
BIOINSPIRED OPTIMIZATION METHODS
AND THEIR APPLICATIONS

Proceedings of the Second
International Conference on
Bioinspired Optimization Methods
and their Applications, BIOMA 2006

9–10 October 2006, Ljubljana, Slovenia

Edited by

BOGDAN FILIPIČ
JURIJŠILC

Jožef Stefan Institute, Ljubljana

Jožef Stefan Institute
Ljubljana, Slovenia

Preface

Faced with insufficient performance of traditional computational methods on
demanding real-world problems, computer scientists have decades ago started
designing a novel class of problem solving techniques inspired by biologi-
cal phenomena, such as collaboration and competition among individuals in a
struggle for limited resources, recombination and propagation of genetic ma-
terial from generation to generation, and emergent behavior of insect colonies
and bird flocks. Simplified models of these mechanisms are nowadays em-
ployed in problem solving techniques, known as evolutionary computation, ant
colony optimization, particle swarm optimization and others, that alleviate the
shortcomings of traditional algorithms in large-scale applications where lit-
tle is known about the properties of the underlying problems. Moreover, the
bioinspired techniques are becoming increasingly popular for their robustness,
capability of providing alternative solutions and amenability to implementation
in distributed computing environments. It is therefore not surprising that they
are being regularly used in tackling search and optimization tasks in science,
engineering and business.

This volume contains some of the recent theoretical and practical contri-
butions to the field of bioinspired optimization. The papers were presented
at the Second International Conference on Bioinspired Optimization Methods
and their Applications (BIOMA 2006), held in Ljubljana, Slovenia, on 9 and
10 October 2006. Encouraged by the success of the first BIOMA in 2004, we
organized the conference again to bring together theoreticians and practitioners
to present their recent achievements in a single stream of talks, and exchange
the ideas in informal discussions. After the review process, 16 papers were ac-
cepted for publication, contributed by 35 (co)authors coming from 7 countries.

Professor G̈unter Rudolph from the University of Dortmund, widely known
for his numerous theoretical studies of evolutionary algorithm properties,deliv-
ered an invited talk on deployment scenarios of parallelized code in stochastic
optimization. The remaining contributions were divided into two categories,
one dealing with theoretic and algorithmic issues, and the other presenting
practical applications. Theoretical and algorithmic studies address specialized
topics in bioinspired optimization: entropy driven exploration and exploitation

vii

viii BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

in evolutionary algorithms, niching for multimodal optimization problems, self-
adaptation in differential evolution, stopping criteria for constrained optimiza-
tion with particle swarms, a non-parametric genetic algorithm, takeover time
in evolutionary algorithms processing parallel subpopulations with migrating
individuals, and stigmergy as a numerical optimization concept. Reports on ap-
plied work come from a variety of application domains: dietary menu planning,
optimal mission planning for autonomous unmanned aerial vehicles, database
index optimization, job scheduling on computational grids, optimization of met-
allurgical production processes, characterization of biosystem complexity with
electron paramagnetic resonance, and genetic programming of sensor networks.

BIOMA 2006 was sponsored by the Slovenian Research Agency. It was
organized as part of the 9th International Multiconference Information Society
(IS 2006) taking place at the Jožef Stefan Institute, Ljubjana, from 9 to 14
October 2006. BIOMA was held at the Jožef Stefan International Postgraduate
School that also includes bioinspired optimization in its curriculum.

We are grateful to the conference sponsors, members of the program and
organizing committees, the invited speaker, and regular paper presentersfor
taking part in shaping the conference. We hope you find the event enjoyable
and the book inspiring, and invite you to meet again at the next BIOMA.

Ljubljana, 25 September 2006

BOGDAN FILIPIČ AND JURIJ ŠILC

DEPLOYMENT SCENARIOS OF PARALLELIZED
CODE IN STOCHASTIC OPTIMIZATION

Günter Rudolph
Department of Computer Science

University of Dortmund, Germany

guenter.rudolph@uni-dortmund.de

Abstract The benefit of using parallel hardware in real-time environments is obvious: For
example, if it is necessary to solve some optimization task periodically in a narrow
time window a parallelized optimization algorithm can possibly meet the time
constraints. In case of deterministic algorithms the situation is clear. But if weuse
randomized algorithms some questions appear: As randomized algorithms must
be run more than once to get a reliable solution we can execute the sequential code
in parallel independently or we can execute the parallelized code simultaneously
on the parallel hardware in a successive manner. Which approach is better? We
analyze several scenarios analytically and offer conditions for deciding when to
deploy the parallelized code and when not.

Keywords: Parallel optimization, Randomized algorithms, Stochastic optimization

1. Introduction

The utility of a parallelized deterministic optimization algorithm is evident:
Since the deterministic algorithm is run only once, the parallel version delivers
the solution more rapidly. In case of randomized optimization algorithms the
situation changes. Typically, these randomized algorithms (RAs) must be run
several times to avoid bad results produced by some unlucky sequence ofran-
dom variables used in the RA. This observation raises the question if the burden
of developing a parallel randomized algorithm is worth the effort: Instead of
running a parallelized RA several times in sequence on the parallel hardware,
one can also run the original sequential code independently in parallel onseveral
processors. Which are the situations in which running the parallelized codeis
advantageous? And when the recommendation should be the other way round?

Here, we analyze some situations based on certain scenarios. Our main as-
sumption is that we have a periodically appearing optimization task. Therefore
it is reasonable to use theexpectation of random variablesfor comparisons: If
the expected runtime of successive runs of the parallelized code is less than the

3

4 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

expected runtime of parallel runs of the sequential code, then and only then it
is advisable to deploy the parallelized RA.

This approach also has the appealing aspect that we can elude from the
ongoing discussion how to measure the performance of parallelized RAs [1, 2]
in terms of speedup, efficiency and related measures.

Here we extend and generalize our findings presented in [4]. For this purpose,
Section 2 presents some mathematical results used in the sequel. Sections 3 and
4 present several scenarios and offer conditions for deciding whento deploy
the parallelized code and when not. Finally, our conclusions can be foundin
Section 5.

2. Mathematical Preliminaries

Let X1, X2, . . . , Xp be independent and identically distributed (i.i.d.) ran-
dom variables. Their minimum and maximum are denoted byX1:p = min{X1,
X2, . . . , Xp} andXp:p = max{X1, X2, . . . , Xp}, respectively. For certain dis-
tributions of theXk the expectation of the minimum and maximum can be cal-
culated analytically. For example [3, p. 35], if theXk are uniformly distributed
in the interval[a, b] then

E[Xk] =
b− a

2
, V[Xk] =

(b− a)2

12
,

E[X1:p] = a + (b− a)
1

p + 1
and E[Xp:p] = a + (b− a)

p

p + 1
. (1)

Moreover, there exist numerous inequalities for the expectations, each of them
based on some assumptions. The most general inequality is probably givenin
[3, p. 59 and 63] since it only assumes the existence of the second moment.

Theorem 1
Let X, X1, X2, . . . , Xp be i.i.d. random variables withE[X2] <∞. Then

E[X]− p− 1√
2 p− 1

D[X] ≤ E[X1:p] ≤ E[Xp:p] ≤ E[X] +
p− 1√
2 p− 1

D[X]

whereD[X] denotes the standard deviation ofX. ⊓⊔

Another result that will be useful is known as Wald’s equation. A proof can
be found e.g. in [5, p. 166f].

Theorem 2
Let N be a positive, integer-valued random variable andX1, X2, . . . be an i.i.d.
sequence of random variables whereN is also independent of theXk. Then the
expectation and variance of the random sum consisting of the firstN members

Deployment Scenarios of Parallelized Code in Stochastic Optimization 5

of theXk are given by

E

[
N∑

k=1

Xk

]
= E[N] · E[X1] (2)

V

[
N∑

k=1

Xk

]
= E[N] · V[X1] + V[N] · E[X1]2 (3)

whereV[·] denotes the variance. ⊓⊔

3. Scenario: Run RA Multiple Times, Choose Best
Solution Found

In practice, nobody runs a randomized algorithm only once. Rather, the RA
is run multiple times and the best solution found within some time limit is used.
Figure 1 illustrates our two options how to use the parallel hardware.

SEQ

6t

· · ·

1 2 3 . . . p

PAR

6t
...

1 2 3 . . . p

Figure 1. Left: The sequential code is run independently in parallel onp processors. Right:
The parallelized code is run onp processors simultaneously forp successive runs.

3.1 Fixed Iteration Number

Let t be the running time of the sequential algorithm andtp = c t/p the
running time of the parallelized sequential algorithm, wherec > 1 aggregates
the communication and other overhead costs of the parallelized version. Letn
be the maximum number of times we can run the RA before we must use the
best solution found and assume thatn = p wherep is the number of processors.

Thenr = t is the total running time of running the sequential algorithm on
p processors in parallel. Since the total running time ofp successive runs of
the parallelized version isrp = p × tp = c t we can see easily that nothing is

6 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

gained by a parallelization. Even worse, every effort invested in this taskis a
waste of resources.

3.2 Random Iteration Number

The situation changes if the running time of the RA is a random variable. For
instance, this may be caused by some stopping rule that is independent fromthe
iteration counter. LetT be the random running time of the sequential algorithm
andTp = c T/p the running time of the parallelized sequential algorithm with
c > 1. Again, assumen = p. Then the random total running timeR of running
the sequential algorithm onp processors in parallel is

R = max{T (1), T (2), . . . , T (p) } = Tp:p

whereT (i) is the running time at processori. Clearly, theT (i) are independent
and identically distributed. Assume thatT (i) is normally distributed with mean
t > 0 and varianceσ2. Then the expectation ofR can be approximated [3] via

E[R] = E[Tp:p] ≈ E[T] + D[T]
√

2 log p . (4)

The random total running timeRp of p sucessive runs of the parallelized version
is given by

Rp =

p∑

i=1

Tp(i) =
c

p

p∑

i=1

T (i)

with expectation
E[Rp] = c E[T] .

Thus, the parallelized version is faster if

E[Rp] < E[R]⇔ c < 1 +
D[T]

E[T]
×

√
2 log p . (5)

In other words, the larger is the coefficient of variationν = D[T]/E[T] the
larger the benefit achieved by the parallelization of the sequential algorithm!As
seen from this analysis, this scenario can be an appropriate field of deployment
of parallelized RAs.

One may object that the conclusions drawn from the relationship in Eqn. (5)
are shaky since Eqn. (4) is an approximation only. In order to invalidate this
objection we first consider an example for which the result can be reproduced
exactly in analytical manner. Next we generalize the result by means of Theo-
rem 1.

Assume thatT (i) ∼ U(t− ε, t + ε) are uniformly distributed in the interval
[t− ε, t + ε] for somet, ε > 0. For sake of brevity we shall writeT instead of

Deployment Scenarios of Parallelized Code in Stochastic Optimization 7

T (i). Insertion in Eqn. (1) yields

E[T] = t , V[T] =
ε2

3
, E[Tp:p] = t + ε

p− 1

p + 1
.

Thus,E[Rp] < E[R] if and only if c t ≤ t+ ε (p− 1)/(p+1) or equivalently

c < 1 +
ε

t
√

3

p− 1

p + 1

√
3 = 1 +

D[T]

E[T]
× p− 1

p + 1

√
3 . (6)

For example, if we use 9 processors and the running time is uniformly distributed
between 40 and 60 seconds then Eqn. (6) yieldsc < 1 + 4/25 = 1.16. As
a consequence, the efficiency1/c of the parallelization must be larger than
25/29 ≈ 86.2 %. Otherwise, one should run the sequential code in parallel
independently.

Next, we generalize our findings. Comparison of Eqn. (5) and Eqn. (6)
reveals the same pattern:

c < 1 +
D[T]

E[T]
× g(p) (7)

for some functiong(·) depending on the number of processorsp. In order to
derive condition Eqn. (7) analytically recall that the condition originally reads

E[Rp] < E[R] ⇔ c E[T] < E[Tp:p] ⇔ c <
E[Tp:p]

E[T]
.

Evidently, this condition is fulfilled if we boundE[Tp:p] from above via The-
orem 1, that is valid for arbitrary runtime distributions. We obtain

c <
E[Tp:p]

E[T]
≤

E[T] + D[T]× p−1√
2 p−1

E[T]
= 1 +

D[T]

E[T]
× p− 1√

2 p− 1

confirming that the pattern in Eqn. (7) did not appear by chance. Moreover, we
have shown that

g(p) ≤ p− 1√
2 p− 1

regardless of the runtime distribution ofT .

4. Scenario: Run Until Satisfactory Solution Found

One might argue that the previous scenario is not always the case. For
example, if we need only a satisfactory solution then we can stop the RA as
soon as such a solution has been detected. In principle, this can happen ina
single run of the RA. Figure 2 illustrates our two options how to use the parallel
hardware.

8 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

SEQ

6t

· · ·

· · ·

...
...

...
...

1 2 3 . . . p

PAR

6t
...

1 2 3 . . . p

Figure 2. Left: The sequential code is run independently in parallel onp processors until a
satisfactory solution is found. Right: The parallelized code is run repeatedly on p processors
simultaneously until a satisfactory solution is found.

4.1 Fixed Iteration Number

As in the previous scenario lett be the running time of the sequential algo-
rithm andtp = c t/p the running time of the parallelized sequential algorithm
with c > 1. Suppose there exists a success probabilitys ∈ (0, 1) for each run
of the RA such that the random variableG represents the number of runs until
a successful run occurs. The random variableG has geometrical distribution
with probability function

P{G = k } = s (1− s)k−1

for k = 1, 2, . . . ands ∈ (0, 1) with

E[G] =
1

s
and V[G] =

1− s

s2
.

The time until a successful run occurs on a single processor isS = t G. There-
fore, the random total running timeR of running the sequential algorithm onp
processors in parallel is

R = min{S(1), S(2), . . . , S(p) } = S1:p = t G1:p

whereG1:p denotes the minimum ofp independent and identically distributed
geometrical random variables. According to [6] we have

E[G1:p] =
1

1− (1− s)p
and V[G1:n] =

(1− s)n

[1− (1− s)n]2

such that
E[R] = t E[G1:p] =

t

1− (1− s)p
.

Deployment Scenarios of Parallelized Code in Stochastic Optimization 9

The random total running timeRp of p successive runs of the parallelized
version is given by

Rp = tp S =
c

p
t S

with expectation

E[Rp] =
c

p
t E[S] =

c t

s p
.

Since

E[Rp] < E[R]⇐⇒ c <
s p

1− (1− s)p

there are constellations in which a parallelized version is useful. Figure 3
is intended to provide an impression about the interrelationships. For small
success probabilitiess as one usually faces in optimizations task in which RAs
are used as last remedy, the efficiency of the parallel implementation must
be extremely high for recommending the deployment of the parallelized code.
Especially in real-time environments assumed here it is unlikely to achieve such
a high efficiency.

Figure 3. Success probabilitys versus efficiency1/c of the parallel implementation for some
processor numbers.

10 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

4.2 Random Iteration Number

Let T (i) be the random running time of runi. Then

S =
G∑

i=1

T (i)

is the random time until the first successful run on a single processor. According
to Theorem 2 we haveE[S] = E[G] E[T]. As a consequence, the random
total running timeR of running the sequential algorithm onp processors in
parallel is

R = min{S(1), S(2), . . . , S(p) } = S1:p

with
E[R] = E[S1:p] < E[S] = E[T] E[G] .

The random total running timeRp of p successive runs of the parallelized
version is given by

Rp =

G∑

i=1

Tp(i) =
c

p

G∑

i=1

T (i)

with

E[Rp] =
c

p
E[T] E[G] =

c

p
E[S] =

c t

s p
.

Our condition reads

E[Rp] < E[R] ⇔ c

p
E[S] < E[S1:p] .

We can expressE[S] in terms ofE[T] andE[G] but there is a problem for
E[S1:p]: Although we can use the lower bound of Theorem 1 to claim that there
is a nonnegative-valued functionh(·) with E[S1:p] = E[S] − D[S] × h(p)
and we can expressD[S] in terms of moments ofT andG via Theorem 2, the
resulting formula

c

p
E[S] < E[S]− D[S]× h(p) ⇔ c < p

(
1− D[S]

E[S]
× h(p)

)

does not yield much insight for analyzing the situation.
Therefore we take a look at our conditionc

p
E[S] < E[S1:p] again. If each

Ti has a minimum runtimea > 0 thenE[S] ≥ a E[G] andE[S1:p] ≥ a E[G].
Since

c

p
E[S] ≥ c

p
a E[G]→ 0 asp→∞

whereas
E[S1:p] ≥ a E[G] > 0 regardless ofp

Deployment Scenarios of Parallelized Code in Stochastic Optimization 11

we may conclude that there exists a processor numberp0 such thatE[Rp] <
E[R] for all p > p0. Thus, this scenario is well suited for parallelized code if
many processors are available.

5. Conclusions

We have shown that the recommendation for a deployment of parallelized
code depends on several constraints. If we have a fixed time slot and a constant
running time of the algorithm then the deployment of parallelized code is a
waste of resources. If we can wait until completion of the randomized algorithm
which has a random running time, then we need a moderately efficient parallel
implementation and a large variation in the running time to favor the parallelized
code. If we are in the situation to repeat the algorithm until it fulfills some
criterion, then the condition for deploying parallelized code demands a hardly
achievable efficiency of the code in case ofconstantrunning time. If the running
time is random then parallelized code may lead to shorter overall running time
if many processors are available. The theory in its current state, however, does
not yet provide a condition to quantify the number of processors that mustbe
available. Nevertheless, the theory provides some clues that random running
times of the randomized algorithms more often lead to recommendations for
deploying parallelized code.

References

[1] J. Acźel and W. Ertel. A new formula for speedup and its characterization.Acta Informatica,
34(9):637–652, 1997.

[2] E. Alba and A. Luque. Measuring the performance of parallel metaheuristics. In E. Alba,
editor,Parallel metaheuristics: A New Class of Algorithms, pages 43–62, Wiley, Hoboken,
NJ, 2005.

[3] H. A. David. Order Statistics. 2nd edition, Wiley, New York, 1981.

[4] G. Rudolph. Parallel evolution strategies. In E. Alba, editor,Parallel metaheuristics: A
New Class of Algorithms, pages 155–169, Wiley, Hoboken, NJ, 2005.

[5] K. D. Schmidt.Versicherungsmathematik. Springer, Berlin et al., 2002.

[6] D. H. Young. The order statistics of the negative binomial distribution.Biometrika,
57(1):181–186, 1970.

ENTROPY-DRIVEN EXPLORATION AND
EXPLOITATION IN EVOLUTIONARY
ALGORITHMS

Shih-Hsi Liu
Department of Computer and Information Sciences

University of Alabama at Birmingham, USA

liush@cis.uab.edu

Marjan Mernik
Faculty of Electrical Engineering and Computer Science

University of Maribor, Slovenia

marjan.mernik@uni-mb.si

Barrett R. Bryant
Department of Computer and Information Sciences

University of Alabama at Birmingham, USA

bryant@cis.uab.edu

Abstract Every evolutionary algorithm needs to address two important facets: exploration
and exploitation of a search space. Evolutionary search must combine exploration
of the new regions of the space with exploitation of the potential solutions already
identified. The necessity of balancing exploration with exploitation needs to be
intelligent. This paper introduces an entropy-driven exploration and exploitation
approach for evolutionary algorithms. Entropy represents the amountof disorder
of the population, where an increase in entropy represents an increasein diver-
sity. New kinds of entropy to express diversity and to control the entropy-driven
approach are discussed.

Keywords: Entropy, Evolutionary algorithms, Exploitation, Exploration, Parameter control

1. Introduction

Evolutionary algorithms (EAs) [1, 9] are general purpose searching methods
with good yet implicit balance between exploration and exploitation. Explo-

15

16 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

ration is a process of visiting entirely new regions of a search space and of
seeing if anything promising may be found in the regions. Exploitation is a
process of using information gathered from the previously visited points in
the search space to determine which regions might be profitable to be visited
next. Exploitation techniques are good at finding local maxima. However, how
is the balance between exploration and exploitation achieved in EAs? More
importantly, how can the balance be controlled?

In EAs, the selection process and operators (e.g., crossover and mutation) es-
tablish a balance between the exploration and exploitation of the search space
[5]. A selection process drives searching towards the regions of the best in-
dividuals. Hence, exploitation is done by selection. The mutation operator
randomly modifies individuals, with a given probability, and thus increases the
structural diversity of the population. From this point of view, the mutation
operator is more an exploration operator. Such an operator helps to recover
the genetic diversity lost during the selection phase and to explore new solu-
tions avoiding premature convergence. On the other hand, mutation can also
be seen as an exploitation operator, because most of the genetic material is pre-
served. However, note that in some EAs (e.g., evolutionary strategies) mutation
has a much bigger exploration role than in genetic algorithms. The crossover
operator combines two or more parents to generate better offspring. Sucha
combination can be derived from the idea that the exchange of information
between good individuals will generate even better offspring. From this point
of view, the crossover operator is more an exploitation operator. However,
a good crossover operator should also generate individuals in the exploration
zone. Therefore, good balance between exploration and exploitation in EAs is
achieved by selection, good mutation/crossover operators and by determining
parameters (pm, pc, tournament size), which control mutation/crossover and
selection, respectively. There have been a variety of studies on determining
the best control parameter values [3, 4]. The main problem is to find a set of
control parameters, which optimally balances exploration and exploitation: if
crossover and mutation rates are very high, much of the space will be explored,
but there is a high probability of losing good solutions and of failing to exploit
existing schema. If crossover and mutation rates are low, the search space is not
explored. The population diversity is therefore rapidly decreasing andending
up in a premature convergence to a non-optimal solution. Despite that, many
researchers believed that EAs are effective because of a good ratioof explo-
ration/exploitation. However, this ratio of EAs is implicitly controlled. In some
other search techniques such as reinforcement learning [14], one has explicit
control over exploration and exploitation. In EAs, one no longer has explicit
and respective control over exploitation and exploration, because it is difficult
to delimit exploration from exploitation.

Entropy-Driven Exploration and Exploitation in Evolutionary Algorithms 17

In this paper, an entropy-driven exploration and exploitation approachis
presented. The exploration/exploitation of the search space is adapted on-line
based on the current status of the evolutionary process. The on-line adapta-
tion mechanism involves a decision process as to whether more exploitation or
exploration is needed depending on the current progress of the algorithm and
on the current estimated potential of discovering better solutions. This deci-
sion process is described by a domain-specific language, PPCEA (Programmable
Parameter Control for Evolutionary Algorithms) [8]. Because of space consid-
eration, the paper only presents the experimental results using genetic algo-
rithms. Experimenting the mutation role for balancing between exploration
and exploitation in evolutionary strategies is our future work.

The paper is organized as follows. Section 2 describes the related work.In
Section 3, entropy is introduced to control exploration and exploitation. Section
4 shows the examples and experimental results. Finally, Section 5 presents the
conclusion.

2. Related Work

Optimal balance between exploration and exploitation has been mainly con-
trolled by determining the best control parameter values. There are a variety
of studies on this topic [4, 7, 8]. Recommendations on control parameters for
a particular set of problems can be found in [3, 11]. In [4], an overview of
this problem has been given, where the authors distinguish between parame-
ter tuning and parameter control. Furthermore, methods for parameter control
have been classified into deterministic, adaptive, and self-adaptive categories:
the deterministic category adjusts parameters by deterministic rules; the adap-
tive category utilizes the feedback of the evolutionary process to controlthe
direction and magnitude of parameters; and the self-adaptive category encodes
parameters into individuals and undergoes mutation and recombination.

One of the earliest researchers that investigated entropy in EAs was Rosca
[10], whose experiments showed that populations appeared to be stuck inlocal
optima when entropy did not change or decrease monotonically in successive
generations. Rosca used fitness values in a population to define entropy and
free energy measure. Our work extends Rosca’s in trying to find different ways
to compute entropy in EAs. Moreover, using entropy as a measure and pro-
grammable parameter control by PPCEA [8], we are able to control exploration
and exploitation in an adaptable manner.

Diversity-Guided Evolutionary Algorithm (DGEA) [13] uses a distance-to-
average-point measure to alternate between phases of exploration and exploita-
tion. It can be expressed easily as a PPCEA program. Moreover, DGEA does
not use entropy as a measure for diversity.

18 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

3. Entropy in EAs

Entropy is a concept in information theory, thermodynamics, and statistical
mechanics. The basic concept of entropy in information theory has to do with
how much randomness there is in a signal or random event. Shannon [12]
defines entropy in terms of a discrete random eventx, with possible states1..n
as:

H(x) =
n∑

i

pi log2(
1

pi
) = −

n∑

i

pi log2 pi. (1)

Statistical mechanics explains entropy as the amount of uncertainty which
remains about a system, after its observable macroscopic properties havebeen
taken into account. For a given set of macroscopic quantities, such as temper-
ature and volume, entropy is a function of the probability that the system is in
various quantum states. The more states available to the system with higher
probability, the greater the disorder and thus, the greater the entropy. Ifthe
system has only one possible state, there is no uncertainty, and the entropyof
the system is zero. If the system hasn possible states which are equiprobable
(pi = 1

n
), the entropy is the highest:

H = −n
1

n
log2(

1

n
) = log2 n. (2)

Figure 1. The relationship between entropy and the numbers and sizes of classes.

