× Üp

∥ Ûp× Üp ∥ × tp , and
• the binormal unit vector bp = np × tp

where p ∈ R3 are the measured positions of the robot end-effector.
In order to follow environmental constraints, we exploit robot’s

compliance. We modified a passivity-based variant of impedance
control for manipulators with flexible joints [2] by allowing to set
the compliance along the operational space trajectory expressed
using Frenet-Serret frame rather than global frame. The task com-
mand input ÜXc =

[
ÜpTc , ÛωT

c
]T is then given by:

Üpc = −RpDpRTp Ûp + RpKpRTpep , (1)

Ûωc = −RoDoRToω + RoKoR
T
oeq , (2)

where ep and eo are position and orientation tracking errors; Kp
and Ko ∈ R3×3 are the diagonal matrices, which define the posi-
tional and rotational stiffness in the Frenet-Serret and global frames,
respectively. Likewise, Dp and Do ∈ R3×3 are diagonal damping
matrices, which are set to D = 2

√
K for critically damped system.

For other parameters, please see [1].
By applying high positional gain in the direction of movement

and low gains in the orthogonal direction, the robot can autonomously
move along the environmental boundaries. However, following the
constraints alone can not discover new states for the upper RL level.
For this, small test forces are applied in the positive and negative
directions of the normal and bi-normal (see Figure 3). All test forces
are applied in each test position, which are placed in short intervals
along the entire trajectory. If the robot moves above some prede-
fined positional displacement threshold as a result of applying this
forces in multiple directions in the same test position, the controller
has found a new state (see Figure 3 b). In the new state each action
corresponds to applying the specific force, which results in a move-
ment in one of the admissible directions. The controller waits for
the decision of RL algorithm, which action to take.

We assume that motion can be stopped only due to the task
constraints. If the motion is interrupted, the controller searches
for a new feasible motion by applying a random force in a random
direction in the same manner as at the beginning. Following this
strategy, the robot eventually generates a continuous policy.

4 ASSEMBLY LEARNING BY DISASSEMBLY
We can apply the same algorithm as for maze learning to disassem-
bly operations. Key stages of disassembly and their analogies in the
graph representation and hierarchical reinforcement learning are
summarized in the Table 1.

A positive reward is given only when the robot has disassembled
the object, i.e the target state. Negative reward is assigned when the
robot arrived in a state where the motion could not be continued.

When the robot explores state sk , the action-value function
Q(sk ,ak ) is updated according to the SARSA algorithm [11]:

Q(sk ,ak ) � Q(sk ,ak )+α(rk+γQ(sk+1,ak+1)-Q(sk ,ak )), (3)

where sk is the label of the k-th state, ak is the label of the action
taken in sk , rk is the reward obtained in state sk , 0 < α < 1 is
the learning gain and 0 < γ < 1 is the discount factor, which
gives recent rewards higher importance. The optimal policy can be
obtained by applying ϵ-greedy strategy in the form

π (s) =

argmax

a
Q(s,a), with probability 1 − ϵ,

random action, with probability ϵ,
(4)

where parameter ϵ is the ratio between the exploration and ex-
ploitation [12].

Using the hierarchical reinforcement learning, the robot not only
learns the disassembly policy, but identifies all crucial stages for
the corresponding assembly process.

We assume that assembly and disassembly are mutually re-
versible operations, therefore we obtain initial assembly policy
by merely reversing the disassembly policy. However, even if the
operation is reversible small deviations in part geometry, grasping,
material, etc. can result in failure. To account for this, we have to
apply appropriate control together with the exception strategies,
which mimic human behavior during the assembly.

We set high gains in all spatial directions until the parts to be
assembled are in contact. This assures precise path tracking during
the approach motion in assembly. When the parts are in contact,
we use the same compliance settings as during disassembly.

During the assembly, we measure contact forces and torques
and compare them with the measured forces and torques during
disassembly. Note that the forces/torques during assembly have the
opposite sign in relation to those measured at disassembly. If the
values are still notably different, we slow down themotion and if the
forces/torques are still increasing, we carry out a trajectory in the

Table 1: Key stages of disassembly and their analogies in hierarchical reinforcement learning and graph representation

Observation Lower level Upper level Graph

Fully assembled product. Controller tries to move in different directions and thereby
determines admissible directions.

Start state Yellow node

Partially disassembled product. Controller follows the environmental constraints and moves
in the only admissible direction.

Action Edge

Multiple options to continue disassembly. Controller tries to move in different directions and thereby
determines admissible directions.

State Orange node

Disassembly cannot be continued in the
same direction.

Goes in reverse direction. Penalty state White node

Fully disassembled product. Controller can freely move. Target state Green node

9
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opposite direction for some time and then try again, as suggested
in [6].

For improving the obtained policies many different methods
exists. We apply iterative learning control, which has proven useful
for on-line adaptation of force profiles in manipulation tasks [1].

5 EXPERIMENTAL VERIFICATION
We experimentally verified the proposed disassembly learning on a
Franka Emika Panda robot. The control algorithmwas implemented
as a ros_control plugin in C++ using libfranka[3], while the learning
algorithm was implemented in Matlab as a ROS node.

We verified the proposed approach using a R5W car bulb and
corresponding plastic casing, used to fix the bulb above the reg-
istration plates. The R5W bulb is mounted into the plastic casing
using bayonet mechanism as shown in Figure 4.

Figure 4: On the left illustration of a bayonet bulb with the
corresponding casing is shown. Bayonet mechanism consist
of radial pins, and amatching slot and spring to keep the two
parts locked together. On the right, a projection of the slot
in the casing to the plane is shown along with states than
can be discovered by the controller. In disassembly task in
order to release the lock, the robot first has to rotate the bulb
across the horizontal part of the slot and then the pin slides
into the vertical part of the slot. By lifting it upwards, the
robot eventually learns to remove the bulb.

This example shows why disassembly can be easier than the
assembly. In disassembly, the robot starts in state 1, and the only
decision it has to make is in the state 2 to arrive in the state 3. In
assembly, however, it has first to learn the proper pose of the state
3 and then search for the state 2.

The robot learns to remove the bulb from the casing as shown
in Figure 5.

Applying the procedure described in Section 4, the robot suc-
cessfully learns the assembly operation - bulb insertion.

6 CONCLUSIONS
Physical constrains can be used to structure and reduce search space
for reinforcement learning. During the disassembly the motion of
object parts is more constrained. As a consequence, learning of
disassembly can be easier than learning of assembly.

Hierarchical reinforcement learning, consisting of high level de-
cision making and intelligent compliant controller, has proven to
be an efficient framework for learning in the constrained environ-
ments, such as disassembly processes. The controller exploits its

Figure 5: On the left the bulb is mounted in the casing. On
the right the bulb is removed from the casing revealing its
two radial pins.

compliance in order to detect admissible motions. When motion
in multiple directions is possible, decisions are taken at the upper
hierarchical level.

The proposed approach was experimentally validated on the
case of light-bulb insertion. During the disassembly (bulb removal
from the casing), all crucial stages for the corresponding assembly
process (bulb insertion) can be learned autonomously and simplify
the assembly learning.

Our future research will focus on evaluation of the proposed
method for objects, composed of multiple parts.
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ABSTRACT
This project presents an attempt to apply current state-
of-the-art methods for grasp pose estimation to human-to-
robot handover scenarios. The implemented method shall
enable a robotic mobile manipulator to perform antipodal
grasps on previously unknown objects presented by a human
collaborator.