As such, entropy represents also a succinct measure of diversity. Biological
diversity refers to the differences between individuals in a population, which
in nature imply structure (genotype) and behavior (phenotype) differences. In
EAs, identical genotypes produce the same fitness. Thus, a decrease ingeno-
type diversity will necessarily cause a decrease in phenotype diversity. Hence,
to measure entropy/diversity, one needs to define some structural measures.

Entropy-Driven Exploration and Exploitation in Evolutionary Algorithms 19

Such measures, however, might be computational intensive in some instances
of EAs (e.g., genetic programming) [2]. Fortunately, based on the described
entropy/diversity relationship between genotype and phenotype, such measures
at the phenotype level are sufficient. Figure 1 shows how the numbers and sizes
of classes of a population affect entropy. High entropy in EAs reveals the pres-
ence of many unique fitness values, where the population is evenly distributed
over those values, as shown in Figure 1(a). Figure 1(c) represents low entropy
computed from a population which contains fewer unique fitness values as many
individuals have the same fitness.

Rosca [10] calculates entropy for a population by first placing fitness values
into fitness classespi and counting the size of each fitness class. Thepi is the
proportion of the population occupied by the population partitioni. Entropy is
then defined as:

−
∑

i

pi log2 pi. (3)

This paper extends [10] to experiment with entropy, using different flexible
cases of fitness classes, to facilitate explicit balance between exploration and
exploitation.

Figure 2. Linear (left), Gaussian (middle), and Fitness proportional (right).

Figure 2 shows three new cases for defining fitness classes:

Linear: Assign a predefined yet changeable value to the number of fitness
classes,n. For each generation, the interval between the best and worst
fitness values is evenly partitioned inton sub-intervals as fitness classes
(the left chart of Figure 2). An individual whose fitness value is occupied
in a specific sub-interval is classified into the corresponding fitness class.

Gaussian: The partition of fitness classes in this case is derived from
Gaussian distribution. For each generation, fitness classes are ‘spread
out’ from the average fitness value (average) with the standard deviation
(σ). For example, the upper/lower bound of the first fitness class (P1 in
the middle chart) is computed asaverage ± σ. The boundaries of the
successive classes (P2 – P5) can be generalized asaverage± iσ, where

20 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

i ∈ Z
+ andi ≤ n

2 . For each generation, the lower bound of the leftmost
fitness class is less than or equal to the smallest fitness value, and the
upper bound of the rightmost fitness class is larger than or equal to the
biggest fitness value.

Fitness proportional: The fitness proportional approach is a variation of
Rosca’ approach [10]. Rosca’s fitness classes are partitioned by individ-
uals having the same phenotypes.pi is the proportion of a population oc-
cupied in theith partition. In our approach,pi is formalized as fi

ΣPopsize
i fi

,

wherefi is the fitness value of an individual.pi is the criterion for catego-
rizing fitness classes. As all individuals of a population have differentpi

(namely, different fitness values), the number of fitness classesn equals
the population size (Popsize). If more than one individual contains the
same fitness value (i.e.,pi = pj , wherei 6= j), pj log2 pj is eliminated in
the Eqn. (1) andn < Popsize. It is because two identical fitness classes
are not necessary, and the elimination complies with the definition of
diversity. Figure 2(c) shows 15 fitness classes sorted bypi, and each of
which has one or more individuals occupied.

4. Examples

Entropy driven exploration and exploitation have been experimented with on
the suite of test functions presented in [15]. Due to lack of space only examples
using theSphere Modelare presented in this section:

f(x) =
d∑

i

x2
i , (4)

wherexi ∈ [−100, 100], d (dimension)= 30, andmin(f) = f(0, . . . , 0) =
0. Best fitness value (B), Average fitness value (A), Worst fitness value (W),
Population Diversity (D), Standard Deviation (S), Linear Entropy (E), Gaussian
Entropy (G), Fitness Proportional Entropy (P), and Rosca Entropy (R) with
respect to a population from generations 0 to 1500 (X-axis) are includedin the
following figures. Curves B, A, and W use the same definitions as all other EAs;
curves E, G, P are defined in Section 3; curve S is the standard deviation of the
fitness values of all individuals; curve D is the Euclidean distance betweenall
individuals; and curve R is the entropy defined in [10]. All but entropy curves
(E, G, P, and R) use the left Y-axis as the coordinate. The experimental results
in the figures are the average values out of fifty rounds. Table 1 showsthe initial
values set up for the examples.

Figure 3 shows the results of a deterministic approach, which initializes
pm = 0.11375 and adjusts the value using the Fogarty formula [6]. In Figure 3,
curves E, P, and R dramatically descend before generation 550. Curves B, A, W,

Entropy-Driven Exploration and Exploitation in Evolutionary Algorithms 21

Table 1. Initial values of parameters in the following examples.

Parameter Value Parameter Value

Maxgen 1500 Popsize 100
pm 0.005 pc 0.75
Epoch 50 Round 50

Figure 3. The Fogarty deterministic approach.

D, and S also precipitately decrease from generations 0 to 550. Such informa-
tion indicates that the evolutionary process is inclined from more on exploration
toward more on exploitation during this early phase. From generations 550 to
1035, more exploitation is applied than exploration such that curves B, A, W,S,
and D become more and more flat. After generation 1035, the evolutionary pro-
cess reaches the stable state which implies that no further process is necessary.
The best value found using Fogarty deterministic approach is2.13 e−5.

Figure 4 presents the results using the1
5 success rule [9]. Such a rule deter-

minespm to be increased when the successful permutation rate (ϕ) is greater
than 1

5 , and to be decreased whenϕ is less than1
5 . In Figure 4, a good bal-

ance between exploration and exploitation (yet still more on exploration) canbe
found before generation 900: curves E and R are stable in the ranges between
1.4 and 1.65 and between 1.55 to 2.00, respectively; curves B, A, W, S, and D
are smoothly decreased; andpm is changed every 50 generations to adjust the
mutation step. From generations 900 to 1220, curves E and R steeply decline,
and curve G has downhill move. Such curves show that the evolutionary pro-
cess is inclined from exploring to exploiting the current regions with relatively

22 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 4. 1
5

success rule approach.

small mutation steps. From generations 1220 to 1320, all entropy curves are
getting flat and curve D has a ‘saw-toothed’ shape. Such curves imply that the
searching process in the exploitation phase and is not stuck in local optima. The
best value found using the15 success rule approach is6.82 e−8. Before exam-

Figure 5. PPCEA source code for an entropy-driven approach.

ining the last chart, an entropy-driven approach written in PPCEA is introduced
in Figure 5. When entropy is greater than 0.5,pm is decreased to facilitate
the exploitation phase. Smaller mutation steps avoid the increase of population
diversity. As entropy is smaller than 0.5, more exploration is required to avoid
local optima. Therefore,pm is increased to diversify the search regions. Such
an example perfectly shows that balance between exploration and exploitation

Entropy-Driven Exploration and Exploitation in Evolutionary Algorithms 23

can be adjusted in synergy of entropy andpm. Figure 6 shows the result using
this source code.

Figure 6. Entropy-driven approach.

In Figure 6, curves E, P, and R steeply decline between generations 0 and
450. Curves B, A, W, S, and D also diagonally traverse the plane. When curve
E is between its midpoint (at generation 350) and upper bound (0.74 to 1.68),
pm is decreased (line 5 of Figure 5) to balance exploitation against exploration.
As curve E is between its lower bound and midpoint (0 to 0.74), exploration
outperforms exploitation by raisingpm. This phenomenon can be observed
from curve D that declines more steeply and has a drastic“saw-toothed” shape
from generations 400 to 500. Curve R is similar to curve E in terms of the shapes
and the balance between exploration and exploitation. The best value found is
the same as in the15 success rule. However, please note that the convergence is
much better in the entropy-driven approach. Hence, many fitness evaluations
over 500 generations can be skipped.

Figures 3, 4, and 6 also conclude that the linear and Rosca approachesfor
defining fitness classes are superior to Gaussian and fitness proportional ones in
terms of providing the information for balancing exploration and exploitation.

5. Conclusion

The opinions on the research on exploration and exploitation are still widely
divided [4]. In this paper, we introduce a novel entropy-driven exploration and
exploitation approach. The balance between exploration and exploitation is
fulfilled by the synergy ofpm, pc and entropy on-line. The on-line adaptation
mechanism involves PPCEA as to whether more exploitation or exploration is

24 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

needed depending on the current progress of the algorithm and on the current
estimated potential of discovering better solutions. The experimental results in
Figures 3, 4, and 6 show that our approach can easily interpret the influence of
exploration and exploitation using curve E and auxiliary curves.

References

[1] T. Bäck, D.B. Fogel, and Z. Michalewicz (eds.).Handbook of Evolutionary Computation.
Oxford University Press, New York and Institute of Physics Publishing,Bristol, 1997.

[2] E. Burke, S. Gustafson, G. Kendall, and N. Krasnogor. Advanced Population Diversity
Measures in Genetic Programming.Lect. Notes Comput. Sc, 2439:341–350, 2002.

[3] K. De Jong. The Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D.
thesis, Department of Computer Science, University of Michigan, Ann Arbor, Michigan,
1975.

[4] A.E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter Control inEvolutionary Algo-
rithms.IEEE Trans. Evol. Comput., 3(2):124–141, 1999.

[5] A.E. Eiben and C.A. Schippers. On Evolutionary Exploration and Exploitation.Funda-
menta Informaticae, 35(1-4):35–50, 1998.

[6] T.C. Fogarty. Varying the Probability of Mutation in the Genetic Algorithm.In Proc. 3rd
International Conference on Genetic Algorithms, pages 104–109, 1989.

[7] J.J. Grefenstette. Optimization of Control Parameters for Genetic Algorithms.IEEE Trans.
Syst. Man Cyb., 16(1):122–128, 1986.

[8] S.-H. Liu, M. Mernik, and B.R. Bryant. Parameter Control in Evolutionary Algorithms
by Domain-Specific Scripting Language PPCEA. In Proc. International Conference on
Bioinspired Optimization Methods and their Applications (BIOMA 2004), pages 41–50,
Ljubljana, Slovenia, 2004.

[9] Z. Michalewicz.Genetic Algorithms + Data Structures = Evolution Programs. 3rd edition.
Springer-Verlag, 1996.

[10] J. Rosca. Entropy-Driven Adaptive Representation. InProc. Workshop on Genetic Pro-
gramming: From Theory to Real-World Applications, pages 23–32, 1995.

[11] J.D. Schaffer et al. A Study of Control Parameters Affecting Online Performance of
Genetic Algorithms for Function Optimization. InProc. 3rd International Conference on
Genetic Algorithms, pages 51–60, 1989.

[12] C. Shannon. A Mathematical Theory of Communication.Bell Syst. Tech. J., 27:379–423,
623–656, 1948.

[13] R. Ursem. Diversity-Guided Evolutionary Algorithms.Lect. Notes Comput. Sc.,
2439:462–471, 2002.

[14] S. Whitehead. Learning from Delayed Rewards. Ph.D. thesis, King’s College, Cambridge
University, England, 1992.

[15] X. Yao, Y. Liu, and G. Lin. Evolutionary Programming Made Faster. IEEE Trans. Evol.
Comput., 3(2):82–102, 1999.

NICHING PROSPECTS

Mike Preuss
Department of Computer Science

University of Dortmund, Germany

mike.preuss@uni-dortmund.de

Abstract Although a large number of evolutionary algorithms have been proposedto effi-
ciently treat multimodal problems, it is currently unclear under what conditions
they can be faster than iterated local search algorithms. We tackle this question,
assuming we had means to efficiently and errorlessly determine the correspond-
ing basin of attraction for each individual (basin identification) by employing a
simplified niching model EA that avoids superfluous local searches. Monte Carlo
simulations show that outperforming the iterated local search is possible but dif-
ficult; the expected speedup is rather low if basins are approximately equally
sized.

Keywords: Niching evolutionary algorithms, Basin model, Monte Carlo simulations

1. Introduction

Niching in evolutionary algorithms(EA) appears to be a heterogenous col-
lection of techniques applied to enhance their ability to cope with multimodal
objective functions by implementing some form of parallelization, either in
terms of search space or time, or both. Does it contain all EA variants sug-
gested for multimodal optimization? Surely not. But to state what exactly dis-
tinguishes niching approaches from other ones seems non-trivial, as—despite
existing, partly contradictory definitions—theevolutionary computation(EC)
community apparently does not yet possess a unified taxonomic view on mul-
timodal evolutionary optimization. It is our aim to contribute to a movement
into this direction by investigating what niching actually is and what it can do
to improve evolutionary algorithms.

1.1 Niching Definitions

Out of the large set of publications dealing with niching or similar techniques
in EC (e.g., De Jong [4] and Goldberg [7] as some of the earliest) we select
only two opinions to show where to locate possible disagreements in defining

25

26 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

niching. Mahfoud [12] gives the following functional specification of niching
methods in an optimization context (p. 61):

The litmus test for a niching method, therefore, will be whether it possessesthe capability to

find multiple, final solutions within a reasonable amount of time, and to maintainthem for an

extended period of time.

He additionally states that the multiple solutions correspond to multiple local
optimizers. Beyer et al. [6] include the process of separation, too. However,
they also add diversity maintenance in their definition:

Niching—process of separation of individuals according to their states in thesearch space

or maintenance of diversity by appropriate techniques, e.g., local population models, fitness

sharing, or distributed EA

Whenever speaking of niches in EAs for static black box optimization, au-
thors usually identify them with basins of attraction, at least for real-valuedop-
timization. As Mahfoud points out, diversity maintenance is related to niching
but must not be pursued too rigorously because it enables, but does not guar-
antee finding many basins, depending on the basin distribution within search
space. In this sense, combining parts of both specifications, referring tobasins
of attraction, and leaving out diversity maintenance leads us to the following
new definition:

Niching in EAs is a two-step procedure that a) concurrently or subsequently distributes indi-

viduals onto distinct basins of attraction and b) facilitates approximation of the corresponding

(local) optimizers.

Undoubtedly, all EAs have local search capabilities. Therefore, it must
be the process of locating basins that induces difficulties and requires experi-
mentation with many EA variants to establish niching. In accordance to the ex-
plicit/implicit diversity maintenance scheme suggested by Eiben and Smith [5],
we further partition niching EAs into two groups, performing explicit or im-
plicit basin identification. Explicit basin identification methods—detecting the
basin of each individual—divide the individuals into subpopulations, according
to their basins.

1.2 Existing Approaches

Over the last 30 years, a large variety of niching techniques has been sug-
gested. Comprehensive comparative studies are rare, but the existing (e.g.,
Mahfoud [11], Watson [23]) give hints on the relation between fitness landscape
properties and performance of different niching methods. However, despite
several recent approaches (Beasley et al. [2], Pétrowski [16, 17], Jelasity [8],
Ursem [21], Wineberg [24], Li et al. [9], Streichert et al. [20], Shir [19], Ando
et al. [1]), in the face of a multitude of possibilities one is tempted to resort to

Niching Prospects 27

the ‘traditional’ methodscrowding [4] and sharing [7], or variations thereof.
What is the reason for this dissatisfactory tentativeness? There may be several,
e.g.:

The diverse character of the proposed methods, algorithmically as well as
in descent from different origins, complicates gathering a viable overview.
Available results are not directly comparable.

Only few taxonomic attempts exists for multimodal EAs, and the existing
ones by Ursem [22], and Eiben and Smith [5] utilize different, mutually
incomparable criteria, as avoid/repair strategy in the former and diversity
maintenance in the latter case.

The aspired task is not concrete enough or unreachable.

As the stream of new methods does not cease, one may ask what the moti-
vation behind designing new niching EAs is. The seemingly underlying, yet
unreached aim is to convincingly beat one of the simplest algorithms for mul-
timodal objective functions, the iterated/parallelized hillclimber/local search.
According to the NFL, this task is venturous when optimizing general multi-
modal problems, but it may be possible for problem classes exhibiting certain
exploitable properties.

1.3 Biological Background

Importing concepts from biology (ecology), which undoubtedly is the origin
of the general idea of niching for EAs, appears problematic. Biologists now tend
to view separation into niches as a process the affected living beings actively take
part in, also treated asniche construction, Odling-Smee et al. [15]. Whereas
individuals in canonical EAs are merely collections of values without a ‘life
of their own’, living beings act on highly dynamic fitness landscapes and must
pursuit several objectives (e.g., food and reproduction).

The related problem of speciation—the term species often denotes sepa-
rate subpopulations in niching EAs—currently is one of the most progressive
research topics in evolutionary biology, with Mayr’s reproductively isolated
populations [13, 14] and the allopatric (geographic) speciation mechanismas
predominant concepts. Although these two can be (and are) adapted foruse in
EAs, biologists are still far from having reached consensus concerning all is-
sues raised with the problem of speciation, and thus not able to provide a proper
foundation to argue on in the EC field. The current state of the speciation de-
bate is summarized in Coyne and Orr [3]. As an example for a controversially
discussed yet unsolved problem, we name the formation and maintenance of
sexual reproduction. This issue is dismissed in EA research, in favor ofasexual
populations, for which in turn no widely accepted speciation concept existsin
biology. In consequence, biological terms shall be used with extreme carewhen

28 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

applied to niching EAs to prevent conceiving meanings where there are only
metaphors.

2. Aims and Methods

In the following, our main task is to gather evidence in favor of or against the
(in EC) prevalent belief that niching EAs can outperform iterated local search
(ILS, see Lourenco et al. [10]) algorithms. Note that this is an existential pre-
condition for designing further niching EAs as these are usually algorithmically
much more complex. We thus do the second step prior to the first and simply
assume the existence of an efficient basin identification method for population
based EAs. This would enable deciding if any two individuals are located in
the same basin or not. The first question to investigate thus is:

Given that basin identification works, how much faster can a niching EA
be in terms of aredundancy factor(measuring superfluous local searches,
see Beasley et al. [2]), compared to ILS algorithms?

We employ a very simple niching model EA and estimate the amount of local
searches needed for reasonable basin numbers and population sizes by means
of Monte Carlo simulations.

3. Simplistic Niching Model EA

Modeling the behavior of a real niching EA on an idealized multimodal
objective function still bears enormous complexity. The whole local search
process in the detected basins must be considered, and is likely to heavily
depend on algorithm and problem parameters.

Hence, for our niching model EA, we choose the single local search as unit of
measurement. We further assume that for any (start) population of searchpoints,
a basin identification method exists that returns an errorless search point tobasin
mapping in negligible time. This condition describes an optimal situation—
for any real niching EA, basin identification will require computational effort.
Additionally, it may not be possible to detect the basin of an individual as soon as
it enters it. Thus, the implied advantage of our ideal niching EA which consists
of breaking unnecessary local searches at the start may not be realizable in full.
But, unless other techniques are applied to reduce the optimization effort (e.g.,
utilization of attained information to speed up subsequent local searches),any
niching EA can not be faster in terms of local searches than the niching model
EA—we obtain an estimation for a lower bound.

In a real niching EA, the number of coveredc of a total ofb basins for a
randomly initialized start population would fluctuate according to population
size and basin distribution. However, we set it constant to simplify studying

Niching Prospects 29

�

����������	
	��������

����� �����	
��	�� ������� ���	���	��

�� ���� �� ��

�������	�����������

��

��

� �

� �

Figure 1. Left: Four phases of a heuristic optimization process. We are interested indetecting
t2 and t3. Right: Niching model EA population after initialization and basin identification.
Individuals residing in one basin are connected by lines.

the effect of saving local searches. Summarizing, the model is based on the
following assumptions:

Basin identification is perfect and has zero cost.

Local searches always succeed and have equal cost of1.

Any start population covers exactlyc of b existing basins.

Without basin identification, one is thrown back to iterated/parallelized local
searches for which the required effort is known [2]. Covering the whole basin
set with randomly initialized local searches results in a relative local search
overhead, measured by the redundancy factorR:

R =

b∑

i=1

1

i

b>3≈ γ + ln b. (1)

For entering each of theb basins at least once,R × b local searches are
necessary on average. Here,γ ≈ 0.577 is the Euler-Mascheroni constant.

Instead of conducting single local searches, the niching model EA repeatedly
starts with a randomly initialized set of individuals and performs only necessary
local searches until all basins have been visited (Figure 2). We do not specify
how the local searches are implemented; they may be realized e.g. by mating
restrictions, or separate populations, or embedded helper methods. Note that
basin identification only needs to detect if individuals are located in the same
basin; it is not required to properly recognize each basin as such (Figure 1,
right).

What kind of performance data do niching model EA simulation runs deliver?
Figure 1 (left) displays the phases of any heuristic optimization algorithm in
terms of basin detection. During setup, the algorithm is prepared and started
and yields the first result int1. This approximation phase lasts until the global
optimizer is hit the first time att2. It shall be noted that especially in real-world
applications, this point is often never reached because evaluations may betoo

30 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

niching model EA {
repeat{

randomly initialize individuals onc of b basins;
basin identification: match individuals to basins;
select one individual per basin= c individuals;
performc local searches on selected individuals;

} until stopped externally (all basins visited);
}

Figure 2. Niching model EA in pseudo-code.

costly. The coverage phase is needed to visit each basin at least once and ends
with t3. Unless the number of basins is known in advance, it seems impossible
to determinet3 from inside an optimization algorithm. It is up to the user to
stop it when no new information can be obtained from running further (t4). In
case of the niching model EA,t2 andt3 are measurable because the basin set
is known. Note that the redundancy factor stated in Eqn. (1) is equivalent to
t3 which thus not refers to the expected first hitting time but to the end of the
coverage phase.

In the following, we present two experiments in order to investigate the
influence of basin numberb and coverage/parallelized searchesc on t2 andt3
for the niching model EA. Firstly, equally sized basins are studied. Secondly,
we review occuring changes for unequally sized basins.

Experiment 1: Global optimizer/coverage detection times, equal basins.
Pre-experimental planning: The appropriate number of repeats is determined
to 10,000 during first tests; relative standard deviations are thus decreased well
below 1 %.
Task: Measuret2 andt3 and detect how they relate to the number of basinsb
and parallel searches (covered basins)c.
Setup: We simulate allb, c ∈ {1, 2, . . . , 50} : b ≥ c with 10,000 repeats each.
Probabilities for encountering any basin during random initialization are equal
and set to1

b
.

Experimentation/Visualization: Figure 3 depicts averaged measures fort3
(left) andt2 (right).
Observations: Whereas the number of parallel searchesc clearly affectst3, it
seems to lack any influence ont2 which only depends on the number of basinsb

(Ê(t2) = b). To clarify the influence ofc ont3, we picture measuredt3, divided
by the approximation given by Eqn. (1) (Figure 4).
Discussion:Different values forc do not changet2 at all, meaning that parallel
searches do not increase or decrease the expected time needed to arrive at the

Niching Prospects 31

basins (b)

pa
ra

lle
liz

ed
 s

ea
rc

he
s

(c
)

10 20 30 40

10

20

30

40

 0
.5

 1
.0

 1
.5

 2
.0

 2.5

 3.0

 3.5

 4.0

empirical redundancy factor

0

1

2

3

4

5

basins (b)

pa
ra

lle
liz

ed
 s

ea
rc

he
s

(c
)

10 20 30 40

10

20

30

40

 510152025 30

35

40

45

local searches to glob. optimizer

0

10

20

30

40

50

Figure 3. Left: Measured redundancy factors (t3), right: local searches needed to locate the
global optimum (t2). Both are averaged from 10,000 simulations per point.

Figure 4. Measured redundancy factor (t3) as
fraction of the approximation for repeated single
local searches (see Eqn. (1)) for the same num-
ber of basinsb. If c

b
≤ 0.9, the coefficient of the

observed linear relation is similar to3
p

1 −
c
b

(by visual comparison), resulting in the approx-
imationt3(b, c) ≈ 3

p
1 −

c
b
(γ + ln b).

basins (b)

pa
ra

lle
liz

ed
 s

ea
rc

he
s

(c
)

10 20 30 40

10

20

30

40

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5
 0.6

 0.7

 0.8

 0.9

 1.0 1.0 1.0

t3(b,c)/approx(b)

0.0

0.5

1.0

1.5

global optimum. Approaches targetting at this effect for approximately equally
sized basins are thus doomed to fail. Nevertheless, the amount of local searches
needed for complete coverage (t3) is reduced forc > 1. However, the save is
small and the utilized basin identification technique must be very efficient not
to loose it again.

Experiment 2: Detectt2 andt3 for unequally sized basins.
Pre-experimental planning: The maximum size difference was fixed to10 as
first experiments indicate a sufficient change in obtained results.
Task: Similar to Exp. 1.
Setup: Similar to Exp. 1, but with uniform randomly distributed relative basin
sizes between1.0 and10.0.
Experimentation/Visualization: Averagedt2 andt3 measures are depicted in
Figure 5.
Observations: Firstly, measured values fort3 arrive at much higher values
than for the case of equal basins. Secondly, the growth rate on the basinaxis

32 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

basins (b)

pa
ra

lle
liz

ed
 s

ea
rc

he
s

(c
)

10 20 30 40

10

20

30

40

 1 2 3
 4

 5
 6

 7

 8

 9

empirical redundancy factor

0

2

4

6

8

10

basins (b)

pa
ra

lle
liz

ed
 s

ea
rc

he
s

(c
)

10 20 30 40

10

20

30

40

 510152025
30

35
40

45
50

55
60

65

local searches to glob. optimizer

0

10

20

30

40

50

60

70

80

Figure 5. Redundancy factors (t3, left) and local searches to hit the global optimizer (t2,
right), averages of 10,000 simulations. Relative basin size sizes are1 to 10.

(c = 1) appears to be between logarithmic and linear—compared to logarithmic
in Exp. 1. In contrast to the findings of Exp. 1,t2 now is affected by changing
values ofc. For b = c, that is, all basins are covered by the parallel search,
t2 = b still holds. But the lowerc

b
is, the largert2 gets.

Discussion:Obviously, optimization gets harder if basins are unequally sized.
This is well in accordance with expectation. Now,t2 andt3 both depend on
c
b
. We may conclude that larger relative basin size differences lead to larger

potential performance advantages of niching EAs. On the other hand, basin
identification probably gets harder, too.

4. Conclusions

Previous studies (e.g., Preuss et al. [18]) have shown that canonicalEAs are
not well suited for multimodal optimization. Are niching EAs? According to
our simulations, the is some exploitable potential, but it is small for equally sized
basins. It appears that chances are getting better the larger basin size differences
are. However, we assumed existence of an efficient basin identification method,
which utilizes population topologies in search space and thus depends on the
number of dimensions of a problem. Whether and for what problems such
technique can be fast enough to enable outperforming an ILS still remains to
be seen.

References

[1] S. Ando, E. Suzuki, and S. Kobayashi. Sample-based Crowding Method for Multimodal
Optimization in Continuous Domain. InProc. IEEE Congress on Evolutionary Compu-
tation (CEC 2005), Edinburgh, UK, 2005.

[2] D. Beasley, D.R. Bull, and R.R. Martin. A sequential niche techniquefor multimodal
function optimization.Evol. Comput., 1(2):101–125, 1993.

[3] J.A. Coyne and H.A. Orr.Speciation. Sinauer Associates, Inc., Sunderland, MA, 2004.

Niching Prospects 33

[4] K.A. De Jong. An analysis of the behavior of a class of genetic adaptive systems.PhD
thesis, University of Michigan, 1975.

[5] A.E. Eiben and J.E. Smith.Introduction to Evolutionary Computing. Springer, Berlin,
Heidelberg, New York, 2003.

[6] H.-G. Beyer, E. Brucherseifer, W. Jakob, H. Pohlheim, B. Sendhoff, and
T.B. To. Evolutionary algorithms – terms and definitions. VDI/VDE guideline
3550, leaf 3, 2003.ls11-www.cs.uni-dortmund.de/people/beyer/EA-glossary/
def-engl-html.html.

[7] D.E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal function
optimization. InProc. 2nd International Conference on Genetic Algorithms, pages 41–49,
Mahwah, NJ, USA, 1987.

[8] M. Jelasity. Uego, an abstract niching technique for global optimization. Lect. Notes
Comput. Sc., 1498:378–387, 1998.

[9] J.-P. Li, M.E. Balazs, G.T. Parks, and P.J. Clarkson. A species conserving genetic algorithm
for multimodal function optimization.Evol. Comput., 10(3):207–234, 2002.

[10] H.R. Lourenco, O. Martin, and T. Stützle. Iterated local search. In F. Glover and
G.A. Kochenberger, editors,Handbook of Metaheuristics. Kluwer, 2002.

[11] S.W. Mahfoud. A comparison of parallel and sequential niching methods. InProc. 6th
International Conference on Genetic Algorithms, pages 136–143, San Francisco, CA,
USA, 1995.

[12] S.W. Mahfoud.Niching methods for genetic algorithms. PhD thesis, University of Illinois
at Urbana-Champaign, IL, 1995.

[13] E. Mayr. Systematics and the Origin of Species. Columbia University Press, New York,
1942.

[14] E. Mayr. Species, classification, and evolution. In R. Arai, M. Kato, and Y. Doi, editors,
Biodiversity and Evolution. National Science Museum Foundation, Tokyo, 1995.

[15] F.J. Odling-Smee, K.N. Laland, and M.W. Feldman.Niche Construction—The neglected
process in evolution. Princeton University Press, Princeton and Oxford, 2003.

[16] A. Pétrowski. A clearing procedure as a niching method for genetic algorithms. In
Proc. IEEE International Conference on Evolutionary Computation (ICEC 1996), pages
798–803, Nagoya, Japan, 1996.

[17] A. Pétrowski and M.G. Genet. A Classification Tree for Speciation. InProc. IEEE
Congress on Evolutionary Computation (CEC 1999), pages 204–211, Washington, DC,
USA, 1999.

[18] M. Preuss, L. Scḧonemann, and M. Emmerich. Counteracting genetic drift and disruptive
recombination in (µ +, λ)-ea on multimodal fitness landscapes. InProc. Genetic and
Evolutionary Computation Conference (GECCO 2005), pages 865–872, New York, NY,
USA, 2005.

[19] O. M. Shir and T. B̈ack. Niching in evolution strategies. InProc. Genetic and Evolutionary
Computation Conference (GECCO 2005), pages 915–916, New York, NY, USA, 2005.

[20] F. Streichert, G. Stein, H. Ulmer, and A. Zell. A clustering based niching method for
evolutionary algorithms. InProc. Genetic and Evolutionary Computation Conference
(GECCO 2003), pages 644–645, Chicago, IL, USA, 2003.

[21] R. K. Ursem. Multinational evolutionary algorithms. InProc. IEEE Congress on Evolu-
tionary Computation (CEC 1999), volume 3, pages 1633–1640, Washington, DC, USA,
1999.

34 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[22] R. K. Ursem. Models for Evolutionary Algorithms and Their Applications in System
Identification and Control Optimization. PhD thesis, EVALife, Department of Computer
Science, University of Aarhus, 2003.

[23] J.-P. Watson. A performance assessment of modern niching methods for parameter opti-
mization problems. InProc. Genetic and Evolutionary Computation Conference (GECCO
1999), volume 1, pages 702–709, Orlando, FL, USA, 1999.

[24] M. Wineberg. Improving the Behavior of the Genetic Algorithm in a Dynamic Environ-
ment. PhD thesis, Carleton University, Ottawa, Canada, 2000.

CONTROL PARAMETERS IN SELF-ADAPTIVE
DIFFERENTIAL EVOLUTION

Janez Brest, Viljem̌Zumer, Mirjam Sepesy Maučec
Faculty of Electrical Engineering and Computer Science

University of Maribor, Slovenia

{janez.brest,zumer,mirjam.sepesy}@uni-mb.si

Abstract In this paper we present experimental results to show deep view on how self-
adaptive mechanism works in differential evolution algorithm. The resultsof
the self-adaptive differential evolution algorithm were evaluated on the set of 24
benchmark functions provided for the CEC2006 special session on constrained
real parameter optimization. In this paper we especially focus on how the control
parameters are being changed during the evolutionary process.

Keywords: Control parameters, Differential evolution, Self-adapting

1. Introduction

Differential Evolution (DE) [8, 9, 10, 13, 14, 15, 16] has been shownto be
a powerful evolutionary algorithm for global optimization in many real prob-
lems [11, 12]. Although the DE algorithm has been shown to be a simple yet
powerful evolutionary algorithm for optimizing continuous functions, users are
still faced with the problem of preliminary testing and hand-tuning of the evo-
lutionary parameters prior to commencing the actual optimization process [16].

Different problems usually require different setting for the control parame-
ters. Self-adaptation allows an evolution strategy to adapt itself to any general
class of problems by reconfiguring itself accordingly, and to do this without
any user interaction [1, 2, 6]. Based on the experiment in [4], the necessity
of changing control parameters during the optimization process is also con-
firmed. In literature, self-adaptation is usually applied to theF andCR control
parameters [3, 4].

In our previous paper [5] the performance of the self-adaptive differential
evolution algorithm was evaluated on the set of 24 benchmark functions pro-
vided for the CEC2006 special session on constrained real parameter optimiza-
tion [7]. The method in [5] extended individuals that have not only decision
variables but also control parametersF andCR, whereF is a scaling factor

35

36 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

andCR is a crossover rate. These parameters are changed/optimized by DE,
too. The authors utilized the lexicographic ordering, in which the constraint
violation precedes the objective function, to solve constrained problems.

In this paper we investigate how these parameters adapt during search for
some of the test functions (i.e. some typical runs). Do they really change much
and how?

The main focus in this paper is related with our previous paper [5] where the
performance of the self-adaptive differential evolution algorithm was evaluated
on the set of 24 benchmark functions [7]. In [5] results are presented, how
efficient our self-adaptive DE algorithm is on constraint-base optimization.In
this paper we focus only on a self-adapting control parameters. We wantto
answer, how the control parameter are being changed during the evolutionary
process.

2. Background

In this section we give overview of previous works, which gives the basis
of this paper. The original differential evolution (DE) algorithm is briefly pre-
sented. Then the self-adaptive mechanism used in our DE algorithm is outlined.

2.1 The Differential Evolution Algorithm

DE creates new candidate solutions by combining the parent individual and
several other individuals of the same population. A candidate replaces theparent
only if it has better fitness value. DE has three parameters: amplification factor
of the difference vector,F , crossover control parameter,CR, and population
size,NP .

The population of the original DE algorithm [13, 14, 15] containsNP D-
dimensional vectors:

~xi,G = {xi,1,G, xi,2,G, . . . , xi,D,G}, i = 1, 2, . . . , NP.

G denotes the generation. During one generation for each vector, DE employs
the mutation and crossover operations to produce a trial vector:

~ui,G = {ui,1,G, ui,2,G, . . . , ui,D,G}, i = 1, 2, . . . , NP.

Then a selection operation is used to choose vectors for the next generation
(G + 1).

The initial population is selected randomly in a uniform manner between the
lower (xj,low) and upper (xj,upp) bounds defined for each variablexj . These
bounds are specified by the user according to the nature of the problem. After
initialization, DE performs several vector transforms (operations) in a process
called evolution.

Control Parameters in Self-Adaptive Differential Evolution 37

2.2 Mutation Operation

Mutation for each population vector creates a mutant vector:

~xi,G ⇒ ~vi,G = {vi,1,G, vi,2,G, . . . , vi,D,G}, i = 1, 2, . . . , NP.

Mutant vector can be created by using one of the mutation strategies. Thereare
many original DE strategies. The strategies used in this paper are:

‘rand/1’: ~vi,G = ~xr1,G + F · (~xr2,G − ~xr3,G),

‘current to best/1’:
~vi,G = ~xi,G + F · (~xbest,G − ~xi,G) + F · (~xr1,G − ~xr2,G),

‘rand/2’:
~vi,G = ~xr1,G + F · (~xr2,G − ~xr3,G) + F · (~xr4,G − ~xr5,G),

where the indexesr1, r2, r3, r4, r5 represent the random and mutually different
integers generated within range[1, NP] and also different from indexi. F is a
mutation scale factor within the range[0, 2], usually less than1. ~xbest,G is the
best vector in generationG.

2.3 Crossover Operation

After mutation, a ‘binary’ crossover operation forms the final trial vector,
according to thei-th population vector and its corresponding mutant vector.

ui,j,G =

{
vi,j,G if rand(0, 1) ≤ CR or j = jrand,

xi,j,G otherwise

i = 1, 2, . . . , NP and j = 1, 2, . . . , D.

CR is a crossover parameter or factor within the range[0, 1) and presents the
probability of creating parameters for trial vector from a mutant vector. Index
jrand is a randomly chosen integer within the range[1, NP]. It is responsible
for the trial vector containing at least one parameter from the mutant vector.

2.4 Selection Operation

The selection operation selects according to the fitness value of the popu-
lation vector and its corresponding trial vector, which vector will surviveto
be a member of the next generation. For example, if we have a minimization
problem, we will use the following selection rule:

~xi,G+1 =

{
~ui,G if f(~ui,G) < f(~xi,G),

~xi,G otherwise.

38 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

2.5 The Self-Adaptive Differential Evolution Algorithm

In [4] a self-adaptive control mechanism was used to change the control
parametersF andCR during the run.

x1,G

2,G

NP,G

F

F

2,G

NP,G

CR2,G

CRNP,G

F1,G CR1,G

...

F1,G

F2,G

...

CR2,G

...

CR1,G

FNP,G CRNP,G

21 1

1

1 1

1

2 2

2

22

x

x

... ...

CR

CR

CR

F

F

F

1,G1,G

2,G 2,G

NP,G NP,G

3 3

3

3 3

first DE strategy second DE strategy third DE strategy
population

Figure 1. Self-adapting: encoding aspect of three DE strategies.

Figure 1 shows a solution how the control parameters of three original DE’s
strategies are encoded in each individual. Each strategy uses its own control
parameters. The solution to apply even more strategies into our algorithm is
straight-forward. New control parametersF k

i,G+1 andCRk
i,G+1, k = 1, 2, 3,

were calculated as follows:

F k
i,G+1 =

{
Fl + rand1 ∗ Fu if rand2 < τ1,

Fi,G otherwise,

CRk
i,G+1 =

{
rand3 if rand4 < τ2,

CRi,G otherwise.

and they produce control parametersF and CR in a new parent vector.k
represents selected DE strategy. When a new parent vector is calculated, only
one strategy is active. In each iteration one strategy is chosen to be active.
randj , j ∈ {1, 2, 3, 4}are uniform random values within the range[0, 1]. τ1 and
τ2 represent probabilities to adjust control parametersF andCR, respectively.
τ1, τ2, Fl, Fu were taken fixed values0.1, 0.1, 0.1, 0.9, respectively. The newF
takes a value from[0.1, 1.0], and the newCR from [0, 1] in a random manner.
Fi,G+1 andCRi,G+1 are obtained before the mutation is performed. So they
influence the mutation, crossover and selection operations of the new vector
~xi,G+1.

In experiments in [5], the proposed jDE-2 algorithm uses the following three
strategies ‘rand/1/bin’, ‘current to best/1/bin’, and ‘rand2/bin’. The first pair of
self-adaptive control parametersF andCR belongs to the ‘rand/1/bin’ strategy
and the second pair belongs to ‘current to best/1/bin’ strategy, etc. The popu-
lation sizeNP was set to 200. The maximal number of function evaluations
(FES) is 500,000 for all benchmark functions.

Control Parameters in Self-Adaptive Differential Evolution 39

The algorithm distinguishes between feasible and infeasible individuals: any
feasible solution is better than any infeasible one.

The jDE-2 algorithm was tested on 24 CEC2006 special session benchmark
functions. For 22 functions the jDE-2 algorithm has successfully found feasible
solution. Forg20 andg22 functions no feasible solution has been found.

3. Experimental Results

In this section we present results of experiments, which were made in order
to find an answer, how the control parameters are adapted during evolutionary
process.

In self-adaptive DE,F andCR values are being changed during evolutionary
process. If we want to look into evolutionary process, we should look atfitness
values.

In Figures 2–4F andCR values of the active strategy are depicted for the
selected set of functionsg01, g02, g05, g07, g10, g14, g15, g16, g17, g18, g19,
g20. A dot is plotted only when the best fitness value in generation is improved.

The values of control parameterF andCR for functiong01 are quite equally
distributed,F takes value from the[0.1, 1] andCR from the[0, 1].

For functiong02 the values of control parameterF are in most cases less or
equal0.5 in the first 200,000 evaluations. After thatF values are predominantly
greater than0.5. The values of control parameterCR are near 1 mostly.

Sometimes algorithm solves test problem before reaching the maximal num-
ber of FES, therefore some graphs (e.g., functionsg01, g10, etc.) have not dots
for all FES.

It can be seen that the graphs differ from each other to a great extend. It is
difficult to obtain (general) one set of control parameter values, which will fit
the best for all benchmark problems.

In the additional experiment, we run our algorithm without self-adaptation.
The values of control parameters wereF = 0.5 andCR = 0.9, and they were
fixed during evolutionary process.

The algorithm with self-adaptation performs 11 % better than algorithm with
fixed control parameters. The detailed performance results of our self-adaptive
algorithm are in [5].

4. Conclusions

This paper shows that the DE control parametersF andCRchanged (adapted)
their values during evolutionary process. For selected CEC2006 benchmark
functions the graphs ofF and CR values during the evolution process are
presented in the paper.

The experimental results confirm the hypothesis that the best setting for
control parameters is problem dependent.

40 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

F

FES

Test function g01

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

F

FES

Test function g02

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

F

FES

Test function g05

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

F

FES

Test function g07

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

C
R

FES

Test function g01

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000
C

R
FES

Test function g02

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

C
R

FES

Test function g05

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

C
R

FES

Test function g07

Figure 2. F andCR values for functionsg01, g02, g05, andg07.

Control Parameters in Self-Adaptive Differential Evolution 41

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

F

FES

Test function g10

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

F

FES

Test function g14

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

F

FES

Test function g15

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

F

FES

Test function g16

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

C
R

FES

Test function g10

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000
C

R
FES

Test function g14

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

C
R

FES

Test function g15

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

C
R

FES

Test function g16

Figure 3. F andCR values for functionsg10, g14, g15, andg16.

42 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

F

FES

Test function g17

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

F

FES

Test function g18

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

F

FES

Test function g19

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

F

FES

Test function g20

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

C
R

FES

Test function g17

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000
C

R
FES

Test function g18

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

C
R

FES

Test function g19

0

0.2

0.4

0.6

0.8

1

0 100000 200000 300000 400000 500000

C
R

FES

Test function g20

Figure 4. F andCR values for functionsg17, g18, g19, andg20.

Control Parameters in Self-Adaptive Differential Evolution 43

In this paper we used three DE strategies. The analysis how the control
parameters are changed in particularly DE strategy is a challenge for the future
work.

References

[1] T. Bäck. Adaptive Business Intelligence Based on Evolution Strategies: SomeApplication
Examples of Self-Adaptive Software.Infor. Sc., 148(1-4):113–121, 2002.

[2] T. Bäck, D. B. Fogel, and Z. Michalewicz (eds.).Handbook of Evolutionary Computation.
Oxford University Press, New York and Institute of Physics Publishing,Bristol, 1997.

[3] J. Brest, B. Bǒskovíc, S. Greiner, V.̌Zumer, and M. Sepesy Maučec. Performance Com-
parison of Self-Adaptive and Adaptive Differential Evolution Algorithms. Soft Comput.,
2006. To appear.

[4] J. Brest, S. Greiner, B. Boškovíc, M. Mernik, and V.Žumer. Self-Adapting Control
Parameters in Differential Evolution: A Comparative Study on NumericalBenchmark
Problems.IEEE Trans. Evol. Comput., 2006. To appear.

[5] J. Brest, V.Žumer, and M. Sepesy Maučec. Self-adaptive Differential Evolution Algorithm
in Constrained Real-Parameter Optimization. InProc. IEEE Congress on Evolutionary
Computation (CEC 2006), pages 215–222, Vancouver, BC, Canada, 2006.

[6] A. E. Eiben and J. E. Smith.Introduction to Evolutionary Computing. Natural Computing.
Springer-Verlag, Berlin, 2003.

[7] J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, N. Suganthan, C. A. C. Coello,
and K. Deb. Problem Definitions and Evaluation Criteria for the CEC 2006 Special Session
on Constrained Real-Parameter Optimization. Report #2006005, Nanyang Technological
University, Singapore, 2005.www.ntu.edu.sg/home/EPNSugan.

[8] J. Liu and J. Lampinen. Adaptive Parameter Control of Differential Evolution. InProc.
8th International Conference on Soft Computing, pages 19–26, Brno, Czech Republic,
2002.

[9] J. Liu and J. Lampinen. On Setting the Control Parameter of the Differential Evolution
Method. InProc. 8th International Conference on Soft Computing, pages 11–18, Brno,
Czech Republic, 2002.

[10] J. Liu and J. Lampinen. A Fuzzy Adaptive Differential Evolution Algorithm.Soft Comput.,
9(6):448–462, 2005.

[11] Z. Michalewicz and D. B. Fogel.How to Solve It: Modern Heuristics. Springer, Berlin,
2000.

[12] Z. Michalewicz and M. Schoenauer. Evolutionary Algorithms for Constrained Parameter
Optimization Problems.Evol. Comput., 4(1):1–32, 1996.

[13] J. R̈onkkönen, S. Kukkonen, and K. V. Price. Real-Parameter Optimization with Differ-
ential Evolution. InProc. IEEE Congress on Evolutionary Computation (CEC 2005),
vol. 1, pages 506–513, Edinburg, UK, 2005.

[14] R. Storn and K. Price. Differential Evolution - a simple and efficientadaptive scheme for
global optimization over continuous spaces. Technical Report TR-95-012, Berkeley, CA,
1995.

[15] R. Storn and K. Price. Differential Evolution – A Simple and EfficientHeuristic for Global
Optimization over Continuous Spaces.J. Global Opt., 11(4):341–359, 1997.

44 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[16] J. Teo. Exploring dynamic self-adaptive populations in differential evolution. Soft Com-
put., 10(8):673–686, 2006.

STOPPING CRITERIA FOR CONSTRAINED
OPTIMIZATION WITH PARTICLE SWARMS

Karin Zielinski, Rainer Laur
Institute for Electromagnetic Theory and Microelectronics

University of Bremen, Germany

{zielinski,rlaur}@item.uni-bremen.de

Abstract Although different mechanisms can be used for the termination of an optimization
run, only two of them are frequently used in the literature. However, both meth-
ods have disadvantages, particularly for the optimization of real-world problems.
Because especially for practical applications it is important when an optimization
algorithm is terminated as they usually contain computationally expensive objec-
tive functions, the performance of several stopping criteria that react adaptively
to the state of an optimization run is evaluated for a Particle Swarm Optimization
algorithm in this work. The examination is done on the basis of a constrained
single-objective power allocation problem. Suggestions from former work con-
cerning stopping criteria for unconstrained optimization are verified and compar-
isons with results for Differential Evolution are made.

Keywords: Constraints, Particle swarm optimization, Stopping criteria

1. Introduction

For theoretical aspects of evolutionary algorithms (or population-based search
algorithms in general) stopping criteria are usually not important. However, for
practical applications the choice of stopping criteria can significantly influence
the duration of an optimization run. Due to different stopping criteria an op-
timization run might be terminated before the population has converged, or
computational resources might be wasted because the optimization run is ter-
minated late. Real-world problems mostly contain computationally expensive
objective functions that may result in optimization runs that take several days,
thus wasting of computational resources has to be prevented.

In the literature mostly two stopping criteria are applied: Either an error
measure in dependence on the known optimum is used or the number of func-
tion evaluations is limited tofemax. These criteria are perfectly suitable for
e.g. comparing the performance of different algorithms but for solving real-
world problems there are some drawbacks. The first mentioned method has the

45

46 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

disadvantage that the optimum has to be known, so it is generally not appli-
cable to real-world problems. The second method is highly dependent on the
objective function. Because generally no correlation can be seen between an
optimization problem and the required number of function evaluations,femax

has to be determined by trial-and-error methods usually. Because the number
of function evaluations that is needed for convergence is subject to fluctuations
due to the randomness involved in the evolutionary process, a safety marginfor
femax is needed. The fluctuations can be significant as can be seen in [7] where
a test suite of 24 functions has been examined and the standard deviation of
function evaluations for reaching a predefined error measure was up to180,000.
If a real-world problem with an unknown optimum would result in a similar
standard deviation, it would be difficult to choosefemax.

Therefore, it would be better to use stopping criteria that consider knowledge
from the state of the optimization run. Thus, the time of termination would be
determined adaptively, so function evaluations could be saved.

Several stopping criteria are reviewed in [8] and [9] that are sensitiveto
the state of the optimization run by observing the improvement, movement or
distribution of the population members. In [8] stopping criteria are tested for
unconstrained single-objective optimization using Particle Swarm Optimization
(PSO) [1], and Differential Evolution (DE) [3], while in [9] the criteria have
been adapted for constrained single-objective problems using DE. In thiswork
it will be examined if the suggestions regarding stopping criteria for PSO from
[8] hold for the real-world problem of optimizing a power allocation scheme.
Furthermore, a comparison with the results for DE in [9] will be done.

This work is organized as follows: Section 2 gives a brief introduction to
Particle Swarm Optimization and in Section 3 the used stopping criteria are
reviewed. In Section 4 results are shown and Section 5 closes with conclusions.