1. INTRODUCTION
Grasping is to be considered one of the fundamental object
manipulation tasks a robot has to perform. In a human-
robot collaboration scenario with a human giver handing
over an object to a robot receiver the perception task is
to determine the desired object transfer point and a cor-
responding grasp pose. This has proven to be challenging
especially when facing unknown objects in unstructured en-
vironments. Driven by applications in fields such as ware-
house automation or flexible manufacturing, recent advances
in object agnostic robotic bin picking, mainly inspired by
vision-based deep learning techniques, suggest that currently
proposed methods are increasingly capable of solving these
grasp synthesis tasks.

Mahler et al. [1] trained a neural network, dubbed grasp
quality CNN (GQ-CNN), to learn the evaluation of a grasp
success probability. The model is trained on the Dexnet-
2.0 dataset; an extensive collection of synthesized RGB-D
images annotated with corresponding grasp configurations.
By iteratively ranking and resampling grasp candidates this
method has shown to yield good proposals for unknown real
world objects. Morrison et al. [2] propose a fully convolu-
tional generative grasp CNN (GG-CNN) estimating individ-
ual maps for grasp quality, gripper angle and gripper width
from a given 2 image. The resulting best grasp is determined
by choosing the gripper configuration corresponding to the
highest success probability encountered in the grasp quality
map.

2. METHOD
Our method builds on the idea of estimating grasp config-
uration maps as in GG-CNN and extends the approach by
adding a semantic segmentation layer to enforce scene un-
derstanding. This acts as guidance to focus on the region of
interest for the object handover task and avoid estimating
grasps that would collide with the hand of the human col-
laborator. The proposed fully convolutional neural network
architecture is based on a U-Net inspired structure featuring
encoder and decoder each comprised of four residual network

blocks connected by an atrous spatial pyramid pooling layer
to foster scale invariance. At the input stage, the network is
fed a depth map acquired by an RGB-D sensor. The multi-
headed output consists of a pixelwise semantic segmentation
classifying as background, hand or object, a grasp center
point quality map, a grasp angle map and a gripper opening
width map. To obtain training data we extend the pipeline
of DexNet 2.0 by combining it with the hand pose estimation
data synthesis approach of Riegler et al. [3]. This enables
us to render depth images and segmentation masks and to
annotate corresponding grasp rectangles as introduced by
Jiang et al.[4] for scenes in which a human presents an ob-
ject to hand over in various poses and viewpoints.

Figure 1: Left: input depth image. Green box: intermediate segmen-
tation and grasp maps, resulting output estimated grasp configura-
tion. Bottom-right: ground truth segmentation and grasp configura-
tion

We are currently constructing a data acquisition pipeline
to capture real world ground truth using RGB-D sensors, to
bridge the sim-to-real gap due to noisy sensors by fine-tuning
the trained model on such data.
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ABSTRACT
Current challenges in automation represent automating low-batch
production processes where changes in the production parameters
happen frequently. These type of production are often happening in
Small and Medium-sized Enterprises, which have many time been
dismissed as potential end user of automation technologies. This
was mainly due to the high costs of setup, both in terms of the costs
of the equipment and time required to set it up. In this paper we
present a new type of reconfigurable robot workcell for fast set-up
of automated assembly processes for SMEs. By developing passive
reconfigurable elements and integrating intuitive programming by
demonstration methodologies we were able to reduce the costs and
set-up times for the automation of few-of-a-kind manufacturing
processes without losing the flexibility of the system to cope with
changes in market demands.

KEYWORDS
robotics, reconfigurability, ROS, assembly

1 INTRODUCTION
The trend of incorporation robots into manufacturing processes is
on the rise. While high cost of process automation does not rep-
resent a significant challenge for large enterprises, Smaller and
Medium-sized Enterprises (SME) might not undertake such an in-
vestments. Beside the price of the robots and the necessary accom-
panying hardware for automation, the cost of the time spend on the
integration of robotic systems can also be high. Another hurdle for
automatization of processes in SMEs is the need for quick adaptation
to ever changing market demands.The paradigm of Reconfigurable
Manufacturing Systems (RMS) [6] addresses the efficient and quick
adaptation of the production process. Although a RMS can have
a more complex design and achieve a lower throughput as classic
automation approaches, they proved to be more applicable in pro-
cesses with the need for often changes [10]. But in order to make
RMS affordable for SMEs , a high investments cost of incorporating
them in the manufacturing process needs to be avoided [3].
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classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
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Figure 1: The proposed reconfigurable robot workcell exe-
cuting an example assembly process.

The goal of the presented system is to offer a reconfigurable
robot workcell in line with the RMS paradigm. Theworkcell must be
appropriate for SMEs, where low-volume high-diversity production
often takes place. The proposed systems combines a reconfigurable
ROS-based software architecture and novel hardware elements
that offer cost efficient solutions to reconfigurability. In addition,
programming by demonstration methods for teaching of robots
assembly skills are included in order to reduce the setup time.

While novel approaches in hardware design for reconfigurable
robot workcells are presented in section 2, section 3 describes the
software architecture of the cell. Section 4 presents technologies
for fast set-up times and intuitive robot programming. Concluding
remarks and implementation results are given in the last section.

2 RECONFIGURABLE HARDWARE
While designing the reconfigurable robot workcell in line with the
RMS paradigm several aspects need to be taken into consideration:
the desired physical properties (size, stiffness, robot workspace,
etc.); available factory space; the integration of the workcell into the
establish production process without too many significant changes;
and the ability of the cell to quickly adapt to changing demands
in the process. To ensure the workcell’s ability for reconfiguration
and adaptation in an affordable way, we introduced several passive
reconfigurable hardware component as an alternative to off-the-
shelf solutions.
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The reconfigurable frame of the workcell connects the robot
to peripheral modules. Several requirement need to be taken into
account while designing the frame. While the cell’s stiffness is
paramount, as even small frame deformations can result in large
positioning errors, the structure must be easily adaptable to ensure
the needed reconfiguration. The affordability of such a solution
should also be taken into account. To ensure the stiffness of the
frame structure can be comparable with welded joints and at the
same time enable simple assembly and modifications, rectangular
steel beams in combination BoxJoint connectors [7] were selected.

Reconfigurable robot toolswere also introduced. Amounted a
tool exchange system at the robot’s end effector enables a vast array
of assembly operations by un/equipping tools needed for various
steps in the process. Besides ensuring a stiff coupling between the
robot and the tool, the exchange systems provides electrical power,
Ethernet connectivity, and pressurised air to the tool.

Figure 2: Various robot tools mounted on a rack. The robot
can attach the one needed for the current task.

Special “Plug & Produce” (PnP) connectors were developed
to ensure the connectivity to peripheral modules. These periph-
eral modules are crucial in a reconfigurable environment, as they
enhance the cell with various functionalities. Used modules can
include various fixtures, material flow management, tool storage,
etc. These modules need to be introduced or removed from the
workcell as quick as possible with as little disturbance to the pro-
cess as possible. The design of the PnP connectors provides a highly
repeatable, stiff, and quick mechanical coupling of the modules to
the cell. Beside a mechanical coupling, connectors enable the trans-
fer of data, pressurised air, and electrical power. This enables the
peripheral modules to be self sufficient and connect to the overall
structure of the cell as quickly as possible. While PnP connectors
allow us to introduce new modules into the workcell such modules
often need to be introduced manually, and can not be regarded as
fully autonomous.

A concept of passive reconfigurable elements introduces needed
reconfiguration into the cell, while reducing the cost of the elements.
In contrast to standard off-the-shelf solutions, which often include
active components, these passive reconfigurable elements do not
contain any actuators or sensing equipment. By removing these

components the price tag is lowered. To compensate for the missing
sensors and actuators in these passive elements, robot is used in the
reconfiguration step. A number of passive hardware components
were used in various assembly operations. One example of a passive
reconfigurable element is a passive rotary table (depicted in Fig.
3). By rotating the table, the workpiece on the table is oriented in
the desired way. This is achieved by releasing the table’s brakes,
re-orienting it by the robot arm, and engaging the brakes as the
desired orientation is reached. The last orientation of the table is
stored by storing the robot’s position.

3 RECONFIGURABLE SOFTWARE
Providing connectivity with respect to the data flow is another
paramount issue for a proper workcell. Peripheral modules should
be connected to the workcell and between each other, in order to
receive and broadcast data and instructions. The data should be
parsable by all software components within the system. To ensure
the software modularity and connectivity, the proposed software
architecture is ROS-based. The software system architecture of the
workcell is depicted in Figure 5.

A robot workcell ROS backbone was implemented to ensure
the needed connectivity. Just the data flow between all the modules
is not enough to achieve the desired modularity of the system. The
data should be structured in a way that is parsable by all the mod-
ules in the workcell. The suitable framework is offered by the Robot
Operating System (ROS) [8], which enables the development of
software components that need to share data over the common net-
work. In addition it allows monitoring and controlling the complete
workcell.

ROS-based modules ensure that they are all connected within
the workcell through the ROS network. All modules are equipped
with the computational hardware that enables running ROS nodes.
This means each module’s data and functionalities are available
through the workcell ROS network. They are denoted as Micro
computer in Fig. 5. A top-level task scheduling software can controll
all modules as soon as they are plugged into the cell. They are
connected to the cell using the described hardware components
(PnP connectors or tool exchange systems).

Low level real-time robot control is another crucial part of
the proposed reconfigurable workcell. To follow the previously
described paradigms of seamless integration of all the hardware
components in the workcell, robots should be treated as a ROS
enabled module. While industrial robots are equipped with a con-
trol box that provides real-time control, most of them do not offer
support for running ROS nodes and in turn are not able to com-
municate over the ROS network. A special communication layer
that connects the robot module to the rest of the ROS network
was implemented. In order to not make the workcell robot-specific
an abstraction layer that supports different types of robots was
introduced. It enable programming of new strategies through a suit-
able control interface and various trajectory and feedback control
strategies. Again, independently of the selected robot. This abstarct
layer enchances the overall modularity of the cell.

13



Autonomous adaptation to changes in production demands with a reconfigurable robot workcell IS2019, October 7–11, 2019, Ljubljana, Slovenia, Europe

Figure 3: An example use of the passive rotary table. As can be seen in the figure, the table is being used to fasten screws on 3
different sides of a workpiece. As it would be impossible to reach the object on all three sides with the screwdriver, due to the
kinematic restrictions, the table needs to be used.

4 ASSEMBLY SEQUENCES
During a set-up of a classic assembly workcell, a significant portion
of the time is dedicated to determining, writing and compiling of the
assembly sequence. In order to reduce the set-up time and enable
short reconfiguration times between different assembly processes,
this should be done as fast as possible. In this section we present a
set of technologies that facilitate and accelerate the programming
of robot workcell assembly operations.

Learning of assembly skills throughprogramming bydemon-
stration (PbD) enables defining the robot motions for a complete
assembly process in an intuitive and faster way for non-expert
users. PbD provides an approach to define these motions in a natu-
ral way and avoids coding complex programs in a robot-oriented
programming language [1, 2, 4]. The two present PbD approaches
are kinesthetic teaching and remote guidance.

With kinesthetic guidance the user moves the robot by physi-
cally guiding through its workspace and thus showing the desired
movement. This approach is commonly used in collaborative robot-
ics as it is effective to use with robots which have torque-controlled
actuators [5]. The quality of the dynamic model and torque sensors
greatly impact the ease of guidance and the needed physical effort.
This in terms effect the quality of the shown movement and the
smoothness of the demonstrated path.

While useful, the drawbacks of non-perfect kinesthetic guid-
ance represent an inconvenience when working towards meth-
ods to shorten times of robot programming. As a result, a large
amount of time can be spend to achieve the desired movement
and/or configuration of the robot. To mitigate these drawbacks a
remote control interface was developed and integrated in the work-
cell. A displacement of the analogue sticks of a consumer grade
joystick was mapped to the Cartesian space velocities. This allows
the user to control the robot in a smooth way and can mitigate the
drawback of kinesthetic guidance when needed.

A database of assembly skills acquired during PbD should
be be accessible throughout the entire software framework of the
workcell. In order to handle storing and loading of the learned skills,
MongoDB database was integrated into our system. Whenever a
new skill is learned, a new named entry is created in the database.

An assembly sequence can then read the desired database entry
from the database and move the robots accordingly. If we wish to
update a certain skill, we can simply overwrite the entry with a
newly modified skill. In this way, we avoid changing the top-level
assembly sequence program.

Figure 4: A consumer grade joystick interface that we used
to perform precise motions of the robot in Cartesian space.

State machine assembler is a crucial part of any workcell. An
engine for state machine code generation was developed to fur-
ther accelerate the programming process of the workcell assembly
sequence. While there are numerous ROS-based packages aimed
at facilitating the high-level task programming by using state ma-
chines, defining complex robot behaviours with these tools can be
complex. It requires a programmer to dedicate his attention to the
structure of the state machine, the basic code, and the programming
language syntax. To expedite and enhance this process, a method
for code generation, A meta-scripting and templating method was
was developed to speed up the process. The details on this are omit-
ted in this paper and the reader is referred to our previous work on
this topic [9].
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Figure 5: Software architecture for the reconfigurable robot workcell with various software and hardware modules.

5 CONCLUSION
In this paper we present a new type of robot workcell which is
highly reconfigurable with innovative hardware concepts and com-
ponents with a ROS-based software backbone. Throughout the
work that lead to the presented results we focused not only towards
providing methods for autonomous reconfiguration of the cell in
order to adapt to production changes, but also to shorten set-up
times by implementing various programming by demonstration
technologies. In order to show the industrial relevance of our work
we evaluated the proposed paradigms, the underlying technology
and the overall quality of the cell through the implementation of
various use-cases. The use-cases were provided by SMEs from dif-
ferent fields of industry and our task was to automate part of the
production line that is currently done either manually or does not
posses the desired flexibility. These use-cases range from the (1)
assembly of automotive headlights, (2) the assembly of linear drives,
(3) the assembly of a robotic gripper, (4) assembly of airport runway
lights and finally the (5) assembly of printed circuit boards (PCBs).
The successful implementations provided us with the overall proof
that the developed solution are of interest in the industry. We were
also able to acquire the first reference key performance indicators,
e. g. cycle time, reconfiguration time, setup-time, etc. Throughout
the implementation of the various use-cases some of the key equip-
ment stayed the same (i.e. robots, tool rack, etc.), however other
parts of the cell were reconfigured according to the requirements
of each experiment. Some application-specific periphery modules
were either added or removed.
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Modern manufacturing processes require high flexibility and
human-machine collaboration to cope with increasing product
variability, shorter production life cycles, and higher quality
demands. Collaborative mobile manipulators (CMMs) meet
these requirements. They combine the freedom of movement,
higher payload, and speed of mobile robots with the uni-
veral applicability, positioning accuracy and repeatability
of manipulator arms, equipped with collaborative features,
like operator safety and sensitivity, in order to operate near
and with humans. Despite recent innovations the industrial
application of CMMs did not progress as expected. The
main challenges for collaborative mobile manipulation can
be found in the following areas:

Sensors and Perception Mobile collaborative applica-
tions require fast, robust, and highly accurate localization
and detection of objects in the environment, ideally in a
range between sub-millimeter to several meters. For safe
human-robot interaction the accurate detection and localiza-
tion of humans and estimation of applied forces for precise,
safe and collision-free movement is paramount. As CMM
movements are only limited by the environment they need a
panorama view. This requires multiple sensors of different
types, mounted to maximize the field of view while minimiz-
ing self-occlusion, multi-sensor calibration, and fast and reli-
able algorithms for data fusion and interpretation. Occlusion,
due to CMM and operator movement, produces blind spots
which decreases safety and productivity. Current research
efforts aim towards better machine learning-based perception
methods, novel multi-sensor modalities, and entirely new
sensor systems; for instance capacitive surrounding-sensing
”artificial skins” will result in more sensitive and safer manip-
ulation and contactless interaction with humans.