2. Particle Swarm Optimization

Particle Swarm Optimization is derived from the behavior of social groups
like bird flocks or fish swarms. Optimization is achieved by giving each individ-
ual in the search space a memory for its previous successes, information about
successes of a social group and providing a way to incorporate this knowledge
into the movement of the individual. Therefore, each individual (called parti-
cle) is characterized by its position~xi, its velocity~vi, its personal best position
~pi and its neighborhood best position~pg. Several neighborhood topologies
have been developed [4]. In this work thevon-Neumanntopology is used as it
showed promising results in the literature, e.g., in [2].

The dynamic behavior of PSO is generated by the update equations for ve-
locity and position of the particles:

~vi(t + 1) = w · ~vi(t) + c1r1[~pi(t)− ~xi(t)] + c2r2[~pg(t)− ~xi(t)] (1)

Stopping Criteria for Constrained Optimization with Particle Swarms 47

~xi(t + 1) = ~xi(t) + ~vi(t + 1) (2)

Due to these equations the particles are drawn towards their personal best posi-
tion and their neighborhood best position, and furthermore the velocity of the
previous iteration is kept weighted with the inertia weightw. Other parameters
arec1 andc2 which influence the impact of the cognitive and social component,
respectively. To add a stochastic element to the movement of the particles, the
numbersr1 andr2 are chosen randomly from the interval [0,1] in each itera-
tion. Further parameters of PSO are the population sizeNP and the maximum
velocityVmax.

The parameter settings for this examination are derived from a parameter
study using the same optimization problem (yet unpublished):w = 0.6, c1 =
0.4, c2 = 1.4, NP = 64, Vmax = 1

2 (Xmax −Xmin).
Constraint-handling is done by modifying the replacement procedure for per-

sonal and neighborhood best positions [5]. If two vectors~a and~b are compared,
~a is preferred if both vectors are feasible and~a has a better objective function
value, or if both are infeasible and~a has the lower sum of constraint violation,
or if ~a is feasible and~b is not. No additional parameters are needed for this
constraint-handling technique.

3. Stopping Criteria

Stopping criteria are needed to terminate the execution of optimization al-
gorithms. In contrast to using a maximum number of function evaluations as
a stopping condition, other criteria have the advantage of reacting adaptively
to the state of the optimization run, thus function evaluations can be saved.
Unfortunately, it seems to be impossible to define a stopping criterion without
introducing one or more parameters. The parameter settings generally depend
on the given optimization problem. However, it should be investigated if there
are stopping criteria for which the parameter settings are robust to changes or
if parameters can be set depending on certain aspects of the problem. It isas-
sumed that the general behavior of different optimization problems to stopping
criteria is similar. It should be kept in mind that limiting the number of function
evaluations as a stopping criterion also incorporates the choice of a problem-
dependent parameter. Therefore, it is favorable to examine other possibilities
for stopping that contain the advantage of reacting adaptively to the state ofthe
optimization run.

In the following the stopping criteria that incorporate information from the
state of the optimization run are reviewed shortly. Note that there is a change
compared to [8]: Instead of using the current positions~xi for the calculation of
stopping conditions, the personal best positions~pi are used here.

Improvement-based criteriaterminate an optimization run if only small im-
provement is made. Three different conditions are used here:

48 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

ImpBest: The improvement of the best objective function value is moni-
tored. If it falls below a given thresholdt for a number of generationsg,
the optimization run is terminated.
ImpAv: Similar to ImpBest, but instead of observing the best objective
function value, the average value computed from the whole population
is checked.
NoAcc: It is observed if any new~pi are accepted in a specified number of
generationsg. For DE this criterion is slightly different (the acceptance
of new population members is considered).

For movement-based criterianot the improvement but the movement of in-
dividuals is regarded. Two variants of movement-based criteria are considered
that differ in the regarded space:

MovObj: The movement of the individuals with respect to their objective
function value (objective space) is examined if it is below a thresholdt
for a number of generationsg. MovObj is different fromImpAvonly if
the regarded algorithm allows deterioration of the individuals’ objective
function value. This is the case for PSO in contrast to DE, but as~pi are
considered here instead of~xi, MovObj= ImpAvholds in this case also.
Therefore, this criterion is not regarded further in this work.
MovPar: The movement with respect to positions (parameter space) is
checked if it is below a thresholdt for a number of generationsg.

The distribution-based criteriaconsider the diversity in the population. If
the diversity is low, the individuals are close to each other, so it is assumed that
convergence has been obtained.

StdDev: It is checked if the standard deviation of positions is below a
thresholdm.
MaxDist: The distance from every population member to the best in-
dividual is observed. The optimization run is stopped if the maximum
distance is below a thresholdm.
MaxDistQuick: MaxDistQuickis a generalization ofMaxDist. Instead of
using the whole population for the computation of the maximum distance
to the best population member, only the bestp % of the individuals are
regarded. To achieve this, a quicksort algorithm is employed for sorting
the individuals due to their objective function value.
Diff : The difference between best and worst objective function is checked
if it is below a thresholdd. A further demand is that at leastp % of the
individuals are feasible because otherwiseDiff could lead to undesired
results if e.g. only two individuals are feasible and they are close to each
other by chance. In contrast to the previous three criteria that are usedin
parameter space,Diff considers objective space.

Stopping Criteria for Constrained Optimization with Particle Swarms 49

Because functions have different features it may be beneficial to couple
several criteria. Up to now twocombined criteriahave been regarded:

ComCrit: This criterion is a combination ofImpAvandMaxDist. Only
if the condition ofImpAvis fulfilled, MaxDist is checked.
Diff MaxDistQuick: Diff is a criterion that is rather easy to check, but it
fails with flat surfaces. Therefore, if its condition has been fulfilled, the
MaxDistQuickcriterion is checked afterwards.

4. Results

As a basis for the examination a real-world problem was used that consists
of optimizing a power allocation scheme for a Code Division Multiple Access
(CDMA) system [9]. The overall power is minimized considering the powers
of 16 individual users as parameters. Because multiple users send data si-
multaneously in a CDMA system, multi-user interference degrades the system
performance. By the application of a parallel interference cancelation technique
the multi-user interference can be estimated and subtracted from the received
signal before detection, thus the system performance improves. Therefore, the
convergence of the parallel interference cancelation technique is incorporated
in the optimization problem as a constraint.

In the following results are shown sorted according to the type of stopping
criterion. Optimization runs are regarded as successful if an objective func-
tion value off(x) ≤ 18.5 has been reached [9]. As performance measures
the convergence rate and the success performance (mean number of function
evaluations weighed with the total number of runs divided by the number of
successful runs) are given. To allow easy comparisons, figures showing suc-
cess performances are scaled to 20,000. A maximum number of generations
Gmax = 1000 is used to terminate the algorithm if the examined stopping crite-
ria do not lead to termination in appropriate time. If a run is not stopped before
Gmax is reached, the run is considered unsuccessful.

4.1 Improvement- and Movement-Based Criteria

BecauseImpAv, ImpBestandMovPar rely on similar mechanisms, the con-
vergence rate and success performance of these criteria are displayed together.
Considering the convergence rate, almost no dependence on the numberof gen-
erationsg is observable (Figure 1(a)). For decreasing values of the improvement
thresholdt generally the convergence rate increases, except forMovPar that
was not able to terminate several runs before reachingGmax for small settings
of t.

The success performance ofImpAvandMovPar (Figure 1(b)) has similar
characteristics as for DE in [9]. ForImpBestthe results are different: The
success performance forg = 5 is considerably better for PSO. Furthermore,

50 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

5
10

15
20

10
−610

−410
−2
0

20

40

60

80

100

g

t

co
nv

er
ge

nc
e

ra
te

 in
 %

ImpAv
ImpBest
MovPar

(a) Convergence rate

5
10

15
20

10
−610

−410
−2
0

0.5

1

1.5

2

x 10
4

g

t

su
cc

es
s

pe
rf

or
m

an
ce

ImpAv
ImpBest
MovPar

(b) Success performance

Figure 1. Results for criteriaImpAv, ImpBestandMovPar.

the success performance is dependent ont and independent fromg whereas for
DE it depends more ong than ont. The reason for the different results is not
clear yet. It is interesting to note that although the convergence rate ofMovPar
is smaller fort = 10−2 than fort = 10−4, the success performance is better
due to a large difference in the average number of function evaluations.

The results forImpAvandImpBestare considerably better here than in [8]
for unconstrained single-objective problems. ForImpAv the reason might be
that the personal bests are regarded here instead of the current positions, but
ImpBestdid not change because only the global best result is regarded. In con-
trast, forMovParthe results are worse. However, suitable parameter settings for
ImpAvandImpBestcannot be derived from knowledge about the optimization
problem. Furthermore, it is indicated in [8] that problems arise for functions
with a flat surface, but it is usually not known in advance if a function possesses
this property. Therefore, it will be necessary to do examinations on parameter
settings for the application of these stopping criteria. Based on the examined
problem parameter settings ofg ≈ 10 . . . 15 andt ≈ 10−5 . . . 10−4 are recom-
mended. However, these settings are dependent on the optimization problem
and the desired accuracy.

CriterionNoAccshowed good results for DE in [9] but not a single run could
be terminated before reachingGmax for PSO. Apparently, the personal best
positions improve too often to allow a stopping criterion likeNoAcc.

4.2 Distribution-Based Criteria

For MaxDist the convergence rate does not get above 80 % because of runs
that could not be terminated before reachingGmax. The results forStdDevare
shifted in contrast toMaxDist and higher convergence rates are reached (Fig-
ure 2(a)). Furthermore,StdDevyields a lower minimum success performance

Stopping Criteria for Constrained Optimization with Particle Swarms 51

10
−4

10
−3

10
−2

10
−1

10
0

0

10

20

30

40

50

60

70

80

90

100

m

co
nv

er
ge

nc
e

ra
te

 in
 %

MaxDist
StdDev

(a) Convergence rate

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

m

su
cc

es
s

pe
rf

or
m

an
ce

MaxDist
StdDev

(b) Success performance

Figure 2. Results for criteriaMaxDistandStdDev.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

p

co
nv

er
ge

nc
e

ra
te

 in
 %

m = 0.1
m = 0.01
m = 0.001

(a) Convergence rate

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

p

su
cc

es
s

pe
rf

or
m

an
ce

m = 0.1
m = 0.01
m = 0.001

(b) Success performance

Figure 3. Results for criterionMaxDistQuick.

thanMaxDist(Figure 2(b)). The performance is highly dependent on the setting
of m. However, it is connected to the desired accuracy. Similar results have
been found in [9] for DE. Compared to DE, the same settings of parameterm
yield the lowest success performances forMaxDistandStdDev, respectively.

The convergence rate and success performance ofMaxDistQuickis given
for 10−3 ≤ m ≤ 10−1 in Figures 3(a) and 3(b). Other parameter settings are
omitted because the success performance was above 20,000. The convergence
rate is fluctuating form = 0.1 with different settings ofp, indicating that the
performance is not robust for these parameter settings. Form = {10−2, 10−3}
and varyingp the convergence rate is approximately constant but the success
performance rises with increasingp. Thus, a similar result is obtained as in
[8]: Because less function evaluations are needed for convergenceif smaller
values ofp are used and the convergence probability is not compromised, it is

52 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

recommended to use e.g.0.3 ≤ p ≤ 0.5. For DE the success performance
depends less onp and increases more strongly with decreasingm. In spite
of the increased computational effort for the incorporated quicksort algorithm,
MaxDistQuickis considered to be superior toMaxDist andStdDevfor PSO.
For future work it would be also interesting to evaluate a similar criterion based
on standard deviation instead of maximum distance.

It may be confusing that the success performance forMaxDistQuickwith
p = 1 is not equal to the results ofMaxDist. The reason is that the success
performance is sensitive to even small changes in the number of successful
runs. If the average number of function evaluations is regarded, the results
from MaxDistQuickwith p = 1 andMaxDistare similar (not shown here).

For criterionDiff no definite trend can be observed regarding the demanded
percentagep of feasible individuals in the population (Figures 4(a) and 4(b))
which is assumed to be due to the fact that all individuals get feasible quite
fast here. Similar results were found for DE in [9]. However, the success
performance depends on the difference thresholdd as expected. As for the other
distribution-based criteria, the setting ofd is dependent on the desired accuracy.
The highest convergence rate is achieved withd = 10−2 but althoughd = 10−1

results in a worse convergence rate, the success performance is better.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

p

co
nv

er
ge

nc
e

ra
te

 in
 %

d = 0.1
d = 0.01
d = 0.001

(a) Convergence rate

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

p

su
cc

es
s

pe
rf

or
m

an
ce

d = 0.1
d = 0.01
d = 0.001

(b) Success performance

Figure 4. Results for criterionDiff.

CriterionDiff is advantageous in contrast to the distribution-based criteria
in parameter space if several parameter combinations yield the same objective
function value. However, it is likely to produce bad results for a function with
a flat surface.

4.3 Combined Criteria

The convergence rate and success performance for both combined criteria are
given form ≥ 10−2 because smaller values ofm lead to success performances

Stopping Criteria for Constrained Optimization with Particle Swarms 53

larger than 20,000 (Figures 5(a), 5(b), 6(a), and 6(b)). The results are different
than for DE as the success performance increases less with decreasingvalue of
m. Especially forDiff MaxDistQuickthe results are rather independent from
m. However, a strong dependence ond can be seen, in particular for the success
performance. For the combined criteria the dependence of parameter settings
on the desired accuracy of the results cannot be seen anymore, so in general it
might be easier to use the individual criteria.

5
10

15
20

10
−610

−410
−2
0

20

40

60

80

100

g

t

co
nv

er
ge

nc
e

ra
te

 in
 %

m = 1
m = 0.1
m = 0.01

(a) Convergence rate

0

10

20
10

−6 10
−4 10

−2

0

0.5

1

1.5

2

x 10
4

t

g

su
cc

es
s

pe
rf

or
m

an
ce

m = 1
m = 0.1
m = 0.01

(b) Success performance

Figure 5. Results for criterionComCrit.

10
−610

−410
−2

0
0.5

1
0

20

40

60

80

100

p

d

co
nv

er
ge

nc
e

ra
te

 in
 %

m = 1
m = 0.1
m = 0.01

(a) Convergence rate

10
−2 10

−4 10
−60

0.5
1

0

0.5

1

1.5

2

x 10
4

dp

su
cc

es
s

pe
rf

or
m

an
ce

m = 1
m = 0.1
m = 0.01

(b) Success performance

Figure 6. Results for criterionDiff MaxDistQuick.

5. Conclusions

In this work stopping criteria were studied that react adaptively to the state
of an optimization run based on improvement, movement or the distribution of
individuals. In contrast to other examinations, not the current positions but the

54 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

personal best positions were used for the calculations. It was shown that the
stopping criteria can be used for constrained problems using PSO. A similar
behavior as for DE could be found for several stopping criteria. It would be
interesting to make comparisons with other Evolutionary Algorithms in future
work.

Although parameter settings have to be determined in dependence on the
used optimization problem, general statements could be made. It was not pos-
sible to determine one criterion that will be best for all problems, but because
of their adaptive nature generally improved performance for real-worldprob-
lems is expected in contrast to termination after a limited number of function
evaluations.

For multi-objective optimization it will be even more challenging to define
suitable stopping criteria [6] but also even more important because usually
the population will not converge to one point in the search space but to the
Pareto-optimal front, thus using error measures is difficult. Therefore,it is an
interesting field of research for future work.

References

[1] J. Kennedy and R.C. Eberhart.Swarm Intelligence. Morgan Kaufmann Publishers, San
Francisco, 2001.

[2] J. Kennedy and R. Mendes. Population Structure and Particle SwarmPerformance. InProc.
IEEE Congress on Evolutionary Computation (CEC 2002), pages 1671–1676, Honolulu,
HI, USA, 2002.

[3] J. Lampinen and R. Storn. Differential Evolution. In G.C. Onwuboluand B. Babu, edi-
tors,New Optimization Techniques in Engineering, pages 123–166. Springer-Verlag, Berlin
Heidelberg, 2004.

[4] R. Mendes, J. Kennedy, and J. Neves. The Fully Informed Particle Swarm: Simpler, Maybe
Better. IEEE Trans. Evol. Comput., 8(3):204–210, 2004.

[5] G. T. Pulido and C. A. Coello Coello. A Constraint-Handling Mechanism for Particle
Swarm Optimization. InProc. IEEE Congress on Evolutionary Computation (CEC 2004),
volume 2, pages 1396–1403, Portland, OR, USA, 2004.

[6] O. Rudenko and M. Schoenauer. A Steady Performance StoppingCriterion for Pareto-
based Evolutionary Algorithms. InProc. 6th International Multi-Objective Programming
and Goal Programming Conference, Hammamet, Tunisia, 2004.

[7] K. Zielinski and R. Laur. Constrained Single-Objective Optimization Using Particle Swarm
Optimization. InProc. IEEE Congress on Evolutionary Computation (CEC 2006), pages
1550–1557, Vancouver, BC, Canada, 2006.

[8] K. Zielinski, D. Peters, and R. Laur. Stopping Criteria for Single-Objective Optimiza-
tion. In Proc. 3rd International Conference on Computational Intelligence, Robotics and
Autonomous Systems (CIRAS 2005), Singapore, 2005.

[9] K. Zielinski, P. Weitkemper, R. Laur, and K.-D. Kammeyer. Examination of Stopping
Criteria for Differential Evolution based on a Power Allocation Problem. InProc. 10th
International Conference on Optimization of Electrical and Electronic Equipment (OP-
TIM’06), Braşov, Romania, 2006.

NON-PARAMETRIC GENETIC ALGORITHM

Gregor Papa
Computer Systems Department

Jǒzef Stefan Institute, Ljubljana, Slovenia

gregor.papa@ijs.si

Abstract In this paper the non-parametric genetic algorithm is presented. It does not need
any predefined operator control parameters value as population size,number of
generations, probabilities of crossover and mutation are. Suitability and effi-
ciency of the proposed algorithm were evaluated by the CEC 2006 benchmark
functions. The results show the lack of suitability of non-parametric genetical-
gorithm when dealing with optimization problems with many unfeasible zones.
Even though the non-parametric genetic algorithm is very fast, it still needssome
improvements.

Keywords: Genetic algorithm, Non-parametric, Self adaptation

1. Introduction

The aim of many researchers and developers of heuristic optimization al-
gorithms is to make an algorithm that would be able to solve the given prob-
lem without any human intervention for setting the suitable control parameters
[1, 3, 4]. Among different optimization techniques genetic algorithm (GA) is
popular due to its simplicity, but there are very important parameters that need
to be set in advance to ensure effective optimization. In this paper the non-
parametric genetic algorithm (NPGA) is described [5]. This algorithm does
not need any control parameter, e.g., population size, number of generations,
probabilities of crossover and mutation, to be set in advance, but it sets them
according to complexity of the problem and according to convergence of the
solution.

The suitability and efficiency of the proposed algorithm were evaluated by
the CEC 2006 benchmark functions [2].

In the second section the NPGA and its operators are described in details; in
the third section the test functions are presented; while the fourth and the fifth
section present the results of the evaluation and conclusion, respectively.

55

56 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Genetic Algorithm {
setting the initial populationS of random individuals;
while stopping criterion not met{

evaluate each individual;
select two parents;
create two offspring by crossing the parents;
mutate the offspring}

}

Figure 1. Outline of the genetic algorithm.

2. Non-Parametric GA

The main advantage of NPGA over the basic GA is the fact that NPGA can
set the variable control parameters like population size, number of generations,
probabilities of crossover and mutation by itself in the initialization phase and
during the optimization process. The values of those parameters depend onthe
complexity of the problem that needs to be solved and according to the behavior
and convergence of the found solutions. The pseudo code of the algorithm is
presented in Figure 1.

There is no difference between the general genetic algorithm and non-para-
metric genetic algorithm when comparing their pseudo codes. The main dif-
ference is in the way how those genetic operators (selection, crossoverand
mutation) are executed, what are their control parameters values, how are those
parameters determined, and how do they vary.

In the following subsections the behavior of the genetic operators and the
way for determining the parameters that control these operators are presented.

2.1 Setup

The chromosome that represents the problem to be solved is constructed upon
the number of the variables of the problem and their dependencies. For then
independent variables the chromosome would look like the string ofn values
in the order as described in the input specification of the problem, while for
n dependent variables then positions and the order in the chromosome would
represent dependencies as described in the input specification of the problem.
In the second case the interdependent variables would be placed together or
closer in the chromosome.

The values in the initial chromosome are set to random value in the range
between the maximum and minimum value for each variable.

Non-Parametric Genetic Algorithm 57

Stopping criteria {
NoChg= number of generations without improvement;
CurGen= current generation number;
VarNum= number of variables;
if (NoChg≤ 1

3 CurGen∧ CurGen< 3 PopSize)∨
(NoChg≤ 1

5 CurGen∧ CurGen≥ 3 PopSize) then
continue optimization;

else
stop optimization

}

Figure 2. Number of generations – stopping criteria.

2.2 Initialization

If the chromosome that represents the problem and its complexity is large,
than also the population size is larger. This is needed to ensure higher versatility
among the chromosomes in the population. Therefore more solutions can be
searched in parallel in each iteration. The population size is proportional to
chromosome size, i.e., problem complexity.

In the NPGA the population size,PopSize, depends on the number of vari-
ables (VarNum) and the ranges of all variables to be optimized. See Eqn. (1)
for details.

PopSize= 3VarNum+ ln(100VarNum) + ln(Range), (1)

where

Range=
VarNum∑

j=1

(
(variablejmax − variablejmin

)(V arResj + 1)
)

(2)

and VarResrepresents the resolution, i.e., number of decimal places, of the
given variable.

The number of generations depends on the convergence speed of the best
solution found. Optimization is running while better solution is found every
few generations. But when there is no improvement of the best solution fora
couple of generations, the optimization process stops.

In the NPGA the optimization process stops when there is no improvement
of the best solution for one third of the past generations when the number
of generations is smaller than three-times of thePopSize; or if there is no
improvement for one fifth of the past generations after the number of generations
is larger than three-times of thePopSize. See Figure 2 for details.

58 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Mutation – above average{
NoChg= number of generations without improvement;
CurGen= current generation number;
shift = NoChg/ CurGen;
if si > sbest then {

randomly choose variablej of the solutioni;
if sij < sbestj (

1
2+ shift) ∨ sij > sbestj (

3
2− shift) then

mutate the variablej }
}

Figure 3. Choosing the variable for mutation in above average chromosome.

2.3 Crossover

The crossover takes place in each generation. There is1
2PopSize mates and

two crossover points on the chromosomes are randomly selected for each pair.
After the exchange of values of the mated chromosomes on places between the
two crossover points two new offspring are created.

Among those four candidates (two parents and two offspring) only two are
passed to the next generation. The first one is one of the offspring, which is
randomly chosen, and the second one is one of the all four candidates.

This procedure ensures that more offspring are passed to the next generations,
but also some parents have chances to proceed to the next generation.

2.4 Mutation

Every chromosome is the subject of mutation. If the fitnesssi of the chromo-
some is above the average in the current population (the subject of the optimiza-
tion is minimization) then the randomly chosen positionsij in the chromosome
is mutated if the value of the position is smaller than the shifted value of the
best solutionsbest or if the value is larger than the shifted value of the best
solution. There is always only the small number of mutated positions in each
chromosome – this number depends on the number of generations when there
was no improvement of the best solution. The larger is the number of gener-
ations without improvements of the best solution, the larger is the number of
mutated positions. The code is presented in Figure 3.

If the fitness of the chromosome is below the average in the current population
then the randomly chosen positionsij in the chromosome is mutated if the value
of the position is larger than the shifted value of the best solutionsbest and if
the value is smaller than the shifted value of the best solution. Again, only the
small number of positions is mutated in each chromosome. The code for below
average solutions is presented in Figure 4.

Non-Parametric Genetic Algorithm 59

Mutation – below average{
NoChg= number of generations without improvement;
CurGen= current generation number;
shift = NoChg/ CurGen;
if si ≤ sbest then {

randomly choose variablej of the solutioni;
if sij > sbestj (

3
4 + 1

2 shift) ∧ sij < sbestj (
5
4 − 1

2 shift) then
mutate the variablej }

}

Figure 4. Choosing the variable for mutation in below average chromosome.

Mutation – moves{
NoChg= number of generations without improvement;
VarNum= number of variables;
resolution= smallest change ofvariablej ;
range= variablejmax− variablejmin

;
if NoChg< VarNum then {

range= (0.05 range− resolution)/ VarNum;
move= (VarNum− NoChg) range}

else ifNoChg≥ VarNum∧ NoChg< 2 VarNum then
move= resolution;

else ifNoChg≥ 2 VarNum∧ NoChg< 3 VarNum then {
range= (0.05 range− resolution)/ VarNum;
move= (NoChg−2 VarNum)· range}

else{
range= 0.05 range/ VarNum;
move= (NoChg−3 VarNum)· range}

randomly chose thedirectionas 1 or -1;
variablej = variablej+ direction · move

}

Figure 5. Performing the moves in mutation operator.

In each case described above the volume of the change of the variable value
is calculated by the procedure described in Figure 5.