Control One particular concern is to maintain the stability
of the mobile platform while performing manipulation tasks
with the arm. Inherent kinematic redundancy of the com-
bined system is another problem. The degrees of freedom
associated to the combination of a mobile platform with a
manipulator are different in their dynamical and kinematic
properties and have fundamentally different effects on the
performance of the overall system. Redundancy resolution
has a task of utilizing degrees of freedom in such a way
that each subsystem is optimally exploited in terms of joint
limit avoidance, stability, energy consumption, fault recovery,
obstacle avoidance, and so on.

Task Scheduling and Allocation Collaborative applica-
tions require multi-agent planning with temporal and spatial

constraints to schedule and allocate tasks. The complexity
of the combined optimization problem and the unforeseeable
agent behavior impedes fast reactions that are required in
dynamic situations. Furthermore, most planning techniques
treat humans rather as obstacles, a source of uncertainty,
than cooperating entities. Models and fast methods are re-
quired to capture uncertainties and skills for both human
and robotic agents and to take them into consideration when
tasks are allocated.

Human-machine Interface and Programming CMMs
present a natural step toward flexible universal robot sys-
tems. Non-intuitive kinematic properties make conventional
programming tedious and require some form of teaching. For
complicated tasks which include simultaneous movement of
the whole robot some form of semi-autonomous control has
to be present and reprogramming is then reparametrization
through interaction. Well-accepted contact-based human-
machine interfaces are unsuitable for interaction with a mov-
ing system when the robot is either too far away or the
position is changing. Even when use-cases are stationary, the
geometrical properties of the system force interfaces to be
placed on the platform within the manipulator workspace
which is in many cases highly inconvenient.

Safety Currently no safety standard addresses mobile manip-
ulation directly. Usually several more general ISO-standards
are taken into account when designing robot application that
are safe for humans, the environment, and the robot. Criti-
cal points during safety assessment are often safety-certified
fail-safe hardware and software, and the risks of battery op-
eration, locomotion in large environments, and autonomy of
the device. Especially the uncertainty introduced by humans
combined with robot autonomy poses a big problem, as robot
safety usually tolerates only marginal uncertainties. This
results in severe limitations, most noteably speed and force
reduction, which lessen the applicability and productivity of
CMMS considerably.

Security As industrial settings become more and more
digitized and connected, also the threat level in terms of
cyber-attacks dramatically increases. From a systems engi-
neering point of view, a mobile manipulator is a complex
system of systems. In such systems, the risk of uncovered
security issues increases along with the growth of complexity.
Considering sensitive mobile manipulators, outside influence
may lead to harm to humans if (software-defined) safety
functions are exposed to attacks.
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ABSTRACT
Safety and Security in robotics have long been known to go together
hand in hand in order to make robots safe around humans. In
modern, intelligent robots however, where software is a dominating
part, the quality and reliability of software is a key issue.

To gain most from the increased potential of robots, adequate
software architectures must be developed to handle their complex-
ity. In this abstract, we sketch our ideas and work towards com-
bining software architectures with robot security to work towards
highly capable, secure robots.

KEYWORDS
software, security, mobile manipulation

1 RESILIENT SOFTWARE FOR COMPLEX
ROBOTS

Security in robotics has gained some attention in the recent years. It
has been shown that the most popular framework, ROS, has severe
deficiencies in terms of security [1] resulting in easy-to-hack robots
[2]. However, software engineering methods in robotics are still
lacking the proper attention. We argue that for safety and security
of robots, high-quality software is key. We present our work in
software architectures and their security and hint towards later
research directions.
1.1 Software architecture for mobile

manipulation
In [3], we have shown an architecture for our CHIMERA mobile
manipulator. This architecture separates the software into hard-
ware, abstraction and application layers and defines clear interfaces
between each. The driver layer can be exchanged to enable the
reuse of business software on multiple robot platforms. Further, it
defines a dedicated space where system integrators can enhance
the core firmware with drivers and additional functions.
1.2 Security architecture for mobile

manipulation
The architecture described above needs security measures inte-
grated in order to protect the robot from outside attacks. Obviously,
network and operating system security are requiredmeasures. How-
ever, we are convinced, that a multi-level approach is required,
where multiple layers of security are implemented. Our secure
architecture is shown in fig 1.
∗All authors contributed equally to this research.
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Figure 1: Software architecture for mobile manipulators.

In our approach to securing the software architecture, we heavily
rely on isolation. We use two dedicated computing units where
each one has different security levels. The CHIMERA computing
unit contains the core business software and drivers for mobile
base and arm. The Integration computing unit contains code and
device drivers developed by system integrators. This separation
ensures, that the integrator cannot compromise the security of the
core system. In addition, individual layers of the architecture are
isolated in separate docker containers with well-defined security
boundaries.

2 RESEARCH DIRECTIONS
As part of this ongoing work, we want to establish Software as
the third "S" of great robots besides Safety and Security. We see all
three topics tightly integrated and required to make future robots
productive companions in- and outside of industry. We will work
on methods for better robot software that also enables developers
to better test their software and easily employ security measures.
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ABSTRACT
Robotic learning can effectively be applied for industrial applica-
tions. In this paper we show one such example, with a learning
algorithm applied to reach the optimal velocity of robotic motion
for visual quality inspection. If such learning is performed before
the start of the production, even if it takes a lot of repetitions, it
can achieve faster cycle times and thus greater productivity. The
described approach is general and can be used with different types
of learning and feedback signals. In the paper we analyze the ap-
propriate feedback signal and show the results of learning for a
standard area-scan camera.

KEYWORDS
robotic learning, visual feedback, focus measure, robotic quality
control

1 INTRODUCTION
Many operations are performed with autonomous robots in fac-
tories, and many more are expected in the factories of the future.
Often, visual feedback is used to provide the trajectory of the robot.
[16]. However, various vision techniques, such as time of flight,
structured light, laser triangulation, RGB cameras, stereo vision,
etc. are used for quality control processes in the industry [4, 9].
Quality control can take different modes. For example, discrete
checking of an object from a few viewpoints and comparing the
acquired images to predefined templates [11]. Another option is
to continuously acquire images with either moving the in-hand
camera, or moving the object in front of the camera. A plethora
of advanced methods for image processing for quality inspection
have been proposed, including deep learning methods [17].

For effective vision-based operations, the machine vision hard-
ware needs to be properly set-up and tuned. In large-scale auto-
mated production, it is typically set-up once, and then it remains
in the same configuration throughout its life cycle. Consequently,
machine vision hardware is often designed in a way that some ad-
justments can only be carried out manually. Many lenses thus have
a fixed focal length and manual adjustment of the iris and focus
[1]. However, even if the vision-hardware is set up only once, the
process still constitutes a tedious and demanding task. For example,
in continuous visual inspection, e. g., for visual inspection of weld
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Figure 1: The robot cell composed of a UR-10 robot, a Basler
acA1300-60gm area scan camera, a dedicated light source
(not shown) and the dummy flat object at a calibrated dis-
tance from the robot.

seams [18], requires the robot to follow the seam with the camera
at the end-effector. The image has to be sharp in all the positions
and at all velocities. Thus, for such continuous visual quality con-
trol, the operator has to define the correct robot path, but also the
correct speed, because too fast motion in front of the camera might
result in a blurry image.

The demands of the industry typically culmulate in having to
move as fast as possible in order to reach high cycle times. [19].
Thus, when programming robot motion for quality control, the
path can be properly configured by exporting the object CAD data
and appropriate robot-to-object calibration, but the speed of robot
motion is typically left to the operator, who spends a considerable
amount of time hand-tuning it. However, this tuning could be left
to an autonomous learning algorithm with proper feedback. In
this paper we briefly analyze possible visual filters for appropriate
feedback, and demonstrate how hand-tuning can be automated by
employing learning algorithms.

1.1 Problem Statement
We investigate learning of motion speed for continuous visual
quality inspection of products with a robot using an in-hand camera.
The system should:

• follow a predefined path,
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• autonomously optimize motion velocity using learning, so
that

• the velocity of motion does not introduce blurring, i. e., a
reduced focus measure.

We also analyze appropriate visual feedback filters to determine
image sharpness.

The following assumptions hold. i) A CAD system provides an
accurate robot path (trajectory) consisting of required positions and
orientations; ii) proper robot-object calibration can be achieved; iii)
The system operates under constant lighting and camera conditions.

To achieve seamless velocity modulation, we applied Dynamic
movement primitives (DMPs) developed by Ijspeert et al. [10]. We
used a variant of DMPs called Cartesian Space Dynamic Movement
Primitives [21] for the trajectory encoding. Other trajectory en-
coding approaches could easily be applied, for example Gaussian
Mixture Models [3]. For the learning we applied Iterative Learning
Control (ILC) [2, 6]. Again, other methods, such as reinforcement
learning [5, 13] could be applied.

2 FOCUS MEASURE
Visual quality inspection requires sharp, focused images. Only a
few industrial camera/lenses on the market provide autofocus, with
little information about how focus is determined in these cameras
[1].

We first used robot-driven autofocus as described in [1] to set
our fixed-focus camera at the right distance from the object for
inspection. To do this we used squared horizontal gradient focus
measure, as suggested by [1]. This focus measure has a distinct bell-
shape characteristics, with the best focus achieved at the peak. The
robot moves the camera perpendicularly to the object of inspection,
away and towards the object. After detecting the peak value (the
focus measure begins to decrease), the robot reverses its motion
and travels in the other direction at a slower speed, again until
crossing the peak value. These movements are repeated until the
accurate position resulting in peak focus measure ϕ is obtained.
Details of this method and results showing that the achieved focus
measure is higher than the one achieved by manually positioning
the camera, are presented in [1].

Using this approach we can set the camera into focus for one
point, for example above the starting point of the path of inspection.
We assume that the desired inspection path has been extracted
from a CAD model of the inspected object. To obtain the reference
values ϕ(t) for all points on the inspection trajectory, the robot
moves along the desired inspection path. However, the question is
whether speed has an effect on the focus measure, and furthermore,
out of many focus measures that exist, which will be most effected
by the speed.

Focus measures are based on different orders of differentiation
(first or second), image histogram, correlation and data compres-
sion [14]. Methods employing first-order gradients use different
operators, such as squared gradient, Sobel (horizontal, vertical, com-
bined), Laplacian, Scharr, and others. We tested several possible
focus measures. We moved the robot with an in-hand camera over
a dummy object at three different velocities, completing the motion
in 3s, 20s, and 60s. Figure 2 shows the relative focus measure as a
function of normalized time (phase), going from 0 to 1, for different

Figure 2: Different focus measures at different speeds of ro-
botmotion (top: 60s,middle: 20s, bottom: 3s), for normalized
time. The measures were normalized to the initial value.

measures. The label states the measures used. The feedback focus
measures were normalized to the initial value. As we can see, a
higher velocity indeed decreases the focus measure, and the effect
is different for different focus measures.

Figure 3 shows filtered values of relative difference between
slow and fast motion for the top 10 focus measures. We can see that
squared horizontal gradient focus measure is the most reactive to
change of velocity. Is is provided by

ϕ =
M−1∑
x=0

N−2∑
y=0

(I (x ,y + 1) − I (x ,y))2 . (1)

Here the image is sizedM × N , with I (x ,y) the intensity values at
pixels (x ,y).

The values would be the same for the vertical gradient if the cam-
era were rotated 90◦. The vertical horizontal gradient is calculated
by

ϕ =
M−2∑
x=0

N−1∑
y=0

(I (x + 1,y) − I (x ,y))2 . (2)

Brenner vertical and horizontal filters provide similar values.
They are defined by

ϕ =
M−1∑
x=0

N−3∑
y=0

(I (x ,y + 2) − I (x ,y))2 . (3)

for the horizontal and

ϕ =
M−3∑
x=0

N−1∑
y=0

(I (x + 2,y) − I (x ,y))2 . (4)

for the vertical filter.
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Figure 3: Filtered relative change of feedback values for 10
different focus measures.

3 TRAJECTORY ENCODING
In this paper we used the original formulation of Cartesian DMPs
from [21], expanded with temporal scaling, as originally proposed
for standard DMPs in [15].

The following parameters compose a CDMP: weightswwwp
k , www

o
k ∈

R3, k = 1, . . . ,N , which represent the position and orientation
parts of the trajectory, respectively; trajectory duration τ and the
final desired, goal position дддp and orientation дддo of the robot. Vari-
able N sets the number of radial basis functions that are used to
encode the trajectory. The orientation is in CDMP represented by
a unit quaternion. In this paper we only consider the positions.

ν (s)τ Ûz = αz (βz (gp − p) − z) + fp (s), (5)
ν (s)τ Ûp = z, (6)

Variable ν (s), as a function of the phase, provides temporal scal-
ing. Parameter zzz, denotes the scaled linear velocity (zzz = τ Ûppp). The
nonlinear parts, termed also forcing terms, fp and are defined as

fp (s) = DDDp

∑N
k=1w

p
kΨk (s)∑N

k=1 Ψk (s)
s, (7)

Forcing terms contain parameters wwwp
k , ∈ R

3. They have to be
learned, for example directly from an input Cartesian trajectory
{ppp j , Ûppp j , Üppp j , tj }

T
j=1. The scaling matrix DDDp , ∈ R

3×3 can be set to
DDDp = III . Other possibilities are described in [21]. The nonlinear
forcing terms are defined as a linear combination of radial basis
functions Ψk

Ψk (x) = exp
(
−hk (x − ck )

2
)
. (8)

Here ck are the centers and hk the widths of the radial basis
functions. The distribution of weights can be, as in [20], ck =

exp
(
−αx

k−1
N−1

)
, hk =

1
(ck+1 − ck )

2 , hN = hN−1, k = 1, . . . ,N . The

time constant τ is set to the desired duration of the trajectory, i. e.
τ = tT − t1. The goal position is usually set to the final position on
the desired trajectory, i. e. дддp = ppptT . Detailed CDMP description
and auxiliary math are explained in [21].