3. Test Functions

The experiments for the evaluation of the NPGA were performed by CEC
2006 benchmark functions defined for constrained real-parameter optimization.
The set of test functions consists of 24 functions. These functions areparticulary
useful for testing the algorithm that tries to solve problems in which the optimum

60 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

lies in the boundary between the feasible and the infeasible regions or whenthe
feasible region is disjoint.

For the purpose of testing the NPGA algorithm, only the first six functions
were used. Among them there are polynomial, nonlinear, quadratic, and cubic
functions. The details of the used test functions are presented in Table 1.

Table 1. CEC 2006 functions properties

Number Type Feasible Optimal

Function of variables of function region value

g01 13 quadratic 0.0111 % -15.00000000
g02 20 nonlinear 99.9971 % -0.8036191
g03 10 polynomial 0.0000 % -1.0005001
g04 5 quadratic 52.1230 % -30665.53867
g05 4 cubic 0.0000 % 5126.49671400
g06 2 cubic 0.0066 % -6961.8138755

4. Results

The NPGA run 30-times over each test function. The experiments were done
on 2 GHz computer, and each run took approximately 1–2 minutes (depends on
function). However time complexity was not the subject of this evaluation.

The best, worst and average value of the found solutions after 30 runsare
presented in Table 2. All values are optimized with the precision of 6 decimal
places.

Table 2. Results of NPGA testing with CEC 2006 functions

g01 g02 g03 g04 g05 g06

Best -15.577020 -0.767520 – -32,018.405580 5,204.730340 -7,865.806500
Average -13.854983 -0.697037 – -31,855.884334 5,334.592292 -7,471.461654
Worst -11.842490 -0.584740 – -31,244.373170 5,454.589250 -6,836.326270
Avrg FES 225,436 307,088 – 34,020 3,546 1,199

Since the crossover and mutation are controlled by the algorithm itself, the so
called virtual settings for those operators are presented in Table 3. The values are
virtual, since they were calculated a posteriori upon the information obtainedby
the algorithm about how many chromosomes were actually mated for crossover
and how many positions in the chromosomes were actually mutated.

Figure 6 represents the fitness value convergence in case of test functiong01.
It is represented as average over all 30 runs.

The results presented in Table 2 show that NPGA is able to come close to
the optimal solution very quickly, even it the optimal solution is surrounded by

Non-Parametric Genetic Algorithm 61

Table 3. Virtual values of control parameters

g01 g02 g03 g04 g05 g06

Population size 53 74 40 27 27 18
Number of generations 2848 4234 11256 767 97 25
Probability of crossover 0.668 0.667 0.667 0.665 0.667 0.644
Probability of mutation 0.161 0.146 0.031 0.029 0.380 0.168

Figure 6. Fitness convergence for functiong01.

unfeasible regions. In most examples the algorithm was able to come out of the
unfeasible regions, except for functiong03, where the algorithm was unable to
come to the optimal solution. To improve the performance of the algorithm, few
more changes inside the algorithm, to calculate the control parameters, need to
be done.

However, regarding the numbers presented in Table 3 NPGA behaves similar
to some parameter-needed GAs, since the virtual values of control parameters
(probabilities of crossover and mutation) are in the order of magnitude as those
reported in the literature for this kind of test functions.

5. Conclusion

In this paper the non-parametric genetic algorithm is presented. This al-
gorithm does not need any predefined operator control parameter values as
population size, number of generations, probabilities of crossover an mutation
are. Suitability and efficiency of the proposed algorithm were evaluated by

62 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

the CEC 2006 benchmark functions. The results show the lack of suitability
of non-parametric genetic algorithm when dealing with optimization problems
with many unfeasible zones. Even though the non-parametric genetic algorithm
was much faster than the other algorithms, it still needs some improvements.

References

[1] J. Brest, V.Žumer, and M. Sepesy Maučec. Self-adaptive Differential Evolution Algorithm
in Constrained Real-Parameter Optimization. InProc. IEEE Congress on Evolutionary
Computation (CEC 2006), pages 215–222, Vancouver, BC, Canada, 2006.

[2] J.J. Liang, T.P. Runarsson, E. Mezura-Montes, M. Clerc, P.N. Suganthan, C.A. Coello
Coello, and K. Deb. Problem Definitions and Evaluation Criteria for the CEC 2006 Spe-
cial Session on Constrained Real-Parameter Optimization. Technical Report #2006005,
Nanyang Technological University, Singapore, March, 2006.http://www.ntu.edu.sg/

home/EPNSugan.

[3] S. Liu, M. Mernik, and B.R. Bryant. Parameter Control in Evolutionary Algorithms by
Domain-Specific Scripting Language PPCEA. In Proc. International Conference on Bioin-
spired Optimization Methods and their Applications (BIOMA 2004), pages 41–50, Ljubl-
jana, Slovenia, 2004.

[4] F.G. Lobo. The Parameter-Less Genetic Algorithm: Rational And Automated Parameter
Selection For Simplified Genetic Algorithm Operation. PhD thesis, Universidade Nova de
Lisboa, Lisboa, 2000.

[5] G. Papa. Concurrent operation scheduling and unit allocation with anevolutionary technique
in the process of integrated-circuit design. PhD thesis, University of Ljubljana, Ljubljana,
2002.

TAKEOVER TIME IN PARALLEL
POPULATIONS WITH MIGRATION

Günter Rudolph
Department of Computer Science

University of Dortmund, Germany

guenter.rudolph@uni-dortmund.de

Abstract The termtakeover timeregarding selection methods used in evolutionary al-
gorithms denotes the (expected) number of iterations of the selection method
until the entire population consists of copies of the best individual, provided that
the initial population consists of a single copy of the best individual whereas the
remaining individuals are worse. Here, this notion is extended to parallel subpop-
ulations that exchange individuals according to some migration paths modelled
by a directed graph. We develop upper bounds for migrations on uni- and bidirec-
tional rings as well as arbitrary connected graphs where each vertex isreachable
from every other vertex.

Keywords: Takeover time, Spatially structured population, Migration model

1. Introduction

The termtakeover timeregarding selection methods used in evolutionary
algorithms (EAs) was introduced by Goldberg and Deb [7]. Suppose thata
finite population of sizen consists of a single best individual andn− 1 worse
individuals. The takeover time of some selection method is the (expected)
number of iterations of the selection method until the entire population consists
of copies of the best individual.

The calculations in [7] for spatially unstructured (i.e., panmictic) populations
implicitly assume that at least one copy of the best individual is kept in the
population although some selection method may erase all best copies by chance.
If a selection method iselitist, i.e., the best individual survives selection with
probability 1, this kind of extinction is precluded. At a first glance it is surprising
that most results on the takeover time are approximations (without bounds) [7]
or obtained numerically by an underlying Markov chain model [2, 11].

Apparently, selection in panmictic populations is the most difficult case for
deriving rigorous results on the takeover time. If only a single individual is

63

64 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

generated in each generation (steady-state EA) the Markov model loosessome
of its complexity as has been shown by Smith and Vavak [11]. Mathematically
rigorous results have been provided by Rudolph [9, 10] for some of these non-
generational selection methods. In case of populations with a spatial structure
(at the level of individuals) the notion of the takeover time must be extended
appropriately. This has been done by Rudolph [8] who developed bounds on
the takeover time for arbitrary connected population structures and even an
exact expression for a structure like a ring. These results have been extended
by Giacobini et al. [4, 5, 6].

Recently, Alba and Luque [1] have considered spatially structured popula-
tions that are structured at the level of subpopulations (in contrast to individuals).
In this population model the subpopulations are panmictic and from time to time
some individuals migrate between the subpopulations according to some con-
nectivity graph: The vertices of the graph are the subpopulations whereas the
directed edges are the migration paths. In [1] the authors develop a plausible
approximation (without bounds) for some special cases.

This was the starting point of this work: We show how to derive rigorous
bounds for the takeover time for parallel populations with migration. For this
purpose some mathematical facts are introduced in Section 2 before the analysis
is presented in Section 3.

2. Mathematical Preliminaries

In the course of the analysis given in Section 3 we need bounds on Harmonic
numbers:

Definition 1
The symbolHn denotesnth Harmonic numberfor somen ∈ N where

Hn =
n∑

i=1

1

i
.

Likewise, thenth Harmonic number of 2nd orderH(2)
n is given by

H(2)
n =

n∑

i=1

1

i2

for n ≥ 1. ⊓⊔

Notice that
log(n) ≤ Hn ≤ log(n) + 1

for n ≥ 2 and

1 ≤ H(2)
n ≤ π2

6

Takeover Time in Parallel Populations with Migration 65

for n ≥ 1.

Definition 2
A random variableG is geometrically distributedwith supportN if P{G =

k } = p (1− p)k−1 for somep ∈ (0, 1) ⊂ R. ⊓⊔

The expectation and variance ofG are

E[G] =
1

p
resp. V[G] =

p

(1− p)2
. (1)

Definition 3
Let X1, X2, . . . , Xn be independent and identically distributed (i.i.d.) random
variables. ThenX1:n denotes the minimum andXn:n the maximum of these
random variables. ⊓⊔

LetD[X] =
√

V[X]denote the standard deviation of some random variable
X. There exists a general result regarding bounds on the expectation ofthe
minimum and maximum:

Theorem 1 (David 1980, p. 59 and 63)
Let X1, X2, . . . , Xn be an i.i.d. sequence of random variables. The bounds

E[X1:n] ≥ E[X1]− n− 1√
2 n− 1

D[X1]

E[Xn:n] ≤ E[X1] +
n− 1√
2 n− 1

D[X1]

are valid regardless of the distribution of theXi. ⊓⊔

3. Analysis

LetG = (V, E) denote a directed graph where each vertexv ∈ V represents
a subpopulation and each directed edgee = (v, v′) ∈ E a migration path

from subpopulationv to subpopulationv′. Random variableX(t)
v specifies

the number of individuals with best fitness at iterationt ≥ 0 of subpopulation
v ∈ V with X

(0)
k = 1 for a single subpopulationk andX

(0)
v = 0 for v 6= k. The

number of individualss in each subpopulation is constant over time, identical
for all subpopulations, and finite. Moreover, we make the followinggeneral
assumptions:

(A1) Selection in subpopulations is elitist.

(A2) Migration takes place everymth generation with finitem ∈ N.

66 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

(A3) Emmigration policy: a copy of the best individual travels along each
migration path.

(A4) Immigration policy: replace the worst individual of the subpopulation
with the immigrant (if it is better than the worst one).

LetTv = min{t ≥ 0 : X
(t)
v = s}be the random takeover time of subpopulation

v ∈ V andAv the random arrival time, i.e., the number of iterations until the
first individual with best fitness arrives at subpopulationv ∈ V . In general,
the arrival times are not identically distributed. Their distributions depend on
the connectivity or migration graph and in which subpopulation the initial best
individual has emerged. If the migration path is vertex-symmetric (like Cayley
graphs) the latter dependency vanishes. Here, we shall assume that theinitial
best individual emerges at vertexv = 0 and we rename the other vertices
accordingly. Then

T = max{T0, A1 + T1, A2 + T2, . . . , An + Tn} (2)

is the takeover timeof the migration model withn + 1 subpopulations con-
sidered here. Notice that random variablesTv are i.i.d. forv ≥ 1 whereas
the distribution ofT0 is different: Once a best copy has arrived at subpopula-
tion v ≥ 1, everymth generation at least one another best copy immigrates to
this subpopulation regardless of the selection process within the subpopulation.
Therefore it takes at mostms iterations until all individuals in some subpopu-
lationv ≥ 1 are copies of the best individual regardless of the selection process.
Thus,

Tv ≤ ms (3)

with probability 1 (w.p. 1) forv ≥ 1. If m is large the bound above becomes
useless since it is likely that the takeover event happens before the firstmigration
interval is over. Therefore we define random variableT ′

v which is the takeover
time of subpopulationv if no further migration takes place once a best copy has
arrived. As a consequence, we have

Tv ≤ T ′
v (4)

w.p. 1 for allv ≥ 0. Notice thatT ′
0, T

′
1, . . . , T

′
n are i.i.d. random variables.

3.1 Uni-Directional Ring Topology

Suppose that the subpopulations are placed at the vertices of a uni-directional
ring. Then the takeover time in Eqn. (2) specializes to

T = max{T0, m + T1, 2 m + T2, . . . , n m + Tn} (5)

for a finite migration intervalm ∈ N. Once a best individual has emerged at
vertex0 it takesm generations until this best individual migrates to vertex1.

Takeover Time in Parallel Populations with Migration 67

Now it takes againm iterations until a best copy migrates to vertex2 and so
forth. As soon as a best copy has arrived at some vertexv it takesTv iterations
at vertexv until all individuals are copies of the best individual. Evidently,T
can be bracketed as follows:

n m + min{T0, . . . , Tn} ≤ T ≤ n m + max{T0, . . . , Tn} . (6)

Using Eqn. (4) in the right hand side (r.h.s.) of inequality (6) we obtain the
bound

T ≤ n m + max{T ′
0, . . . , T

′
n}

for the takeover timeT and hence the bound

E[T] ≤ n m + E[T ′
n+1:n+1] (7)

for the expected takeover time. Usage of Eqn. (3) in the r.h.s. of inequality (6)
yieldsE[T] ≤ n m + ms which leads to the bound

E[T] ≤ n m + min{ms, E[T ′
n+1:n+1]} (8)

in consideration of Eqn. (7). Owing to Theorem 1 the bound in Eqn. (7) can be
expressed in terms of the expectationE[T ′

0] and standard deviationD[T ′
0] of

T ′
0. We obtain

E[T] ≤ n m + E[T ′
0] +

n D[T ′
0]√

2 n + 1
. (9)

But as long as nothing is known about the selection operation within the sub-
populations the distribution and therefore the moments ofT ′

0 remain unknown.
Therefore we assume that each subpopulation runs a steady-state EA witha se-
lection method that does not erase any copy of the best individual contained in
the current population. In this case expectation and variance can be calculated
as follows [9]: If i denotes the number of best copies of the current population
then the value ofi is a nondecreasing sequence. Letpi,i+1 be the probability
that the next population will containi + 1 best copies andpi,i = 1− pi,i+1 the
probability that the number of best copies will not change, provided the current
number of best copies isi. Then the random numberGi of generations untili
changes toi + 1 is geometrically distributed with expectation and variance

E[Gi] =
1

pi,i+1
resp. V[Gi] =

1− pi,i+1

p2
i,i+1

for i = 1, . . . , s− 1. SinceG1, . . . , Gs−1 are mutually independent we obtain

E[T ′
0] =

s−1∑

i=1

E[Gi] =
s−1∑

i=1

1

pi,i+1
(10)

V[T ′
0] =

s−1∑

i=1

V[Gi] =
s−1∑

i=1

1− pi,i+1

p2
i,i+1

(11)

68 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

for the takeover timeT ′
0. Next, we choose a specific selection method to ex-

emplify our approach developed so far. The method called ’Replace Worst’-
selection first draws two individuals at random with uniform probability. Sub-
sequently the better one of the pair replaces the worst individual of the entire
population. Therefore,i is incremented if at least one copy of the best individual
is drawn. We obtain

pi,i+1 = 1−
(

1− i

s

)2

=
i (2 s− i)

s2

and finally owing to Eqn. (10)

E[T ′
0] =

1

2
(sH2 s−1 − 1). (12)

The result for the expectation above can be found in [9] already. Here, we also
need a result for the variance. According to Eqn. (11) we obtain

V[T ′
0] =

s−1∑

i=1

1− pi,i+1

p2
i,i+1

=
s−1∑

i=1

(s− i)2

i2
· s2

(2 s− i)2

≤
s−1∑

i=1

(s

i
− 1

)2
since

s

2 s− i
≤ 1

=
s−1∑

i=1

(
s2

i2
− 2 s

i
+ 1

)

= s2 H
(2)
s−1 − 2 sHs−1 + s− 1

≤ s2 π2

6
− 2 s log(s− 1) + s− 1 if s ≥ 3

and sinces/(2 s− i) ≥ 1/2

V[T ′
0] =

s−1∑

i=1

(s− i)2

i2
· s2

(2 s− i)2
≥ 1

4

s−1∑

i=1

(s

i
− 1

)2

=
1

4
(s2 H

(2)
s−1 − 2 sHs−1 + s− 1)

≥ 1

4
(s2 − 2 s log(s− 1)− s− 1)

Takeover Time in Parallel Populations with Migration 69

revealing thatV[T ′
0] = Θ(s2) or D[T ′

0] = Θ(s). Insertion in Eqn. (9) yields
the bound

E[T] ≤ n m +
sH2 s−1 − 1

2
+

n√
2 n + 1

√
s2 π2

6
− 2 s log(s− 1) + s− 1

≤ n m +
s log(2s)

2
+

√
n

2
·
√

s2π2

6
+ 1 (for s ≥ 2)

= n m +
s log(2s)

2
+ s π

√
n

12
·
√

1 +
6

s2π2

≤ n m +
s log(2s)

2
+ s π

√
n

6

= O(n m + s log s + s
√

n)

and taking into account the bound given in Eqn. (8) we obtain

E[T] ≤ n m + s min

{
m,

log(2s)

2
+ π

√
n

6

}
. (13)

A closer inspection of the upper bound (13) reveals that the bound couldbe
strengthened with respect to the additive partπ

√
n/6 which stems from the

generality of Theorem 1. If the distribution of the random variables are taken
into account then the bound for the maximum will become more accurate. We
have made30 independent experiments for each combination of(n + 1) ∈
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}, s ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90,
100, 200, 300, 400, 500, 1000}, andm ∈ {1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100}.
Here, we only present the10 worst results with regard to absolute (see Table 1)
and relative deviation (see Table 2) between the bound in Eqn. (13) and the
observed mean.

Table 1. Results of experiments with the ten worst absolute deviations (abs.∆) between bound
and observed mean.

n + 1 s m min max mean bound abs. ∆ ∆ %

1000 100 50 50,149 50,253 50,196.8 54,118.8 3,922.0 7.81
1000 100 100 100,107 100,236 100,166.6 104,068.8 3,902.2 3.90
1000 100 40 40,149 40,282 40,207.3 43,960.0 3,752.7 9.33
1000 90 50 50,111 50,257 50,178.7 53,699.9 3,521.2 7.02
1000 90 100 100,078 100,243 100,157.2 103,649.9 3,492.7 3.49
1000 90 40 40,111 40,240 40,169.7 43,560.0 3,390.3 8.44
1000 80 50 50,103 50,198 50,140.1 53,281.2 3,141.1 6.26
1000 80 100 100,072 100,178 100,114.4 103,231.2 3,116.8 3.11
1000 80 40 40,095 40,189 40,143.5 43,160.0 3,016.5 7.51
1000 100 30 30,153 30,258 30,202.7 32,970.0 2,767.3 9.16

70 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 2. Results of experiments with the ten worst relative deviations (∆ %) between bound
and observed mean.

n + 1 s m min max mean bound abs. ∆ ∆ %

10 100 5 170 196 184.5 544.8 360.3 195.29
10 90 5 157 187 171.9 492.8 320.9 186.66
10 80 5 144 172 157.2 441.0 283.8 180.52
10 70 5 132 161 144.6 389.4 244.8 169.33
10 100 4 146 175 164.7 436.0 271.3 164.72
10 60 5 115 145 128.7 338.2 209.5 162.81
10 90 4 141 160 150.7 396.0 245.3 162.77
10 70 4 116 135 124.1 316.0 191.9 154.63
10 80 4 127 153 140.3 356.0 215.7 153.74
20 100 5 215 247 236.8 595.0 358.2 151.27

Finally, we sketch a potential avenue to strengthen the result; its elaboration
remains for future work. Recall from the discussion leading to Eqn. (10)that
theGi are geometricly distributed random variables with parameterpi,i+1 and
that T ′

0 is just the sum of theGi for i = 1, . . . , s − 1. Thus, the maximum
of n + 1 samples ofT ′

0 is the maximum ofn + 1 sums of geometric random
variables. Sincemax{a1 + b1, a2 + b2} ≤ max{a1, a2} + max{b1, b2} we
obtain an upper bound by the sum over the maxima ofs− 1 i.i.d. (!) geometric
random variables. Unfortunately, the expectation of the maximum of geometric
random variables cannot be determined exactly, in contrast to its minimum. But
we can use the asymptotic theory of extreme value distributions [3] for getting
some evidence that the maximum increases by orderlog(n) D[T ′

0] rather than
order

√
n D[T ′

0]. Thus, weconjecturethat

E[T] = O(n m + s min{m, log s + log n}) .

3.2 Bi-directional Ring Topology

The modifications of the results required in case of subpopulations at the
vertices of a ring with bi-directional migration paths are straightforward: It
takes(n + 1)m/2 generations until an individual from each of the two possi-
ble migration paths arrive at the last vertex ifn is odd (i.e., if the number of
subpopulations is even). Therefore the upper bounds are

E[T] ≤ (n + 1)m

2
+ max{T ′

0, T
′
1, . . . , T

′
n}

and

E[T] ≤ (n + 1)m

2
+ ms .

In the following we can use the same arguments and bounds as those from the
preceding subsection.

Takeover Time in Parallel Populations with Migration 71

3.3 Almost Arbitrary Connected Topology

Let G = (V, E) denote the directed graph describing the migration paths
between subpopulations. Needless to say, we assume that the graph is connected
and that each vertex can be reached from any other vertex of the graph. As the
preceding two examples have shown, the takeover time can be bounded by the
time to reach each vertex in the graph (which is bounded by thediameterof
the graph) plus the time required for takeover inn + 1 parallel subpopulations.
Consequently, the expected takeover time of (almost) arbitrary graphs canbe
bounded by the two bounds

E[T] ≤ diam(G)m + max{T ′
0, T

′
1, . . . , T

′
n}

and

E[T] ≤ diam(G)m + ms .

Of course, these bounds can be improved if more information about a graph is
known. For example, if we have ad-regular bi-directional graph then at least
one best copy enters the population initially,d best copies will leave at the next
migration event, and from now ond copies of the best individual will enter the
subpopulation at each migration event.

4. Conclusions

It has been shown that the takeover time in parallel populations with mi-
gration is bounded by the diameter of the migration graph plus the time until
takeover in parallel population occurs. These takeover times are dependent
on the selection operation deployed in each subpopulation. Here, we have
developed bounds for a particular non-generational selection method. It is
conjectured that the bounds can be improved considerably as soon as a suffi-
ciently tight bound forE[max{T ′

0, T
′
1, . . . , T

′
n}] has been developed. In case

of non-generational selection methods an appropriate bound for the maximum
of geometrically distributed random variables is required. These tasks andthe
development of tight lower bounds will be part of future work.

References

[1] E. Alba and A. Luque. Growth curves and takeover time in distributed evolutionary
algorithms. InProc. Genetic and Evolutionary Computation Conference (GECCO 2004),
pages 864–876, Seattle, WA, USA, 2004.

[2] U. Chakraborty, K. Deb, and M. Chakraborty. Analysis of selection algorithms: A Markov
chain approach.Evol. Comput., 4(2):133–167, 1996.

[3] H.A. David. Order Statistics. 2nd edition, Wiley, New York, 1981.

72 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[4] M. Giacobini, M. Tomassini, and A. Tettamanzi. Modeling selection intensity for lin-
ear cellular evolutionary algorithms. InProc. 6th International Conference on Artificial
Evolution (EA’03), Marseille, France, 2003.

[5] M. Giacobini, E. Alba, M. Tomassini, and A. Tettamanzi. Modeling selection intensity for
toroidal cellular evolutionary algorithms. InProc. Genetic and Evolutionary Computation
Conference (GECCO 2004), pages 1138–1149, Seattle, WA, USA, 2004.

[6] M. Giacobini, M. Tomassini, and A. Tettamanzi. Takeover time curvesin random and
small-world structured populations. InProc. Genetic and Evolutionary Computation
Conference (GECCO 2005), pages 1333–1340, Washington, DC, USA, 2005.

[7] D.E. Goldberg and K. Deb. A comparative analysis of selection schemes used in ge-
netic algorithms. In G.J.E. Rawlins, editor,Foundations of Genetic Algorithms, Morgan
Kaufmann, San Mateo, 1991, pp. 66–93.

[8] G. Rudolph. On takeover times in spatially structured populations: Array and ring. In
Proc. 2nd Asia-Pacific Conference on Genetic Algorithms and Applications, pages 144–
151, Hong Kong, 2000.

[9] G. Rudolph. Takeover times and probabilities of non-generational selection rules. InProc.
Genetic and Evolutionary Computation Conference (GECCO 2000), pages 903–910, Las
Vegas, NV, USA, 2000.

[10] G. Rudolph. Takeover times of noisy non-generational selection rules that undo extinction.
In Proc. 5th International Conference on Artificial Neural Nets and GeneticAlgorithms
(ICANNGA 2001), pages 268–271, Prague, Czech Republic, 2001.