Temporal scaling ν (s) provides a trajectory that defines a speed
profile of the motion. It is composed of a weighted combination of
kernel functions

ν (s) =

∑R
k=1w

ν
kΨk (s)∑R

k=1 Ψk (s)
. (9)

Here R defines the number of kernel functions, given in (8), for
temporal scaling. For simplicity, this number can be the same as N
in (7). The weights wν

k need to be learned in the same manner as
the weights for position trajectories.

4 IMPROVING SPEED OF QUALITY CONTROL
WITH LEARNING

Focus measure is repeatable, and there is a clear difference in ϕ for
different motion speeds, as evident from Fig. 2. Therefore, we can
use ϕ as the feedback for learning.

The goal of learning here is to achieve a fastest possible velocity
profile, where there will be only little or even no degradation of the
focus measure. Thus, the motion will be executed as fast as possible,
and the sharpness of the image, used for quality inspection, will
not degrade.

It should be noted that with the chosen parametric speed profile
representation, different means of learning open up, as was shown
in [5], or in [12]. In this paper we have chosen one of the variations
of iterative learning control. The advantage of using a learning
control method is that it requires very few iterations to improve
results. However, such methods never truly converge, but only
asymptotically approach the target value [2].

The chosen learning algorithm for learning was previously ap-
plied for coaching of robot motion through human intervention [7].
A short recap is provided for completeness of the paper. Its basis
is learning of weights of CDMPs, but in this case it is used for the
learning of the weights of the velocity profile ν . The weights of the
velocity profilewwwν are iteratively updated (for 1DOF) with

wν
i, j+1 = wν

i, j + Γi, j+1Pi, j+1rej (10)

Pi, j+1 =
1
λ

(
Pi, j −

P2i, jr
2

λ
Γi
+ Pi, jr2

)
(11)

ej = ftarg, j −wν
i, jr . (12)

Here j + 1 stands for the next time sample and i for the selected
weight. Pi , is the inverse covariance ofwi , r is the amplitude gain.
To apply this algorithm for modifying the speed profile based on
the focus measure ϕ, we replace (12) with

ej = k ∗ (ϕslow − ϕfast). (13)

here k is a positive constant gain. The whole algorithm is described
in procedure of Fig. 4. The learning takes place until a predefined
threshold of ej is reached. This threshold can be determined empir-
ically.

Instead of learning directly on the weights, one can also simply
generate the velocity profile from the weights and add to it a scaled
ej ,

νl+1(t) = νl(t) + kej (t), (14)
where the gain k is set empirically and l stands for iteration. The
resulting νl+1(t) is then again encoded into weights, for example

20



IS2019, October 7–11, 2019, Ljubljana, Slovenia, Europe Gams, et al.

procedure LearnProfile
record ϕ for slow (practically static) motion;
record ϕ for fast motion withwν

i = const;
while ϕlatest > threshold

execute motion with currentwν

calculate new error of ϕ with ϕ − ϕlatest
update wν using (10), (11) and (13)

end

Figure 4: Procedure for learning the velocity profile using
the squared gradient focus measure.
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Figure 5: Results of velocity learning for a dummy flat ob-
ject. The top lines shows absoluteϕ for slow 60smotion. The
bottom line shows ϕ for fast, 3s motion. ϕ over iterations is
shown between, with the final, red line almost the reference,
but at 19.12s.

iteratively using (10) – (12), or with a batch conversion, as shown
in [10].

Figure 5 shows the results of the algorithm, applied on a dummy
object, using the algorithm described in Fig. 4 and squared hor-
izontal gradient focus measure. Results on a curved object were
reported in [8].

5 CONCLUSION
Learning algorithms have tremendous potential to improve the
productivity of industrial processes today, not only in the future.
The results show that autonomous learning algorithms can improve
the performance of the robot, and that such algorithms can be
effectively applied optimizing production processes. Thus, they can
relieve and help operators/engineers. Fine-tuning and calibration
of the processes is a tedious, long process, requiring a lot of effort.
Time and money can be saved both in the set-up as well as in the
improved productivity.
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ABSTRACT
Mobile manipulators are robot systems which enable the ca-
pabilities of logistics and manipulation tasks. Thus, they
potentially close unconsidered gaps regarding flexibility in
modern production lines. We address the problem of devel-
oping an easy-to-use interface for intuitive robot program-
ming. This interface implements a whole-body compliance
control to allow for hand-guidance.

1. INTRODUCTION
Producing small lot-sizes or highly customized products re-
quire enhanced flexibility within the manufacturing processes.
This raises the need for flexible and easily adaptable robotic
systems. While conventional automated production lines are
usually prepared and programmed by external experts, mod-
ern applications require frequent adaption or reprogram-
ming. To enable this directly for workers, without explicit
programming skills but high domain knowledge, an intuitive
interface is needed. One well-known technique is kinesthetic
programming by demonstration, where a compliant robot
can be hand-guided into desired configurations. While the
compliance control for serial manipulators has been well in-
vestigated, the whole-body compliance for a mobile manip-
ulator, consisting of a serial manipulator on top of a mobile
base, has gained little attention yet. Leboutet et al. [1]
presented a strategy with hierarchical force propagation for
a mobile manipulator with omni-directional base. Navarro
et al. [2] proposed a system where the motion distribution
between the serial manipulator and the mobile base is done
with optimization.

2. METHOD
In our previous work [4] we presented a control strategy for
whole-body compliance of a mobile manipulator with differ-
ential drive. A force/torque sensor is mounted close to the
end-effector (EE) to measure the external wrench applied
by the user. The robot shows kinematic redundancies re-
garding the 3D task space since the 6 degrees of freedom
of the arm are supplemented with those of the mobile base.
Our control structure focuses on resolving these redundan-
cies by implementing three different modes: A pull-mode,
where the mobile base can be pulled like a steered trailer,
which means that the base is rotating and translating to-
wards the EE and haptic feedback is given to the user by
means of a virtual spring. In the ur-mode only the serial
arm moves, and the push-mode allows for pushing the mo-
bile base while receiving haptic feedback of a virtual spring.
The decision, which mode is used depends on the actual

position of the EE. Two circles in the xy-plane define two
borders of cylindrical shapes in the 3D space. If the EE
leaves the outer circle pull-mode is active, in between the
two circles the ur-mode is active and inside the inner circle
push-mode becomes active.

The proposed control structure was successfully validated
throughout laboratory experiments, but approaching arm
configurations close to singularities proved to be problem-
atic. Since the suggested controller uses end-effector veloc-
ities as control inputs, close to a singular configuration, a
rather slow end-effector motion may lead to very high joint
velocities causing possibly dangerous situations. In [3] we
extended our controller to avoid approaching singular arm
configurations by providing haptic feedback to the user. We
did a detailed analysis of all possible singularities of the
UR10 and implemented virtual springs to avoid them.

For future work it is planned to integrate haptic feedback to
avoid self collisions. Furthermore, depending on the choice
of the radius of the inner circle, the workspace of the serial
arm is restricted, since when the inner circle is entered by
the EE, push-mode is active and a virtual spring will move
the EE back outside of the inner circle. We plan to refine
the strategy at this point to minimize the volume of the
restricted workspace.
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ABSTRACT
Learning to recognize and reproduce handwriting is a familiar skill
taught to every educated human being but is challenging to teach
to a robot given its tight coupling between perception and motion.
In this work, we address the specific task of recognizing digits
in single images and reproducing the digits in the form of robot
end-effector trajectories encoded as dynamic movement primitives
(DMPs) used to control the pen strokes. Here we present a convo-
lutional image-to-motion encoder-decoder deep neural network
architecture that takes the raw digit images as input and produces
the DMP parameters as output, learning a mapping between the
two as a latent representation. The architecture is tested on several
challenging noisy digit datasets under different training regimes
and compared to an architecture without convolutional layers in
the image encoder where it is shown to provide robust results for
the digit writing task.

KEYWORDS
deep neural networks, dynamic movement primitives

1 INTRODUCTION
Effectively learning to predict action mappings directly from per-
ceptual input is a highly challenging problem in robotics research
that has seen a broad variety of approaches attempting to solve it
in different settings. The particular setting under consideration in
this work is depicted in Fig. 1, in which a robot must learn direct
mappings between handwritten characters in input images and
the motion trajectories needed to draw them. In previous work
we proposed a fully-connected encoder-decoder network architec-
ture [6] that used dynamic movement primitives (DMPs) [5] for
movement representation and this proved to be an effective choice
both for representation and learning with the neural network and
ultimately for control of the robot when drawing the actual digits.
The fully-connected architecture, however, was not ideal for image
representation.

Here we investigate a different architecture that combines the
benefits of convolutional layers for image encoding with those
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of a fully-connected encoder-decoder architecture for DMP pa-
rameter prediction and image-to-motion representation in a low-
dimensional latent space. This combination allows for relatively
robust prediction compared to the previously proposed architecture,
even when the input images are heavily corrupted by noise. The
use of convolutional layers has the added benefit of significantly
reducing the number of network parameters and by pre-training
these layers on images from a similar image domain, the learning
process is further improved.

Figure 1: Writing digits with a robot using image-to-motion
encoder-decoder network prediction.

Autoencoders [3], as well as variational autoencoders [4], have
been demonstrated to be quite effective when it comes to calculat-
ing DMP-based representations of human motion. Since our focus
is on learning direct mappings between images and actions, instead
of using such autoencoder networks in which the DMP encoding
occurs in the latent space, we use an encoder-decoder architecture
in which the image is encoded from the input layer, the DMP pa-
rameters are predicted at the output layer and the transformation
and generalization of the image-to-motion representation occurs
in the low-dimensional latent space. Encoder-decoder networks in
combination with convolutional layers have proven to be useful in
computer vision. A well-known example is SegNet [1], in which pre-
trained convolutional layers from a convolutional neural network
(CNN) were adapted to form a fully-convolutional encoder-decoder
architecture for semantic pixel-wise segmentation.

UsuallywhenCNNs are used for supervised learning of perception-
action couplings, they are used i combination with another neu-
ral network in two separately trainable parts. In [9], Yang et al.
first used a deep convolutional autoencoder for finding camera
image features and then in combination with recorded robot an-
gles, formed sequences for the learning task dynamics with a time
delay neural network. Pervez et al. [7] used a pre-trained CNN for
finding task parameters from input images, while using a another
fully-connected neural network to learn to generate forcing terms
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Figure 2: The CIMEDNet architecture.

from the clock signal and task parameters, before combining both
networks in an end-to-end training scheme. Both of these two ex-
amples produce the next step from the image of the current step
while working in online loop, whereas our method, by contrast,
uses just single images for generating entire trajectories.

2 CONVOLUTIONAL IMAGE-TO-MOTION
ENCODER-DECODER NETWORKS

The structure of the data under consideration in this work is the
same as in [6] where the input and output data pairs take the form
D =

{
Cj ,Mj

}M
j=1 whereM is the number of input and output train-

ing pairs, Cj ∈ R
H×W are the input images of widthW and height

H , and Mj the corresponding movements associated with each
image, i. e. Mj =

{
yi, j , ti, j

}Tj
i=1 . Here yi, j ∈ Rd are the vectors

describing the movement’s degrees of freedom, e. g. Cartesian posi-
tions or joint angles, ti, j ∈ R the measurement times for the j-th
movement, and d is the number of degrees of freedom. However,
it should be noted that in this paper, we convert the movements
Mj to DMPs and construct all of the datasets used to train the net-
work models as follows: D′ =

{
Cj , kj

}M
j=1, where kj are the DMP

parameters calculated for each movement Mj and are represented
as

kj =
{
{wk }

N
k=1, τ , д, y0

}
. (1)

The construction of DMPs and the nature of the parameters {wk }
N
k=1,

τ , д and y0 are explained in detail in the following subsection.

2.1 Motion Representation with DMPs
Letting a time-dependent movement trajectory be denoted asy(t) ∈
Rd , a DMP specifying this trajectory is given by the following
system of differential equations

τ Ûz = αz (βz (д − y) − z) + diag(д − y0)F(x), (2)
τ Ûy = z, (3)

where y0 ∈ Rd is the initial position on the trajectory, д ∈ Rd

the final position on the trajectory, diag(д − y0) ∈ Rd×d a diagonal
matrix with components of vector д−y0 on the diagonal, F(x) ∈ Rd

a nonlinear forcing term, z ∈ Rd a scaled velocity of motion, and
x ∈ R the phase defined by the following equation

τ Ûx = −αxx . (4)

The phase x is used instead of time to avoid explicit time depen-
dency. It is fully defined by setting its initial value to x(0) = 1. Eq.
system (2) – (4) constitutes a dynamic movement primitive (DMP).

If the parameters τ ,αx ,αz , βz ∈ R are defined appropriately, e. g.
τ ,αx > 0 and αz = 4βz > 0, then the linear part of equation sys-
tem (2) – (3) becomes critically damped and y, z monotonically
converge to a unique attractor point at y = д, z = 0. The forcing
term F(x) is usually defined as a linear combination of radial basis
functions

F(x) =

∑N
k=1wkΨk (x)∑N
k=1 Ψk (x)

x , (5)

Ψk (x) = exp
(
−hk (x − ck )

2
)
, (6)

where ck are the centers of Gaussians distributed along the phase
of the trajectory, and hk their widths. The role of F is to adapt the
dynamics of (2) – (3) to the desired trajectoryy(t), thus enabling the
system to reproduce any smoothmovement from the initial position
y0 to the final configuration д. This can be accomplished by com-
puting the free parameterswk ∈ Rd using regression techniques.
See [8] for more details.

αz , βz , and αx are usually constants that do not change between
movements. Thus the neural network needs to learn the other
parameters of differential equation system (2) – (4) to fully specify
a DMP as defined in Equation (1).

2.2 Network Architecture
In our improved architecture, images are encoded via convolutional
layers that are pre-trained as part of a basic CNN classifier that
was trained on the original MNIST dataset. The input is a 40 ×

40 × 1 grayscale pixel image, followed by a convolutional layer
with 5 × 5 kernel size and 10 feature maps, a convolutional layer
with 5 × 5 kernel size and 20 feature maps, a 0.5 dropout layer, a
fully-connected layer of size 320, a fully-connected layer of size
50 and the output layer of size 10 matching the number of digits.
After training the classifier, the fully-connected layers are removed
and the convolutional layers are retained and are used to form the
first layers of the encoder in our proposed architecture. These two
convolutional layers are followed by two added fully-connected
layers with sizes of 600 neurons and 200 neurons, illustrated on the
left side of Fig. 2.