[11] J. Smith and F. Vavak. Replacement strategies in steady state geneticalgorithms: Static
environments. In W. Banzhaf and C. Reeves, editors,Foundations of Genetic Algorithms
5, Morgan Kaufmann, San Francisco, CA, USA, 1999, pp. 219–233.

REAL-PARAMETER OPTIMIZATION
USING STIGMERGY

Peter Korǒsec, JurijŠilc
Computer Systems Department

Jǒzef Stefan Institute, Ljubljana, Slovenia

{peter.korosec,jurij.silc}@ijs.si

Abstract This paper describes the so-called Differential Ant-Stigmergy Algorithm (DASA),
which is an extension of the Ant-Colony Optimization for continuous domain. A
performance study of the DASA on a benchmark of real-parameter optimization
problems is presented. The DASA is compared with a number of evolution-
ary optimization algorithms including covariance matrix adaptation evolutionary
strategy, differential evolution, real-coded memetic algorithm, and continuous
estimation of distribution algorithm. The DASA is also compared to some other
ant-based methods for continuous optimization. The result obtained indicate a
promising performance of the new approach.

Keywords: Ant stigmergy, Benchmark functions, Real-parameter optimization

1. Introduction

Real-parameter optimization is an important issue in many areas of hu-
man activities. The general problem is to find a set of parameter values,
x = (x1, x2, . . . , xD), that minimizes a function,f(x), of D real variables,
i.e.,

Find: x∗ | f(x∗) ≤ f(x),∀x ∈ R
D.

In the past two or three decades, different kinds of optimization algorithms
have been designed and applied to solve real-parameter function optimization
problems. Some of the popular approaches are real-parameter genetic algo-
rithms [17], evolution strategies [3], differential evolution [14], particle swarm
optimization [8], classical methods such as quasi-Newton method [12], other
non-evolutionary methods such as simulated annealing [9], tabu search [6] and
lately ant-colony based algorithms.

Algorithms inspired by model of ant colony behavior are increasingly suc-
cessful among researches in computer science and operational research. A
particular successful metaheuristic—Ant-Colony Optimization (ACO)—as a

73

74 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

common framework for the existing applications and algorithmic variants of
a variety of ant algorithms has been proposed by Dorigo and colleagues [4].
However, a direct application of the ACO for solving real-parameter optimiza-
tion problem is difficult. The first algorithm designed for continuous function
optimization was continuous ant colony optimization (CACO) [2] which com-
prises two levels: global and local. CACO uses the ant colony framework to
perform local searches, whereas global search is handled by a genetic algorithm.
Up to now, there are few other adaptations of ACO algorithm to continuous op-
timization problems: continuous interacting ant colony (CIAC) [5], ACO for
continuous and mixed-variable (eACO) [13], and agregation pheromonesystem
[16].

In this paper we will introduce a new approach to the real-parameter opti-
mization problem using an ACO-based algorithm that uses the pheromonal trail
laying—a case ofstigmergy—as a means of communication between ants.

2. The Differential Ant-Stigmergy Algorithm

2.1 The Fine-Grained Discrete Form of Continuous Domain

In the following, a process of transformation from a continuous domain into
a fine-grained discrete form is presented.

Letx′
i(s) be the current value of thei-th parameter. During the searching for

the optimal parameter value, the new value,xi, is assigned to thei-th parameter
as follows:

xi = x′
i + δi. (1)

Here,δi is the so-calledparameter differenceand is chosen from the set

∆i = ∆−
i ∪ {0} ∪∆+

i ,

where
∆+

i =
{

δ+
i,k| δ+

i,k = bk+Li−1, k = 1, 2, . . . , di

}

and
∆−

i =
{

δ−i,k| δ−i,k = −bk+Li−1, k = 1, 2, . . . , di

}
.

Here di = Ui − Li + 1. Therefore, for each parameterxi, the parameter
difference,δi, has a range frombLi to bUi , whereb is the so-calleddiscrete base,
Li = ⌊logb(εi)⌋, andUi = ⌊logb(max(xi)−min(xi))⌋. With the parameter
εi, the maximum precision of the parameterxi is set. The precision is limited
by the computer’s floating-point arithmetics.

Let us consider a simple example for the parameterxi with max(xi) = 400,
min(xi) = −350, b = 10, andεi = 10−3. ThenLi = −3, Ui = 2, anddi = 6.
Finally, ∆i is constructed as follows:�

−102,−101,−100,−10−1,−10−2,−10−3, 0, 10−3, 10−2, 10−1, 100, 101, 102	 .

Real-Parameter Optimization Using Stigmergy 75

... ...

...

...

start

..
.

..
.

D D

i i

i-1 i-1

x : V

x : V

x : V

x : V

1 1

......

... ...

...... v
1 1,d + +j

......

... ...

......

... ...vv

v v

v v

v v

1,j1 1,

i- ,1 1 i j- ,1

i,1 i j,

D,1 D j,

1

v

v

v

v

1

i-1

i

D

1 1,d +

i d +- ,1 1

i d +, 1

D,d +1

vi d +,2 1i
vi d + +, 1 j

i

vi j-1 1,d + +
i-1

vi d +-1,2 1i-1

v1 1,2d +1

vD d +,2 1D
vD d + +, 1 j

D

...

...

Figure 1. Differential graph.

2.2 Differential Graph

From all the sets∆i, 1 ≤ i ≤ D, a so-calleddifferential graphG =
(V, E) with a set of vertices,V , and a set of edges,E, between the ver-
tices is constructed. Each set∆i is represented by the set of vertices,Vi =
{vi,1, . . . , vi,2di+1}, andV =

⋃D
i=1 Vi. Then we have that

∆i =
{
δ−i,di

, . . . , δ−
i,di−(j−1), . . .︸ ︷︷ ︸

∆−

i

, 0, . . . , δ+
i,j , . . . , δ

+
i,di︸ ︷︷ ︸

∆+
i

}

is equal to

Vi =
{
vi,1, . . . , vi,j , . . . , vi,di+1︸ ︷︷ ︸

0

, . . . , vi,di+1+j , . . . , vi,2di+1

}
,

where1 ≤ j ≤ di. Each vertex of the setVi is connected to all the vertices that
belong to the setVi+1 (see Figure 1). Therefore, this is a directed graph, where
each path from thestart vertex to any of the ending vertices is of equal length
and can be defined withvi as:

υ = v1v2 · · · vD,

wherevi ∈ Vi, 1 ≤ i ≤ D.

76 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

The optimization consists of finding a pathυ, such thatf(x) < f(x′), where
x′ is currently the best solution, andx = x′ + ∆(υ) (using Eqn. (1)). Addi-
tionally, if the cost functionf(x) is smaller than thef(x′), thenx′ values are
replaced withx values.

To enable a more flexible movement over the search space, the weightω is
added to Eqn. (1):

xi = x′
i + ωδi, (2)

whereω = random(0, b) andω = 1, 2, . . . , b− 1.

2.3 Search Algorithm

The optimization consists of an iterative improvement of the currently best
solution,x′, by constructing an appropriate pathυ, which with the use of Eqn. (2)
returns a new best solution, and is done as follows:

1 A solutionx′ is randomly chosen.

... ...

..
.

..
.

D

i

i-1

x :

x :

x :

x :

1

......

... ...

...... v
1 1,d + +j

......

... ...

......

... ...vv

v v

v v

v v

1,j1 1,

i- ,1 1 i j- ,1

i,1 i j,

D,1 D j,

1
0

0

0

0

vi d +,2 1i
vi d + +, 1 j

i

vi j-1 1,d + +
i-1

vi d +-1,2 1i-1

v1 1,2d +1

vD d +,2 1D
vD d + +, 1 j

D

...

...

ô

ô

ô

ô

V

V

V

V

1

D

i-1

i

Figure 2. Initial pheromone distribution.

2 An initial amount of pheromone,τ0
Vi

, is deposited on all the vertices from
the setVi ⊂ V, 1 ≤ i ≤ D, according to a Gaussian probability density
function

g(x, µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 ,

Real-Parameter Optimization Using Stigmergy 77

whereµ is the mean,σ is the standard deviation, andµ = 0, σ = 1 (see
Figure 2).

... ...

..
.

..
.

D

i

i-1

x :

x :

x :

x :

1

......

... ...

...... v
1

*

......

... ...

......

... ... 0

0

0

...

...

ô

ô

ô

ô

V

V

V

V

1

D

i-1

i

v

v

v

i-1

i

D

*

*

*

ì ó

Figure 3. Pheromone distribution after a new best solution is found.

3 There arem ants in a colony, all of which begin simultaneously from
thestart vertex. The probability with which they choose the next ver-
tex depends on the amount of pheromone on the vertices. Ants use a
probability rule to determine which vertex will be chosen next. More
specifically, antα in stepi moves from a vertex in setVi−1 to vertex
vi,j ∈ {vi,1, . . . , vi,2di+1} with a probability given by:

pj(α, i) =
τ(vi,j)∑

1≤k≤2di+1 τ(vi,k)
, (3)

whereτ(vi,k) is the amount of pheromone on vertexvi,k. The ants repeat
this action until they reach the ending vertex. For each ant, solutionx is
constructed (see Eqn. (2)) with a calculation off(x). The best solution,
x∗, out of m solutions is compared to the currently best solutionx′. If
f(x∗) is smaller thanf(x′), thenx′ values are replaced withx∗ values.
Furthermore, in this case the pheromone amount is redistributed accord-
ing to the associated pathυ∗ = v∗1 · · · v∗i−1v

∗
i · · · , v∗D. New probability

density functions have maxima on the verticesv∗i , and the standard de-

78 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

viations are inversely proportioned to the solution’s improvement (see
Figure 3).

4 The amount of pheromone is distributed by some predetermined percent-
age,ρ, on each probability density function as follows:

µ← (1− ρ)µ and σ ← (1 + ρ)σ.

Pheromone dispersion has a similar effect to pheromone evaporation in
the classical ACO algorithm.

5 The whole procedure is then repeated until some ending condition is met.

We named the search algorithm presented in this section as theDifferential
Ant-Stigmergy Algorithm(DASA).

3. Performance Evaluation

3.1 The Experimental Environment

The platform used to perform the experiments was based on AMD Opte-
ronTM2.6-GHz processor, 2 GB of RAM, and the MicrosoftR©WindowsR©XP
operating system.

The DASA has only three parameters: the number of ants,m, the pheromone
disperse factor,ρ, and the maximum parameter precision,ε. Their settings are:
m = 10, ρ = 0.1, andε = 10−12.

3.2 The Benchmark Suite

The DASA was investigated on the four test functions for dimension 30.
The complete definition of the test-suit is available in [15]. Functionf3 (Shifted
Rotated High Conditional Eliptic Function) is unimodal and functionf9 (Shifted
Rastrigin’s Function) is multi-modal. Functionsf13 (Expanded Extended Grie-
wank’s plus Rosenbrock’s Function) andf15 (Hybrid Composition Function)
result from the composition of several functions. To prevent exploitationof the
symmetry of the search space and of the typical zero value associated with the
global optimum, the local optimum is shifted to a value different from zero, and
the function the function values of the global optimum are non zero.

3.3 A Comparison of Algorithms

The DASA was compared to four well-known algorithms:
A restartCovariance Matrix Adaptation Evolution Strategywith increasing

population size (CMA-ES) [1]: The CMA-ES introduced by Hansen and Os-
termeier [7] is an evolutionary strategy that adapts the full covariance matrixof
a normal search (mutation) distribution. By increasing the population size for

Real-Parameter Optimization Using Stigmergy 79

each restart—as is suggested in [1]—the search characteristics become more
global after each restart.

A Differential Evolution(DE) [11]: DE is a stochastic, population-based
optimization algorithm. It was introduced by Storn and Price [14] and was
developed to optimize the real (float) parameters of a real-valued function.DE
resembles the structure of an evolutionary algorithm, but differs from traditional
evolutionary algorithms in its generation of new candidate solutions and by its
use of a ‘greedy’ selection scheme.

A real-codedMemetic Algorithm(MA) [10]: The MA is a genetic algorithm
(GA) that applies a separate local search (LS) process to refine new individu-
als. The GA applied to make the exploration (i.e., to maintain diversity in the
population), the LS applied to improve new solutions (i.e., to exploit the most
promising regions of the domain search). In [10] a steady-state GA is used.

A continuousEstimation of Distribution Algorithm(EDA) [18]: The EDA is
based on probabilistic modeling instead of classical genetic operators suchas
crossover or mutation. The EDA used in [18] employs a multivariate Gaussian
distribution and is therefore able to represent a correlation between variables in
the selected individuals via the full covariance matrix of the system.

3.4 The Evaluation

The function error,f(x)− f(x∗) with x∗ being the optimum, is recorded at
four checkpoints (1,000, 10,000, 100,000, and 300,000 function evaluations).
The error data is collected for 25 runs after which the trials are ordered from
best to worst. The trial mean and the standard deviation as well as the resultsof
the best, median, and worst trail are presented for each of the four checkpoints.
The error values are presented in Tables 1 and 2.

The convergence rates of the DASA on functionsf3, f9, f13, andf15 are
plotted in Figure 4. The rates show the median performance of the 25 runs. In
the figure, the function error is plotted against the number of evaluations.

3.5 The Complexity of the Algorithm

To estimate the algorithm’s complexity we have calculated
bT2−T1

T0
, where

T0 is independent of the function dimension and is calculated by running the
program:

for i = 1 to 1,000,000
x = (double) 5.55; x = x + x;
x = x * x; x = sqrt(x);
x = ln(x); x = exp(x);
y = x/x

end

80 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

T1 is the computing time for 200,000 evaluations only for functionf3, andT̂2

is the mean of five executions, but now considering the complete computing
time of the algorithm for the functionf3. The results are included in Table 3.

Table 1. Error values for the thirty-dimensionalf3 and f9, measured after 1,000, 10,000,
100,000, and 300,000 function evaluations.

Algorithm

Function

evaluations CMA-ES DE MA EDA DASA

f3

Best 3.84 e+08 2.18 e+08 9.63 e+07 8.95 e+08 6.11 e+07
Median 1.00 e+09 5.66 e+08 2.69 e+08 1.23 e+09 2.80 e+08

1e3 Worst 2.07 e+09 9.53 e+08 5.82 e+08 1.92 e+09 5.57 e+08
Mean 1.07 e+09 5.53 e+08 2.94 e+08 1.25 e+09 3.10 e+08
Std 4.43 e+08 1.78 e+08 3.04 e+07 2.67 e+08 1.31 e+08

Best 1.24 e+06 3.58 e+07 1.81 e+07 1.79 e+08 4.55 e+06
Median 4.90 e+06 6.90 e+07 4.17 e+07 2.71 e+08 1.15 e+07

1e4 Worst 1.42 e+07 1.66 e+08 8.51 e+07 3.84 e+08 1.95 e+07
Mean 6.11 e+06 8.15 e+07 4.14 e+07 2.76 e+08 1.16 e+07
Std 3.79 e+06 3.25 e+07 2.95 e+06 5.03 e+07 4.44 e+06

Best 4.07 e−09 3.89 e+05 1.76 e+06 2.41 e+07 5.77 e+05
Median 5.44 e−09 1.33 e+06 4.91 e+06 3.55 e+07 1.07 e+06

1e5 Worst 8.66 e−09 3.38 e+06 6.80 e+06 4.55 e+07 1.94 e+06
Mean 5.55 e−09 1.52 e+06 5.51 e+06 3.49 e+07 1.23 e+06
Std 1.09 e−09 8.92 e−05 6.05 e+05 4.94 e+06 3.97 e+05

Best 4.07 e−09 5.46 e+04 5.55 e+05 2.27 e+06 1.27 e+05
Median 5.44 e−09 2.43 e+05 7.64 e+05 3.66 e+06 4.32 e+05

3e5 Worst 8.66 e−09 9.00 e+05 1.56 e+06 5.88 e+06 8.15 e+05
Mean 5.55 e−09 2.89 e+05 8.77 e+05 3.75 e+06 4.59 e+05
Std 1.09 e−09 1.93 e+05 5.81 e+04 9.09 e+05 2.02 e+05

f9

Best 2.19 e+02 2.99 e+02 1.82 e+02 4.07 e+02 4.60 e+01
Median 2.50 e+02 3.72 e+02 3.00 e+02 4.76 e+02 9.13 e+01

1e3 Worst 2.87 e+02 4.25 e+02 4.00 e+02 5.44 e+02 1.52 e+02
Mean 2.53 e+02 3.77 e+02 2.99 e+02 4.80 e+02 9.29 e+01
Std 1.65 e+01 3.00 e+01 1.00 e+01 3.51 e+01 2.75 e+01

Best 2.39 e+01 8.17 e+01 6.28 e+01 3.23 e+02 9.95 e−01
Median 4.88 e+01 9.74 e+01 1.04 e+02 3.66 e+02 2.99 e+00

1e4 Worst 7.96 e+01 1.13 e+02 1.50 e+02 3.87 e+02 4.98 e+00
Mean 4.78 e+01 9.85 e+01 1.05 e+02 3.62 e+02 2.95 e+00
Std 1.15 e+01 8.42 e+00 3.17 e+00 1.62 e+01 1.17 e+00

Best 2.98 e+00 1.90 e−08 3.98 e+00 2.18 e+02 0.00 e+00
Median 6.96 e+00 5.93 e−08 7.96 e+00 2.50 e+02 0.00 e+00

1e5 Worst 1.19 e+01 1.39 e−07 1.19 e+01 2.78 e+02 0.00 e+00
Mean 6.89 e+00 6.68 e−08 7.55 e+00 2.50 e+02 0.00 e+00
Std 2.22 e+00 3.39 e−08 5.36 e−01 1.34 e+01 0.00 e+00

Best 4.35 e−06 0.00 e+00 7.78 e−09 2.10 e+02 0.00 e+00
Median 9.95 e−01 0.00 e+00 9.95 e−01 2.30 e+02 0.00 e+00

3e5 Worst 4.97 e+00 0.00 e+00 1.99 e+00 2.48 e+02 0.00 e+00
Mean 9.38 e−01 0.00 e+00 6.81 e−01 2.30 e+02 0.00 e+00
Std 1.18 e+00 0.00 e+00 1.21 e−01 9.44 e+00 0.00 e+00

Real-Parameter Optimization Using Stigmergy 81

Table 2. Error values for the thirty-dimensionalf13 andf15, measured after 1,000, 10,000,
100,000, and 300,000 function evaluations.

Algorithm

Function

evaluations CMA-ES DE MA EDA DASA

f13

Best 3.05 e+01 3.12 e+04 4.09 e+02 4.66 e+05 1.33 e+04
Median 7.36 e+01 1.29 e+05 3.86 e+03 7.39 e+05 1.38 e+05

1e3 Worst 4.98 e+02 4.33 e+05 1.06 e+04 1.13 e+06 6.47 e+05
Mean 1.14 e+02 1.62 e+05 3.95 e+03 7.50 e+05 2.12 e+05
Std 1.07 e+02 8.66 e+04 4.62 e+02 1.93 e+05 1.81 e+05

Best 2.46 e+00 3.20 e+01 9.97 e+00 1.35 e+05 2.57 e+00
Median 3.87 e+00 8.02 e+01 1.49 e+01 2.97 e+05 6.34 e+00

1e4 Worst 5.62 e+00 2.47 e+02 1.96 e+01 5.24 e+05 1.38 e+01
Mean 3.80 e+00 1.02 e+02 1.51 e+01 3.08 e+05 7.02 e+00
Std 7.27 e−01 6.33 e+01 4.49 e−01 1.14 e+05 3.33 e+00

Best 2.43 e+00 2.31 e+00 2.76 e+00 1.84 e+03 1.20 e+00
Median 2.83 e+00 3.90 e+00 9.07 e+00 4.30 e+03 2.02 e+00

1e5 Worst 3.67 e+00 1.39 e+01 1.28 e+01 9.93 e+03 2.73 e+00
Mean 2.89 e+00 4.55 e+00 8.66 e+00 4.52 e+03 2.04 e+00
Std 3.59 e−01 2.25 e+00 4.42 e−01 1.91 e+03 4.17 e−01

Best 1.10 e+00 2.31 e+00 1.33 e+00 3.82 e+01 9.62 e−01
Median 2.61 e+00 3.89 e+00 2.54 e+00 6.86 e+01 1.93 e+00

3e5 Worst 3.20 e+00 1.39 e+01 1.03 e+01 1.29 e+02 2.56 e+00
Mean 2.49 e+00 4.51 e+00 3.96 e+00 7.36 e+01 1.88 e+00
Std 5.13 e−01 2.26 e+00 5.38 e−01 2.36 e+01 3.99 e−01

f15

Best 4.93 e+02 8.82 e+02 5.46 e+02 1.03 e+03 2.32 e+02
Median 6.93 e+02 1.08 e+03 7.49 e+02 1.14 e+03 6.28 e+02

1e3 Worst 8.51 e+02 1.19 e+03 1.05 e+03 1.21 e+03 7.84 e+02
Mean 6.69 e+02 1.08 e+03 7.62 e+02 1.13 e+03 5.89 e+02
Std 1.15 e+02 7.13 e+01 2.64 e+01 4.50 e+01 1.50 e+02

Best 2.08 e+02 6.17 e+02 3.72 e+02 5.90 e+02 4.17 e−04
Median 4.00 e+02 6.88 e+02 4.30 e+02 6.31 e+02 3.05 e+02

1e4 Worst 5.53 e+02 8.36 e+02 5.42 e+02 8.82 e+02 5.00 e+02
Mean 3.87 e+02 7.04 e+02 4.41 e+02 6.88 e+02 2.40 e+02
Std 8.48 e+01 6.30 e+01 7.96 e+00 9.93 e+01 1.59 e+00

Best 2.00 e+02 5.03 e+02 2.00 e+02 4.85 e+02 0.00 e+00
Median 2.00 e+02 5.18 e+02 3.00 e+02 4.89 e+02 3.00 e+02

1e5 Worst 3.20 e+02 6.33 e+02 5.00 e+02 6.71 e+02 5.00 e+02
Mean 2.25 e+02 5.20 e+02 3.56 e+02 5.38 e+02 2.33 e+02
Std 4.10 e+01 2.39 e+01 1.51 e+01 7.66 e+01 1.58 e+02

Best 2.00 e+02 4.75 e+02 2.00 e+02 4.35 e+02 0.00 e+00
Median 2.00 e+02 4.81 e+02 3.00 e+02 4.59 e+02 3.00 e+02

3e5 Worst 3.00 e+02 5.86 e+02 5.00 e+02 5.63 e+02 5.00 e+02
Mean 2.08 e+02 4.84 e+02 3.56 e+02 4.81 e+02 2.33 e+02
Std 2.75 e+01 2.14 e+01 1.51 e+01 4.67 e+01 1.58 e+02

82 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

3.6 Comparison to Other Ant Methods

As we mentioned in the introduction, there are few other adaptations of the
ACO algorithm to real-parameter optimization. Here, the DASA is compared
to results presented by Socha in [13]. In order to have comparable results, the
same accuracy level was chosen.

The results presented in Table 4 are based on 25 independent runs of the
the DASA and show number of function evaluations to achieve the fixed ac-
curacy level. The experimental results show that the DASA has much higher
convergence speed than that of the CACO and comparable with the eACO.

1E-12

1E-06

1

1E+06

1E+12

0 50,000 100,000 150,000 200,000 250,000 300,000

number of function evaluations

fu
n

c
ti

o
n

e
r
r
o

r

f3

f9

f13

f15

Figure 4. Convergence graph.

4. Discussion and Conclusion

We proposed an extension of the ant-colony optimization metaphor for con-
tinuous domain. This new approach was named Differential Ant-Stigmergy
Algorithm and was studied on a set of benchmark functions of real-parameter
optimization problems.

The algorithm was compared with a number of evolutionary optimization
algorithms including covariance matrix adaptation evolutionary strategy, dif-
ferential evolution, real-coded memetic algorithm, and continuous estimation
of distribution algorithm.

Real-Parameter Optimization Using Stigmergy 83

Table 3. Algorithm complexity (functionf3, D = 30).

Algorithm The system T0 T1
bT2

bT2−T1

T0

Pentium 4 3GHz / 1GB
CMA-ES Red Hat Linux 2.4 0.40 41.00 ∗24.00 —

MATLAB 7.0.1

AMD Sempron 2800+ / 1GB
DE Mandrake Linux 10.1 0.29 7.64 8.49 2.94

C

Pentium 4 2.8GHz / 512MB
MA Linux kernel v. 2.6 0.42 8.63 13.45 11.48

C++ with GCC 3.3.2

Xeon 2.4GHz / 1GB
EDA Windows XP (SP2) ∗∗6.93 1.45 5.22 0.54

MATLAB 6

AMD Opteron 2.6GHz / 2GB
DASA Windows XP (SP 2) 0.19 58.94 59.20 1.37

Delphi 2006

∗ The large number ofT1 reflect the large number of objective function calls, while forT2 a complete, eventually large,
population is evaluated (serially) within a single function call.

∗∗ Due to poor loop implementation in MATLAB 6.

Table 4. Comparison of average number of function evaluations until the accuracy is reached.