Following the bottleneck of the network that forms the latent
space representation, a decoder is formed via a number of fully-
connected layers that gradually expand the number of units in each
layer until the final output layer which has a size set to 55 units
in order to match the DMP parameters {wk }

N
k=1, τ , д and y0. The

layers of the decoder are illustrated on the right side of 2 starting
with the bottleneck of size 20, followed by a layer of size 35 and
finishing with the output layer. This is the same decoder structure
as used [6] and we retain it here as-is, having found it to be effective
throughout our experiments for this particular use case. The cost
function used to evaluate the output of the network is the same
as that of Equation (9) in [6], which is defined for the j-th DMP as
follows:

Ep (j) =
1
2

( N∑
k=1

∥wk −wk, j ∥
2 + (τ − τj )

2+

+∥д − дj ∥
2 + ∥y0 − y0, j ∥

2
)
, (7)
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where {{wk }
N
k=1, τ , д, y0} denotes the output of the neural net-

work and {{wk, j }
N
k=1, τj , дj , y0, j } the DMP parameters from the

training data kj ∈ D′. For further details on the gradient calcula-
tions required for minimizing the cost function via backpropagation
we refer the reader to [6].

3 EXPERIMENTS
In our experiments, we trained both the fully-connected image-to-
motion encoder-decoder architecture (IMEDNet) and the convolu-
tional architecture (CIMEDNet) on various digit image and motion
trajectory datasets. The IMEDNet architecture was the same as de-
scribed in [6] with fully-connected hidden layer sizes of 1500, 1300,
1000, 600, 200, 20, and 35 neurons, respectively. The CIMEDNet
architecture was as described in Section 2.2 and as illustrated in
Fig. 2.

In the case of CIMEDNet, we also experimented with either freez-
ing the convolutional layer weights or training the entire network
end-to-end. The results for these different training regimes are
cataloged in Table 1.

3.1 Datasets
In order to construct D, we employed the same scheme described
in [6] to generate 40 × 40 images of synthetically written digits
and associated two-dimensional artificial writing trajectory move-
ments. Briefly, the synthetic trajectory data was generated using
a combination of straight lines and elliptic arcs. These geometric
elements were used to generate grayscale digit images and their
paramaters were varied according to a uniform distribution. The
resulting images were processed with a Gaussian filter and some
moderate salt-and-pepper noise was added to the foreground pixels.
Finally, both the generated trajectories and the resulting images
were transformed using affine transformations composed of trans-
lation, rotation, scaling, and shearing. These parameters were again
taken from a uniform distribution. For the DMP representation of
the trajectories, 25 radial-basis functions were selected for every
dimension. The weights of these basis functions form together with
the common time constant (1 parameter) and the start and the goal
values of a planar movement (2 × 2 parameters), the full set of 55
DMP parameters that represent the motion. Using this procedure,
several datasets were generated both with and without similar noise
as used in the noisy MNIST (n-MNIST) datasets [2] as follows:

• s-MNIST: 2000 pairs of images and trajectories without any
added noise were generated for each digit, for a total of 20000
samples that were split in a 70%/15%/15% ratio between
training/validation/test data,

• s-MNIST-AWGN-19.0: 300 samples per digit/3000 total sam-
ples, using additive white gaussian noise with a signal-to-
noise ratio of 19.0,

• s-MNIST-AWGN-9.5: 300 samples per digit/3000 total sam-
ples, using additive white gaussian noise with a signal-to-
noise ratio of 9.5,

• s-MNIST-MB: 300 samples per digit/3000 total samples, us-
ing a motion blur filter emulating a linear motion of the
camera of 5 pixels and a 15 degree motion in the counter-
clockwise direction,

• s-MNIST-RC-AWGN: 300 samples per digit/3000 total sam-
ples, using a contrast range scaled down to half as well as
additive white gaussian noise with a signal-to-noise ratio of
9.5.

It should be emphasized that in the results that follow, only the
s-MNIST dataset was used for training the presented models.

3.2 Results
The main quantitative results are presented in Table 1 while qual-
itative results for selected samples are presented in Fig. 3. After
training on the noiseless s-MNIST dataset each of the models were
tested on all five of the noiseless and noisy s-MNIST datasets de-
scribed in the previous section. The CIMEDNet architecture was
trained with two separate training regimes in which the convo-
lutional layer weights were frozen and the models were trained
end-to-end respectively. For the quantitative evaluation, dynamic
time warping was used to measure the mean pointwise pixel dis-
tance between the trajectories generated by the DMPs predicted by
the networks from the digit images and the actual digit trajectories.

Table 1: DMP reconstruction statistics. The results are in pix-
els. The best result for each dataset is highlighted in bold-
face.

IMEDNet
(End-to-End)

CIMEDNet
(Frozen Conv.)

CIMEDNet
(End-to-End)

s-MNIST 0.22 ± 0.08 0.26 ± 0.10 0.19 ± 0.08
s-MNIST-
AWGN-19.0 0.56 ± 0.20 0.54 ± 0.20 0.36 ± 0.14
s-MNIST-
AWGN-9.5 1.66 ± 0.60 1.48 ± 0.55 1.02 ± 0.45
s-MNIST-
MB 0.35 ± 0.15 0.47 ± 0.25 0.36 ± 0.12
s-MNIST-
RC-AWGN 2.32 ± 0.77 2.19 ± 0.76 1.93 ± 0.66

As can be seen in Table 1, the CIMEDNet model that is trained
end-to-end significantly out-performs the IMEDNet model on both
the noiseless s-MNIST dataset and on most of the noisy s-MNIST
datasets, apart from the dataset featuring motion blur noise. We
reason that this may be due to the fact that motion blur can sig-
nificantly distort overall object shape and edge profiles and given
that convolutional neural networks function the basis of exploiting
hierarchies of image filters often heavily represented by edge detec-
tors, this may impact on their effectiveness in such circumstances.
The CIMEDNet that was trained with frozen convolutional layers
also fared well, beating the IMEDNet model on the same noisy
datasets despite not scoring as well on the noiseless dataset. This
indicates that the feature detectors in the convolutional layers allow
for more robust generalization whereas fully-connected layers are
more inclined to overfit.

The qualitative result samples in Fig. 3, are also interesting. Here,
original trajectories are shown in blue whereas trajectories calcu-
lated by the neural networks are shown in red and samples inmatch-
ing dataset rows are identical for a fair comparison between each
network. Results using the s-MNIST-RC-AWGN dataset are omitted
as the noise levels are so pathologically difficult that the qualita-
tive results are comparatively worthless. However, the CIMEDNet
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Figure 3: Example results for IMEDNet (rows 1, 2, 5, 6, 9,
10, 13 & 14) & CIMEDNet trained end-to-end (rows 3, 4, 7,
8, 11, 12, 15 & 16). Rows 1-4: s-MNIST, rows 5-8: s-MNIST-
AWGN-19.0, rows 9-12: s-MNIST-AWGN-9.5 and rows 13-16:
s-MNIST-MB.

model often performs surprisingly well given that it was not trained
or fine-tuned on the noisy data. Both models appear to produce
highly legible writing trajectories that closely match the actual tra-
jectories in the case of the s-MNIST-MB dataset, but the CIMEDNet
model is demonstrably superior to IMEDNet in many cases with
the s-MNIST-AWGN-19.0 and s-MNIST-AWGN-9.5 data, producing
much more legible results and demonstrating the robustness of the
convolutional layers in dealing with even high noise levels.

4 CONCLUSIONS AND FUTUREWORK
We have presented an extended form of an encoder-decoder neural
network for image-to-motion prediction that employs convolu-
tional layers in the encoder in order to make the image recognition
component more robust to noisy input. We have demonstrated
that this architecture outperforms its predecessor on a variety of
different kinds of noise. Regarding future work, we intend to fur-
ther expand the capabilities of this model by incorporating layers
from more powerful pre-trained CNN models into the encoder and
training the network on more challenging image sets. One chal-
lenge here lies in either finding suitable image datasets that include
trajectory information in their target outputs or in finding other
means of producing images with corresponding motion trajectories,
e.g. by gathering both in a robot simulation environment.
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