Test Function∗ D accuracy CACO [2] CIAC [5] eACO [13] DASA

Sphere 6 10−4 22,050 50,000 695 832
Goldstein & Price 2 10−4 5,320 23,391 364 991
Rosenbrock 2 10−3 6,842 11,797 2,905 137
Zakharov 2 10−4 — — 401 182

∗ http://iridia.ulb.ac.be/∼ksocha/extaco04.html

The result obtained indicate a promising performance of the new approach.
One can notice that our approach performs better then the rest of the approaches
on three out of four test functions. Since selected test functions reflected dif-
ferent kinds of pseudo-real optimization problems, one can conclude that the
DASA is applicable to many real-parameter optimization problems.

Regarding the future, one important issue consists of pure continuous ant-
stigmergy algorithm. Here, so-called parameter differences will be in continu-
ous form instead of fine-grained discrete form.

References

84 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[1] A. Auger and N. Hansen. A Restart CMA Evolution Strategy with Increasing Population
Size. InProc. IEEE Congress on Evolutionary Computation (CEC 2005), Edinburgh, UK,
2005.

[2] G. Bilchev and I.C. Parmee. The Ant Colony Metaphor for Searching Continuous Design
Spaces.Lect. Notes Comp. Sc., 993:25–39, 1995.

[3] K. Deb, A. Anand, and D. Joshi. A Computationally Efficient Evolutionary Algorithm for
Real-Parameter Optimization.Evol. Comput., 10(4):371–395, 2002.

[4] M. Dorigo and T. Sẗutzle.Ant Colony Optimization.The MIT Press, Cambridge, Mas-
sachusetts, 2004.

[5] J. Dréo and P. Siarry. A New Ant Colony Algorithm Using the Heterarchical Concept
Aimed at Optimization of Multiminima Continuous Functions.Lect. Notes Coput. Sc.,
2463:216–227, 2002.

[6] F. Glover and M. Laguna.Tabu Search.Kluwer Academic Publishers, Boston, 1997.

[7] N. Hansen and A. Ostermeier. Adapting Arbitrary Normal Mutation Distribution in Evo-
lutionary Strategies: The Covariance Matrix Adaptation. InProc. IEEE International
Conference on Evolutionary Computation (ICEC 1996), pages 312–317, Nagoya, Japan,
1996.

[8] J. Kennedy and R.C. Eberhart. Particle Swarm Optimization. InProc. IEEE International
Conference on Neural Networks, pages 1942-–1948, Perth, Australia, 1995.

[9] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by Simulated Annealing.Sci-
ence, 22671–680, 1983.

[10] D. Molina, F. Herrera, and M. Lozano. Adaptive Local SearchParameters for Real-Coded
Memetic Algorithms. InProc. EEE Congress on Evolutionary Computation (CEC 2005),
Edinburgh, UK, 2005.

[11] J. R̈onkkönen, S. Kukkonen, and K.V. Price. Real-Parameter Optimization with Differ-
ential Evolution. InProc. IEEE Congress on Evolutionary Computation (CEC 2005),
Edinburgh, UK, 2005.

[12] G.V. Reklaitis, A. Ravindran, and K.M. Ragsdell.Engineering Optimization Methods.
Wiley, New York, 1983.

[13] K. Socha. ACO for Continuous and Mixed-Variable Optimization.Lect. Notes Coput. Sc.,
3172:25–36, 2004.

[14] R. Storn and K.V. Price. Differential Evolution – A Fast and Efficient Heuristic for Global
Optimization over Continuous Space.J. Global Opt., 11(4):341–359, 1997.

[15] P.N. Sunganthan, N. Hansen, J.J. Liang, Y.-P. Chen, A. Auger, and S. Tiwari. Problem Def-
initions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Op-
timization. Technical Report, Nanyang Technological University, Singapore, May 2005.

[16] S. Tsutsui. Ant Colony Optimization for Continuous Domain with Aggregation
Pheromones Metaphor. InProc. 5th International Conference on Recent Advances in
Soft Computing, 2004.

[17] A.H. Wright. Genetic Algorithms for Real Parameter Optimization. InProc. 1st Workshop
on Foundations of Genetic Algorithms, pages 205–218, Bloomington, Indiana, USA 1990.

[18] B. Yuan and M. Gallagher. Experimental Results for the Special Session on Real-Parameter
Optimization at CEC 2005: A Simple, Continuous EDA. InProc. IEEE Congress on
Evolutionary Computation (CEC 2005), Edinburgh, UK, 2005.

DIETARY MENU PLANNING BY
EVOLUTIONARY COMPUTATION

Barbara Koroǔsić Seljak
Computer Systems Department

Jǒzef Stefan Institute, Ljubljana, Slovenia

barbara.korousic@ijs.si

Abstract We present an evolutionary computation method for optimal planning of dietary
menus, considering nutrient and non-nutrient requirements, and aesthetic stan-
dards. The method is based on the Elitist Non-Dominated Sorting Genetic Algo-
rithm and implemented in a multi-level way. The main idea behind the method
is to optimize meals and daily menus independently guiding the optimization to
the overall Pareto optimal weekly menus. As a demonstration, we applied the
method to a weekly-menu planning example: optimization of an existing weekly
menu for people without specific dietary requirements in a local hospital.

Keywords: Dietary computer-based menu planning, Multi-level optimization, Multi-objective
and multi-constrained evolutionary optimization, Repair methods

1. Introduction

In 2001, a 30-year-old Slovene man of height 177 cm weighed on average
84 kg and a 30-year-old Slovene woman of height 165 cm weighed on average
68.4 kg [3]. These data show that 30-year-old Slovene has on average body
mass index (BMI, kg/m2) greater than 25, which means an elevated risk of
developing chronic diseases, such as cardiovascular diseases, diabetes, cancer,
osteoporosis, etc.

There are several reasons for overweightness (BMI greater than 25) and
obesity (BMI greater than 30), and they have to be considered from different
viewpoints. Using a computer program to handle numerous nutrient informa-
tion and plan menus in a personalized way is one of them.

In this paper, we present an evolutionary computation approach to dietary
menu planning that has been applied within a nutrition software [9]. In Sec-
tion 2, we describe the problem of menu planning; in Section 3, we introduce
the evolutionary approach; and finally, in Section 4, we give an evaluationof the

87

88 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

approach. We conclude the paper in Section 5, where we list our conclusions
and suggest possible future work.

2. Dietary Menu Planning

The problem of dietary menu planning is an intractable optimization problem,
because of many constraints and objectives dictated by nutrient and non-nutrient
requirements, and aesthetic standards.

It can be formulated as a linear-programming problem because the objec-
tives are specified as linear functions and the constraints are specified as linear
equalities or inequalities. A simplified version of the problem, considering basic
nutrient requirements and one objective of cost, was firstly solved using acal-
culator in 1941 [6]. Since then the linear programming methods have improved
significantly, producing cost-optimized menus. However, difficulties have been
encountered in using numerical representations for qualitative factors,such as
taste, consistency, color, temperature, shape, and method of preparation.

We applied theElitist Non-Dominated Sorting Genetic Algorithm(NSGA-II)
[4]] in a multi-level way [7] to generate dietary menus, consideringconstraints
on nutrient and non-nutrient requirements andobjectivesof low cost, high sea-
sonal quality and functionality, and low deviations from uniformly distributed
aesthetic standards for taste, consistency, color, temperature, shape,and method
of preparation.

2.1 Mathematical Formulation of the Problem

Mathematically, dietary menu planning reduces to a multi-objective and
multi-constrained (multi-dimensional) knapsack problem (MDKP) that is easy
to formulate, yet its decision problem is NP-complete. It means that only by
using a heuristic optimization method a solution can be found quickly (in a
polynomial time).

We define the problem as follows:Given food items of different values and
volumes, find the most valuable composition that fits in a knapsack of fixed
volumes. Values are defined subjectively with respect to food functionality,
seasonal availability, cost, taste, consistency, color, temperature, shape and
method of preparation. Knapsack volumes are defined by the weakly correlated
diet-planning principles.

Food items are selected from a database that integrates nutritional data of
more than 7,000 (national and world-wide) foods. We consider the D-A-CH
diet-planning principles established by the European nutrition societies [5].
Many other real-world problems can be formulated as a MDKP, for example,
the capital budgeting problem, allocating processors in a distributed computer
system, project selection, cutting stock problem, etc.

Dietary Menu Planning by Evolutionary Computation 89

2.2 Multi-Dimensional Knapsack Problem

We are given a knapsack ofm volumesCk, k = 1, 2, . . . , m, andn food
items. Each itemi has nine valuesvik ∈ N

+, vik > 0, k = 1, 2, . . . , 9, andm
volumesωik ∈ R

+, ωik > 0, k = 1, 2, . . . , m, one for each capacity. We are
looking for a composition oft items,t < n, such that

∑t
i=1 ωikxiΦCk (Φ can

be≤ or≥, k = 1, 2, . . . , m, t ≤ n), and for which the total values

t∑

i=1

vikxi, k = 1, 2

are maximized, while
t∑

i=1

vikxi, k = 3

and

(

nal∑

j=1

|
n∑

i=1

hlj(xi)−
∑n

i=1 h(xi)

nal
|)−

n∑

i=1

h(xi), l = 4, 5, . . . , 9

are minimized, wherenal is the number of possible states of an aesthetic stan-
dardl. The functions used in the above objective function are defined as follows:

hlj(xi) =

0 xi = 0

1 xi > 0 ∧ vil = j
, i = 1, 2, . . . , n, l = 4, 5, . . . , 9,

and

h(xi) =

0 xi = 0

1 otherwise
, i = 1, 2, . . . , n.

The parameterxi ∈ [0.25Pi, 2Pi] denotes the quantity of the selected itemi
expressed in a unit (gram, milligram, microgram, milliliter, etc.). Its value is
limited by the fractions of the item’s portion sizePi.

2.3 Methods for Solving MDKPs

Exact algorithms that deliver optimum solutions to multi-dimensional knap-
sack problems in pseudo-polynomial time are based on the branch-and-bound
and the dynamic programming approaches. On the other hand, heuristic meth-
ods with time complexity bounded by a polynomial in the size parameters of
the problem have been known for many decades. A comprehensive review of
the multi-constrained 0-1 knapsack problem and the associated heuristic algo-
rithms is given by Chu and Beasley [2]. Some of the ideas are also applicable
to non-0-1 MDKPs.

90 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

3. Evolutionary Approach to Dietary Menu planning

In our case, a knapsack denotes a weekly menu that is composed of seven
consecutive daily menus. By default, each daily menu includes five different
meals, i.e., a breakfast, a morning snack, a lunch, an afternoon snack, and a
dinner. However, this composition does not bias the method and can be modified
to suit the specific menu-planning problem.

We have applied an evolutionary algorithm NSGA-II in a multi-level way.
Namely, the problem of weekly-menu planning is logically composed of several
smaller sub-problems, one for each daily menu, which have different constraints
than the weekly menu. Then, optimization of daily menus is coordinated in
order to obtain the overall weekly menu. Further, each daily-menu planning
sub-problem is decomposed into several sub-problems of composing courses
into meals.

The main idea behind the multi-level method is to optimize each sub-problem
independently using a ‘local’ NSGA-II with the aim to find the overall Pareto-
optimal solutions of the problem (i.e., solutions that cannot be improved upon
without hurting at least one of the objectives) using the ‘global’ NSGA-II.

3.1 Encoding

We encode candidate solutions of the weekly menu-planning problem and its
sub-problems by integer-valued coding. In our representation, a chromosome
at the highest level contains seven data, carrying the information about the
daily menus. At the next level, a chromosome contains five data carrying the
information about the meals. At the deepest level, a chromosome is formed of
a number of pairs(codei, xi), wherecodei denotes the database code of a food
item i andxi its quantity expressed in grams. By default, the number of pairs
varies between 1 and 10, depending on the number of courses (dishes)of the
meal.

3.2 Populations

In our implementation, the ‘global’ NSGA-II starts an evolution from a global
population of either random candidate solutions or solutions known from expe-
rience. The global population’s size isN and remains constant over all genera-
tions. Each sub-problem at the next two levels is solved by a ‘local’ NSGA-II,
and operates on its own population of the same sizeN . Initially, the daily-
menu-level and the meal-level local populations are filled with the candidate
solutions from the global population and the second-level local populations,
respectively.

Beside the global population, we use an additional global pool of candidate
solutions that has a function of an archive of the union of solutions generated by

Dietary Menu Planning by Evolutionary Computation 91

the sub-problems. At the daily-menu and the meal level, we use seven and five
local pools, respectively, whose function is equal to the global pool’s function.
Initially, the global and the local pools are empty.

3.3 Fitness Evaluation

In each generation, the fitness of the (global or local) population is evaluated
using the following objective functions:

fk(~x) =
1∑n

i=1 vikxi
, k = 1, 2,

f3(~x) =
n∑

i=1

vi3xi,

fl(~x) = (

nal∑

j=1

|
n∑

i=1

hlj(xi)−
∑n

i=1 h(xi)

nal
|)−

n∑

i=1

h(xi), 1 ≤ i ≤ n, 4 ≤ l ≤ 9,

(1)

hlj(xi) =

0 xi = 0

1 xi > 0 ∧ vil = j
, 1 ≤ i ≤ n, 4 ≤ l ≤ 9,

h(xi) =

0 xi = 0

1 otherwise
, 1 ≤ i ≤ n.

wherevi1 denotes the functionality of the food itemi, vi2 its quality in the
season,vi3 the cost,vi4 the taste,vi5 the consistency,vi6 the color,vi7 the
temperature,vi8 the shape,vi9 the method of preparation, andnalthe number
of possibilities for thel-th aestetic standard. The aim of the ’global’ and the
’local’ evolutionary algorithms is tominimizethe objective functions of (1).

3.4 Infeasible Solutions

A candidate solution may be highly fit but infeasible if it violates at least
one problem constraint. At the deepest level, the constraints for meals areleast
restrictive:

Each food item can be selected in a quantity that is limited by its original
portion size:

g1(~x) = xi ≥ 0.25Pi, g2(~x) = xi ≤ 2Pi. (2)

92 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

The energy provided by the meal has to be within the lower limit and the
upper limit:

g3(~x) =

Nc∑

i=1

ωiExi ≥ 0.9E, g4(~x) =

Nc∑

i=1

ωiExi ≤ 1.1E, (3)

whereωiE denotes the energy of 100 grams of the food itemi, xi the
quantity of the itemi expressed in grams, andE the meal requirement
for energy.

The macronutrients (i.e., proteins, lipids and carbohydrates) need to be
balanced:

g5(~x) =

Nc∑

i=1

ωiP 4xi ≥ 0.1E, g6(~x) =

Nc∑

i=1

ωiP 4xi ≤ 0.15E,

g7(~x) =

Nc∑

i=1

ωiL9xi ≥ 0.15E, g8(~x) =

Nc∑

i=1

ωiL9xi ≤ 0.3E, (4)

g9(~x) =

Nc∑

i=1

ωiC4xi ≥ 0.55E, g10(~x) =

Nc∑

i=1

ωiC4xi ≤ 0.75E,

whereωiP , ωiL, ωiC denote the quantity of proteins, lipids and carbohy-
drates, respectively, in 100 grams of the food itemi, andNC is the number
of courses in the meal. Because the quantities are expressed in grams,
conversion factors (4 for proteins and carbohydrates, and 9 for lipids)
are required to attain to calories. We applied usual balancing factors for
adults (0.1 and 0.15 for proteins, 0.15 and 0.3 for lipids, and 0.55 and
0.75 for carbohydrates) but may be changed.

At the upper level, there are additional constraints that need to be satisfied
by a feasible chromosome presenting a daily menu:

Simple sugars should account for only 10 percent or less of the day’s total
energy intake:

g11(~x) =

Nc∑

i=1

ωiS4xi ≤ 0.1Ed, (5)

whereEd denotes the daily requirement of energy, andωiS the quantity
of simple sugars in 100 g of the food itemi.

The daily intake of saturated fatty acids should be limited to 10 percent
of the day’s total energy intake:

g12(~x) =

Nc∑

i=1

ωiF 9xi ≤ 0.1Ed, (6)

Dietary Menu Planning by Evolutionary Computation 93

whereωiF denotes the quantity of saturated fatty acids in 100 grams of
the food itemi.

The recommended daily intake of the dietary fiber is 10 grams per 1000-
calorie energy intake and should not exceed 40 grams:

g13(~x) =

Nc∑

i=1

ωiV xi ≥ 0.01Ed, g14(~x) =

Nc∑

i=1

ωiV xi ≤ 40, (7)

whereωiV denotes the quantity of dietary fiber in 100 grams of the food
item i.

The minimum and the maximum sodium requirements for adults in Slove-
nia are set at 550 and 2400 milligrams per day, respectively [5]:

g15(~x) =

Nc∑

i=1

ωiNaxi ≥ 500, g16(~x) =

Nc∑

i=1

ωiNaxi ≤ 2400, (8)

whereωiNa denotes the quantity of sodium in 100 grams of the food item
i.

At the highest level, beside the meal and the daily-menu constraints, a chro-
mosome presenting aweekly menuhas to satisfy all the remaining constraints
for nutrients, such as cholesterol, monounsaturated fatty acids, omega-3and
omega-6 polyunsaturated fatty acids, trans-fatty acids, water-soluble and fat-
soluble vitamins, water, major minerals, and trace minerals, to become a feasible
solution. Formal definitions of these constraints are similar to that of Eqn. (3)
or Eqn. (8), but are beyond the scope of this paper.

Repair Method

We decided to repair a certain part of infeasible solutions in each generation
to speed up the procedure of finding an optimal solution:

At the deepest level, we apply a local optimization procedure oflinear
programmingtrying to convert infeasible solutions into feasible ones.
The procedure, based on the simplex method [1], modifies the quantities
of randomly selected infeasible chromosome’s food items to satisfy the
problem constraints.

At the upper levels, we try to repair infeasible solutions by ’replacing’
certain critical meals with more appropriate ones. We apply theBald-
winian repair, where replacement is used only to evaluate the fitness
values of each solution [8]. Critical meals are those that do not satisfy

94 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

the constraints on major food groups (i.e., breads, cereal, rice, and pasta
/ vegetables / fruits / milk, yogurt, and cheese / meat, poultry, fish, beans,
eggs, and nuts / fats, oils, and sweets). Namely, a daily menu has to
be composed of a certainnumber of foodsfrom each major food group,
while a weekly menu has to include adiverse set of foodsfrom the major
food groups. There may be limitations on frequency of red meat, fish,
potato etc.

3.5 Selection

In order to form a new population, a binary tournament approach is applied.
Solutions from both - the parent and the previous offspring - populationscan take
part in the tournament if they are sorted by two attributes, i.e., anon-domination
rankand acrowding distance[4]. Initially, the offspring population is an empty
set.

First, solutions are sorted by the fast non-dominated sorting approach ofthe
NSGA-II [4]. In this approach, best non-dominated solutions become elites
of identical importance, forming Pareto-optimal fronts. Solutions are non-
dominated if none solution is better than the others with respect to all equally
important objectives.

Then, solutions are sorted according to their crowding distances. A crowd-
ing distance is a measure of the search space around a chosen solution, which
is not occupied by any other solution in the population. Its computation re-
quires sorting of the populations according to each objective function value in
their ascending order of magnitude. Thereafter, for each objective function,
the boundary solutions (solutions with the smallest and the largest function val-
ues) are assigned an infinite distance value. All other solutions are assigned
a distance value equal to the absolute difference in the function values of two
adjacent solutions. This calculation is continued with other objective functions.
The overall crowding distance value is calculated as the sum of individualdis-
tance values corresponding to each objective.

A solutioni wins a tournament with another solutionj if both solutions are
feasible or infeasible and any of the following conditions are true:

It has a better non-domination rank than solutionj.

Having the same non-domination rank, it has better crowding distance
than solutionj.

The first condition makes sure that solution i lies on a better Pareto front
than solutionj. The second condition resolves the tie of both solutions being
on the same non-dominated front by deciding on their crowded distance. The
one residing in less crowded area wins. If one solution is feasible and the other
is not, the feasible one wins the tournament.

Dietary Menu Planning by Evolutionary Computation 95

PerformingN tournaments, we obtain a new parent population of sizeN .
OtherN solutions from the least important Pareto fronts having a smaller crowd-
ing distance are discarded.

3.6 Crossover and Mutation

Solutions from the new parent population are mated pair-wise (using a two-
point crossover operator) and mutated to create a new offspring population of
sizeN . This completes one NSGA-II iteration.

Mutation is performed on randomly selected elements of the chromosome.
The mutation rate is set to be a small value that linearly decreases with iterations.
The selected elements are mutated in one of the following ways chosen with
respect to the type of the chromosome:

by replacing a food item or a dish with a food from the same major food
group or a dish from the same course group, respectively, or

by replacing a selected meal with a meal of the same type,

by replacing a selected daily menu with a daily menu of the same type.

3.7 Termination Criteria

Once a sub-problem (meal planning or daily-menu planning) is solved by a
‘local’ NSGA-II (using a wanted-solution approach or a time-out approach), its
local population is unified with the local populations of the other sub-problems
at the same level and saved in their local pool.

To obtain chromosomes at the daily-menu level, meals from a local pool
are completed using the rest of the chromosome sequence from the population
at this level. The completed solutions (daily menus) are sorted by the non-
dominated and the crowding-distance sorting methods to obtain locally optimal
solutions, forming a local population of daily menus.

At the weekly-menu level, completed solutions from the local populations
of daily menus are unified and saved into a global pool of weekly menus. A
selection of optimal solutions (non-dominated solutions with a large crowding
distance) from the global pool is transferred to the global population terminating
an iteration of the ‘global’ NSGA-II.

4. Evaluation of the Method

As a demonstration, we applied the multi-level NSGA-II to a problem of
planning optimal weekly menus for people without specific dietary require-
ments in a local hospital. We started the ‘global’ NSGA-II from an existing
non-optimal weekly menu.

96 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

In Table 1, we list the parameters used to generate meals, daily menus and
weekly menus by the multi-level NSGA-II. We ran the algorithm for 25 times
to obtain the experimental results presented in Table 2. In Figure 1, a part of the
feasible search space, whose shape is depicted for three objectives,but actually
modified by nine objectives, is presented. A subset of the analysis resultsfor
a weekly menu generated by the multi-level NSGA-II is presented in Table 3.
This weekly menu was generated with respect to the following requirements
for the major food group of meat and its substitutes: white meat, legumes, fish
and eggs once per week, and red meat three times per week.

Table 1. Parameters.

Parameter The weekly-menu The daily-menu The meal

level level level

Chromosomes length 7 5 10
Population size 100 100 100
Pool size 700 500 –
Crossover probability 0.7 0.7 0.7
Mutation probability 0.14–0.01 0.2–0.01 0.1–0.017
Selection type Two-point crossover
Crossover type Linear descending mutation
Number of iterations 24 18 35

Table 2. Experimental results.

Percentage of infeasible solutions in each new generation 89
Percentage of successfully repaired infeasible solutions 65

Cost (EUR) Quality in season Functionality

Best result 3.08 48 12
Median 9.7 28 6
Worst result 22.8 18 0
Mean value 9.7 28.3 5.8
Standard deviation 3.1 4.7 3.4

5. Conclusions

In this paper, we have presented the NSGA-II in a multi-level way to solve the
weekly-menu problem, which is logically decomposed of several sub-problems,
namely, daily-menu planning and meal planning. The algorithm finds the
Pareto-optimal set of diverse optimal solutions that are trade-offs between high
seasonal quality and functionality, and low cost and deviations from the aes-
thetic standards in a reasonable amount of time. We maintain the feasibility

Dietary Menu Planning by Evolutionary Computation 97

Figure 1. Part of the problem’s search space.

Table 3. Analysis results of a computer-generated weekly menu.

Mean DACH Goal

daily Recommended achieved

values Dietary Allowances (%)

Energy (kcal) 2036 2000 102
Proteins (% of energy) 16 10–15 X

Lipids (% of energy) 28 15–30 X

Carbohydrates (% of energy) 56 55–75 X

Simple sugars (% of energy) 4.5 < 10 X

Saturated fats (% of energy) 6.6 < 10 X

Ratio of omega-6 to omega-3 fatty acids 3.9 5 X

Dietary fibre (g) 33.6 30–40 X

Cholesterol (mg) 160 300 X

Sodium (mg) 2,500 550–2,400 104
Breads, cereal, rice, and pasta (no. of units) 11.2 11 102
Vegetables (no. of units) 4.7 5 94
Fruits (no. of units) 3 3 100
Milk, yogurt, and cheese (no. of units) 2 2 100

of solutions by repairing infeasible solutions in two ways, namely, by the LP
simplex method (for meals) and the Baldwinian greedy repair method (for daily
menus and weekly menus). The experimental results showed that the approach
distinguishes with efficiency and effectiveness.

98 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

As the problem of dietary menu-planning belongs to the multi-dimensional
knapsack problems, the method could be useful for other intractable problems
from this group.

Parallel implementation of the multi-level NSGA-II for dietary menu plan-
ning deserves future attention.

References

[1] M.A. Bhatti. Practical Optimization Methods with Mathematica Applications. Springer-
Verlag, New York, 2000.

[2] P.C. Chu and J.E. Beasley. A Genetic Algorithm for the Multidimensional Knapsack Prob-
lem.J. Heuristics, 4:63–86, 1988.

[3] CINDI Health Monitor, 2001 (in Slovene).

[4] K. Deb.Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons,
Ltd., 2001.

[5] Die Referenzwerte für die Nährstoffzufuhr, D-A-CH Referenzwerte der DGE. ÖGE,
SGE/SVE. 1. Auflage. Umschau Braus Gmbh, Verlagsgesellschaft, Frankfurt/Main, 2002.

[6] E.F. Eckstein.Menu Planning. Third Edition. AVI Publishing Company, Westport, Con-
necticut, 1983.

[7] S. Gunawan, A. Farhang-Mehr, and S. Azarm. Multi-level Multi-objective Genetic Algo-
rithm Using Entropy to Preserve Diversity.Lect. notes Comput. Sc., 2632:148–161, 2003.

[8] H. Ishibuchi, S. Kaige, and K. Narukawa. Comparison between Lamarckian and Baldwinian
Repair on Multiobjective 0/1 Knapsack Problems.Lect. Notes Comput. Sc., 3410:370–385,
2005.

[9] Web application for dietary menu planning.http://optijed.ijs.si.

OPTIMAL MISSION PLANNING FOR
AN AUTONOMOUS UNMANNED
AERIAL VEHICLE

Gianpiero Gallo, Giorgio Guglieri, Fulvia B. Quagliotti, Gianluca Speciale
Department of Aeronautical and Space Engineering

Politecnico di Torino, Turin, Italy

gallogianpiero@yahoo.it, {giorgio.guglieri,fulvia.quagliotti,gianluca.speciale}@polito.it

Abstract In this project, we are interested in using computational methods in order to solve
the control problem of an unmanned autonomous aerial vehicle. The objective
is to have the vehicle navigating in the environment able to reach the desired
location through some planned waypoints; this is to be done with the vehicle’s
best effort, that is with the lowestcost. As cost we shall consider miss distance
from target waypoint, i.e., a function of the state variables of the mathematical
model which describes the dynamics of the vehicle. All this will be done by
calculating the optimal trajectory which satisfies all the constraints and contains
all the planned waypoints. The optimization part will be done by modifying
a micro-genetic algorithm software which was initially developed by David L.
Carroll from University of Illinois [3].

Keywords: Aircraft dynamics, Genetic algorithm, Optimal design, Unmanned aerialvehicle

1. Introduction

Computationally efficient trajectory optimization is an enabling technology
for many new facets of engineering. Formation flying of satellites, [12], and
trajectory generation of unmanned aerial vehicles [11], are two exampleswhere
the tools of real-time trajectory optimization would be extremely useful. The
capability and roles of Unmanned Aerial Vehicles (UAVs) are evolving, and re-
quire new concepts for their control. A significant aspect of this controlproblem
is optimizing the trajectory from the UAV’s starting point to its goal. Online
trajectory generation for flight control application is important in unmanned
aerial vehicles to provide feasible guidance commands in highly aggressive
flight situations. In general, the solution of the optimal control problem with
high dimensional space is hard to compute. This problem is complicated by
the fact that the space of possible control action is extremely large. Two well-

99

100 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

known methods that have been applied to this problem are Probabilistic Road
Maps [7] (PRMs) and Rapidly-exploring Random Trees [8] (RRTs). These
methods reduce the dimensionality of the problem by sampling the possible
actions, but the resulting trajectories are generally not optimal. Another differ-
ent approach to the optimal trajectory problem consist on applying the Model
Predictive Control (MPC). MPC refers to a class of algorithms that computea
sequence of manipulated variable adjustments in order to optimize the future
behaviour of a system [10]. The main idea of MPC is to choose the control
action by repeatedly solving, on-line, an optimal control problem. This aims at
minimizing a performance criterion over a future horizon, possibly subject to
constraints on the manipulated inputs and outputs, where the future behavior
is computed according to a model of the system. An important advantage of
MPC is its ability to handle input and state constraints for large scale multivari-
able plants [1, 2]. Murray [9] has been investigating techniques for generating
state and input trajectories which satisfy the equations of motion and trade off
tracking performance for inertial stability, using differential flatness.

Stochastic search is an alternative strategy that can bypass some limitations
of the previous methods. The genetic algorithms belong to this last family
of solvers, as the random choice of the possible solution is combined with
criteria for the direction of search which derive from natural evolution of species.
This technique is considered global and robust in terms of search over the
space of solutions. The genetic algorithm [5] operates on the principle of the
survival of the fittest. A constant-size population of individuals, each ofthem
is represented by a fixed number of parameters which are coded in binary
form (chromosomes), encode possible solutions of a given problem. An initial
population of individuals (possible solutions) is generated at random. The
allowable range of variation for each parameter is given. There are three main
operators that constitute the genetic algorithm search mechanism: selection,
crossover and mutation. In every evolutionary step, known as a generation, the
individuals of the current population (or family) are decoded and evaluated.
Each possible solution is analyzed by a fitness function which decides whether
it will contribute to the next generation of solutions. The selection procedure
depends on the value of the fitness function. Individuals with high-fitnesshave
a better chance of reproducing, while low-fitness ones will disappear. Once
the new population has been selected, chromosomes are ready for crossover
and mutation. The crossover operator combines the features of two parents to
create new solutions. Crossover allows an improvement in the species in terms
of evolution of new solutions at random on each parent and then, complementary
fractions from the two parents are linked together to form a new chromosome.
The mutation operator alters a copy of a chromosome reintroducing values that
might have been lost or creating totally new features. One or more locations are
selected on the chromosome and replaced with new randomly generated values.

Optimal Mission Planning for an Autonomous Unmanned AerialVehicle 101

The three operators are implemented iteratively. Each iteration produces a new
population of solutions (generation). The genetic algorithm continues to apply
the operators and evolve generations of solutions until a near-optimum solution
is found or the maximum number of possible generations is produced. Figure1
shows the algorithm flow chart.

Figure 1. The genetic algorithm flow chart.

Note that, differently from classical search methods, the transition rules from
one solution to a new solution in the search space are not given in a determinis-
tic form but using probabilistic operators. Besides, differently from the natural
case, the size of the new population is kept constant and each new generation is
expected to increase the average fitness. This method has been applied bythe
authors to optimize the trajectory of a fixed wing UAV. In this paper, a control
design application for the MicroHawk micro aerial vehicle is discussed. The
MicroHawk [6] concept was designed within a European Union funded project
(Micro Aerial Vehicles for Multi Purpose Remote Monitoring and Sensing
Project), by a research group at Politecnico di Torino. It consists of afixed
wing, tailless integrated wingbody configuration, powered by a DC motor and
tractor propeller (see Figure 2). Three versions have been developed and tested,
characterized by different size and weight. The reference vehicle - named Mi-

102 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 2. The micro aerial vehicle configuration (MicroHawk).

croHawk600 - is characterized by a 600 mm wingspan and the bare platform
weights 400 g. Its design has been mainly adjusted to the need for higher pay-
load weight fraction and larger internal volumes. The MicroHawk600 version
can potentially achieve autonomous flight as it is possible to locate onboard a
commercial small size autopilot without exceeding wing loading limitations for
hand launch.

2. Mathematical Model

2.1 Point-Mass Model

Equations (1) are assumed as the system which describes the dynamics of
the vehicle:

ẋ
ẏ

ḣ
γ̇
χ̇

V̇

=

V cos γ cos χ
V cos γ sin χ

V sin γ
g

V
(n cos φ− cos γ)

g

V

n sinφ

cos γ
Te −D

m
− g sin γ

. (1)

System (1) is a point-mass model werex, y, h denote the position of the
center of gravity (CG) of the aircraft in a ground-based reference frame and

Optimal Mission Planning for an Autonomous Unmanned AerialVehicle 103

are usually referred to as down range (or longitude), cross range (or latitude)
and altitude, respectively. Angles are also defined with respect to the same
frame:φ is the bank angle,χ is the heading angle andγ is the flight-path angle.
Te is the engine thrust,D is the aerodynamic drag,m the aircraft mass,g the
gravity acceleration. The ground-speed velocityV is assumed to be equal to
the airspeed. The bank angleφ, the engine thrustTe and the load factorn = L

mg
are the control variables for the aircraft; hence, we have that the inputvectoru
is:

u = [φ, Te, n] . (2)

System (1), complemented with constrains on applicable inputs, form the basis
of many aircraft trajectory optimization problems in the literature. Constrains
are usually written in terms of original state variables and controls.

The aircraft itself sets some constrains for the state and the control variables
like n, Te, φ. As well as constrains on control variables, during the navigation
there are limitation on the flight-path angle in both climbing and descending
trajectories and on upper and lower bounds of airspeedV, γ. In addition to these
constrains, the problem definition includes the initial and terminal conditions
for the state variables.

2.2 Cost Function

We want to minimize the following cost functionJ , which takes in account
the error between the nearest point of the trajectory from the desired waypoint
and the waypoint itself in terms of position and velocity. Before calculating the
cost function a preliminary simulation of the trajectory is done starting from
given initial condition. The simulation is performed at equispaced intervals of
time. Our interest is focused on finding which step of the simulation is nearest
to the objective waypoint. Among the trajectory points, the closest one to the
target is used to define the timeth, which is assumed as the required time to
reach the target point in this preliminary trajectory evaluation. The cost function
is given in the following form:

J = (Xi −Xt)
2+(Yi − Yt)

2+gk (hi − ht)
2+g (1− k) (Vi − VEmax)2 , (3)

whereXt, Yt, ht are referred to as the target waypoint.Emax indicates the
reference condition which corresponds to the minimum drag condition. The
functiong is defined as:

g =

(
1− R

R0

)
, (4)

whereR0 is the distance, in the horizontal plane, between the initial waypoint
and the target andR indicates, still in the horizonal plane, the distance of the
aircraft from the target.k is a weight factor varying from 0 to 1 according to
user setup.

104 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

2.3 Problem

If we use time discretization and divide time horizont̂h over n finite time
instants, we obtain a1× n vector:

t̂h = [t0, t1 = t0 + ∆, t2 = t0 + 2∆, ..., t0 + n∆] . (5)

Consequently, we have that it is possible to describe the trajectory of an air
vehicle as a set ofn points at then time instants, so that it is possible to define
a3× n matrix:

{A} =

Φ0

T0

n0

Φ1

T1

n1

 . . .

Φn

Tn

nn

 . (6)

We now want to define a simple waypoint distribution and calculate the trajec-
tory including all waypoints which minimizes cost function (Eqn. (3)) all over
time horizont̂h.

Figure 3. Example of waypoint distribution.

Starting from a3D waypoint distribution as shown in Figure 3 where four
waypoints1, 2, 3, 4 have been defined in thexy horizontal plane, we will get
the{A}opt matrix.

2.4 Optimization with Micro-Genetic Algorithm

Elements in matrixA, defined in Eqn. (6), will be the chromosomes of pop-
ulation on which the algorithm will operate in order to minimize cost function

Optimal Mission Planning for an Autonomous Unmanned AerialVehicle 105

(Eqn. (3)). Figure 4 shows a map of the whole process in which, starting from
a genericA matrix, theAopt matrix, satisfying all the constraints, is obtained.

Figure 4. The process map.

The genetic solver adopted for the trajectory optimization is a Fortran version
of the driver described by Carroll [3]. The code initializes a random sample of
individuals with different parameters to be optimized using the GA approach.
The selection scheme used is a tournament selection with a shuffling technique
for choosing random pairs for mating. The routine includes binary coding
for the individuals, jump mutation, creep mutation and the option for single-
point or uniform crossover. Niching, elitism and an option for the number of
children per pair of parents are available. Finally, the solution using a micro GA
is also possible. This last switch significantly reduced the number of function
evaluations and demonstrated faster convergence average to near-optimal region
[3, 4]. Note that average population fitness values are not meaningful with a
micro-GA because of the start-restart nature of the micro-GA evolution process.
Many numerical experiments were performed by Carroll [3, 4] in order totune
the search algorithm adopted and, as a result, the suggested set-up is partially
extended for the present application. The code is set for maximum population
size of five individuals, 48 bits per individual and three parameters (i.e., 16
binary bits per parameter and216 possible solutions per parameter). Niching
operation is activated. Creep mutation is enabled and one chil per pair of parents
is considered. Tables 1 and 2 provide summary of the value of the parameter
set in the input file.

106 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Table 1. The input file parameters used in simulation.

Parameter Value Parameter Value

irestrt 0 icreep 1
microga 1 pcreep 0.04
npopsiz 10 iunifrm 1
nparam 3 iniche 1
pmutate 0.05 nchild 1
maxgen 1,000÷ 100,000 iskip 0
idum -1,000 iend 0
pcross 0.5 nowrite 1
itourny 1 kountmx 1
ielite 1

Table 2. Other input file parameters.

Parameter Φ Te n

parmin -45◦ 0 N -1 g
parmax 45◦ 6 N 2 g
nposbil 32,768 32,768 32,768
nichflg 1 1 1

3. Analysis of the Results

In this section, we simulate a scenario where the transition through four
known waypoints is assigned to the UAV platform. The search procedure is
initially extended to 1000 generations in order to find the best value of parameter
k (Eqn. (3)). Figure 5 shows different trajectories generated by the micro-GA
which satisfy, for different values ofk, the cost function. In the same figure
is represented the trajectory generated by a commercial autopilot set for the
MicroHawk vehicle. The dotted circles represent cylinders with a radius of
30 m: we assume that the air vehicle, moving from a target to the other, reaches
the destination target when it is inside the cylinder. Figures 6 and 7 show
respectively the altitude and the airspeed time-histories for the same previous
values ofk. For k = 0.6 the UAV has the best behaviour: the targets are
reached nearest both in the horizontal plane and in altitude range. In this case
when the target is reached the altitude difference is less than 5 meters. The
velocity time-history shows small velocity decreasing: as a matter of fact we
desire to turn as near as possible atVEmax (< Vmax). Moreover, the entire track
is concluded faster than in the real flight set-up. It is important to highlight that
the micro-GA, differently from the autopilot, aims keeping the maximum speed
during first phases of waypoint navigation. Differently, when approaching the

Optimal Mission Planning for an Autonomous Unmanned AerialVehicle 107

waypoint turn, airspeed is reduced to minimum drag (maximum efficiency turn
for minimum altitude loss).

Figure 5. Trajectories for different values ofk.

Figure 6. Altitude time-histories for different values ofk.

Fixed k = 0.6 some additional tests have been carried out increasing the
number of generations from 1000 to 100,000. Figures 8, 9, and 10 showthe
results. The increase of generations still produces an increment of trajectory
performance. Unfortunately, the nature of the problem does not allow the

108 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 7. Airspeed time-histories for different values ofk.

tracing of the fitness function on the overall flight circuits. Hence, convergence
to optimal trajectory can only be decided after flight track inspection.

Figure 8. Trajectories for different numbers of generations.

4. Concluding Remarks

The reference trajectory was obtained with a simulator of the real aircraft
including autopilot. The model of the controlled system was validated with

Optimal Mission Planning for an Autonomous Unmanned AerialVehicle 109

Figure 9. Altitude time-histories for different numbers of generations.

Figure 10. Airspeed time-histories for different numbers of generations.

flight experiments. Gains and setting for the autopilot were set in the simu-
lator in accordance with suggested factory defaults for the application. The
purpose of the comparison with optimal trajectories is the upgrade of control
and navigation feedback of autonomous system in real flight conditions. Future
activity will be devoted to implementation of the optimal search for autopilot
gain setting in order to obtain a flexible software tool for appropriate control

110 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

and navigation, removing the complex trial and error experimental procedure
usually suggested by autopilot producers.

References

[1] A. Bemporad. Reference Governor for Constrained Nonlinear Systems.IEEE Trans. Au-
tomatic Control, 43(3):415–419, 1998.

[2] A. Bemporad, A. Casavola, and E. Mosca. Nonlinear Control of Constrained Linear Sys-
tem via Predictive Reference Management.IEEE Trans. Automatic Control, 42(3):340–
349, 1997.

[3] D.L. Carroll. Genetic Algorithms and Optimizing Chemical Oxygen-Iodine Lasers. De-
velopments in Theoretical and Applied Mechanics, Volume 18, pages 411–424, School
of Engineering, The University of Alabama, Tuscaloosa, 1996.

[4] D.L. Carroll. Chemical Laser Modeling With Genetic Algorithms.AIAA Journal,
34(2):338–346, 1996.

[5] D.E. Goldberg.Algorithm in Search, Optimization and Machine Learning. Addison Wes-
ley, Reading, USA, 1989.

[6] G. Guglieri, B. Pralio, and F. Quagliotti. Design and Performance Analysis of a Micro
Aerial Vehicle Concept. InProc. 2nd AIAA Unmanned Unlimited Systems, Technologies
and Operations Conference, San Diego, USA, 2003.

[7] L.E. Kavraki, P. Svestka, J.C. Latombe, and M.H. Overmars. Probabilistic Roadmaps
for Path Planning in High-Dimensional Configuration Spaces.IEEE Trans. Robotics and
Automation, 12(4):566–580, 1996.

[8] S.M. LaValle and J.J. Kuffner. Randomized Kinodynamic Planning. In Proc. IEEE Inter-
national Conference on Robotics and Automation, pages 473–479, Detroit, USA, 1999.

[9] R. Murray, J. Doyle, J. Marsden, and G. Balas. Robust Nonlinear Control Theory With
Application to Aerospace Vehicles. InProc. IFAC World Congress, San Francisco, USA,
1996.

[10] S.J. Qin and T.A. Badgwell. An Overview of Industrial Model Predictive Control Tech-
nology.Chemical Process Control, 93(316):232–256, 1997.

[11] B. Sweetman. Fighters without Pilots.Popular Science, No. 11, pages 97–101, 1997.

[12] TechSat21.http://www.vs.afrl.af.mil/vsd/techsat21/.

[13] M. Van Nieuwstadt, M. Rathinam, and R.M. Murray. Differential Flatness and Absolute
Equivalence of Nonlinear Control Systems.J. Control, 61(6):1327–1361, 1995.

A GENETIC ALGORITHM WITH AN
ADAPTATION MECHANISM FOR DATABASE
INDEX OPTIMIZATION

Viktor Kovačevíc
HERMES SoftLab, d. d.

Ljubljana, Slovenia

viktor.kovacevic@hermes.si

Bogdan Filipǐc
Department of Intelligent Systems

Jǒzef Stefan Institute, Ljubljana, Slovenia

bogdan.filipic@ijs.si

Abstract Relational database tuning is a complex process which requires various levels
of competence, from system and hardware engineering to knowledge of busi-
ness logic. Optimizing application query workload with selection of proper set
of binary indexes that minimize query response time and consecutively the re-
source usage is known as the index selection problem (ISP). As a stochastic,
biologically inspired search method suitable for finding near-optimal solutions
in complex search spaces, a genetic algorithm is suitable for solving this problem.
In this paper, we present an adaptation mechanism incorporated in the Genetic
ALgorithm for Index Optimization (GALIO), an expert tool for ISP. Operational
testing of GALIO with the adaptation mechanism on real-world databases shows
a significant improvement of optimization results in comparison with the results
obtained without adaptation.

Keywords: Database optimization, Genetic algorithm, Index selection problem, Query access
path evaluation

1. Introduction

The mainstream in modern database development is the production of rela-
tional database management systems with processes and tools based on human
knowledge needed for efficient exploitation of database systems. To maintain
their data, the users communicate with databases through queries. Databasesys-
tems need to provide optimal usage of system resources and supply requested

111

112 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

data with minimum response time. Binary indexes created on crucial database
entity keys and attributes of the most searchable table columns present a fun-
damental approach to optimization of the query execution cost. Binary indexes
themselves are separate database objects that entirely depend on data in theta-
bles. Therefore, they increase the execution cost for data maintenancequeries.
Finding an optimal index configuration to get the minimal execution cost, bal-
anced between data search and data maintenance queries from the application
query workload, is known as the index selection problem (ISP). In real-world
relational database systems with hundreds of tables, thousands of table columns
and hundreds of different queries, the ISP is a complex combinatorial problem.
Furthermore, it is proven that the problem is NP-complete [2].

The index selection problem has been studied since the early seventies and
the importance of the problem is widely acknowledged [6, 10]. Most recent
releases of database systems, such as Oracle, DB2 and SQL Server, include the
so-called index advisors capable of analyzing the workload in terms of costs
of previously performed queries, and deriving recommendations for index cre-
ation [3, 4, 9]. Various implemented tools as well as the work presented in
the literature show that the ISP draws considerable attention of the academic
and engineering communities [1, 9, 11]. In modern relational database de-
sign, numerous optimization methods and algorithms are being included into
application development interfaces and infrastructure.

In our previous work we presented the Genetic ALgorithm for Index Opti-
mization (GALIO) and in preliminary experiments it was shown suitable for
the ISP [7]. Furthermore, we have grounded our approach on existingsolutions
and tools, especially on direct usage of database query cost evaluationmethods
and application of the optimization algorithm independently from the specific
relational database implementation. In this paper we extend the previous re-
search with incorporating an adaptation mechanism into the genetic algorithm.
Moreover, we test the algorithm on a real database system.

The paper is further organized as follows. We first describe the problem
and summarize the results of the original algorithm. Next, we present the new
adaptation module and its impact on the design of genetic operators. Finally,
we report the optimization results achieved with the GALIO expert tool on an
e-banking system database and conclude with the ideas for future work.

2. Problem Definition

Let T = {1, 2, . . . , n} be a set of tables andI = {1, 2, . . . , m} a set of all
combinations of secondary indexes on the tablesT (from one indexed column
to the predefined number of columns for indexes,∆c, usually 3 or 4). Each table
contains different number of table columnsC = {1, 2, . . . , ki}, i = 1, 2, . . . , n,
wherei is the total number of tables in the database system. The probability of

A Genetic Algorithm for Database Index Optimization 113

column constituent in new index candidates is defined for each column in each
table:

PCij
=

NUM DISTINCTj∑ki

j=1 NUM DISTINCTj
,

whereki is the number of columns in tableTi, andNUM DISTINCTj the number
of distinct values in columnj. Furthermore, we define an index configuration
Ω = T

⊗
I, which denotes that for each table inT we define a subset of

secondary indexesSI ⊂ I . For each index configuration we also define the
maximum number of indexes per table,∆t, usually up to 5. When all indexes of
a certain configurationSIare built, the query workload cost on that configuration
is estimated. The estimation is based on two criteria. The first one is the cost
estimated for each query on the index configuration by the database optimizer.
The second one is theSI maintenance time, which is estimated from the index
statistics. For building our prototype tool, only the number of indexed columns
is used for the index maintenance factor calculation. The estimation of the
total cost for a query workload represents the sum of cost estimations given
by the database optimizer and is calculated through a query explanation plan
mechanism for each query in the query workload. The explanation plan for
the query workload also gives the information about the index access paths as
well as the index usage. Therefore, the final index configuration is re-evaluated
by cost and by the index usage. At the end, we get a new index configuration
SI′ ⊂ SI that contains only the usable indexes andUSI = SI−SI′ with unusable
indexes.

We can use the list of unusable indexesUSI to change table column statistics
for each first column of the unusable indexes so that the new number of distinct
values is calculated as

NUM DISTINCT′j0 = NUM DISTINCTj0 × β

⇔ 〈changedNUM DISTINCT= λ〉
λ′

j0
= λj0 × β.

Hereβ represents the penalty factor with value0 ≤ β < 1. In our work we use
the value of the penalty factor between 0 and 0.2.

3. Previous Results with GALIO

In the initial tests of GALIO we achieved encouraging results, especially with
regards to efficiency and robustness of the algorithm on a sample production
database [7]. Some differences were noted in comparison to human-defined
solutions. This particularly holds in case of large tables in terms of the number
of records, with some ‘usable’ columns with relatively small number of distinct
values compared to the total number of records in the table. Index candidates on

114 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

such columns also contribute to a great extent to the total query cost reduction.
The initial version of GALIO used static probabilities for column candidates
which are based on the number of distinct values from the table data statistics.
Therefore, these columns have relatively small probability to be index candi-
dates. This results in not including them in the resulting index configuration.
The initial version of GALIO does not change these static probabilities for
column candidates during the execution of the algorithm.

Each table in the entity-relationship model has the data statistics structure
which contains the parameters used in the process of creating a new index set.
The initial version of the algorithm uses a number of different values suchas
the probability that a column will be used in the index. A column with a higher
number of distinct values has a higher probability to be chosen in the new index
creation process. The new index creation process is assumed as creation of a
new index with predefined number of columns or as addition of a new column
to the existing index in order to improve the index selection factor. The index
selection factor is defined as the number of matching columns in query filter
predicates that are covered by index columns. Previously used columns,either
in new index creation or in adding a new column, are not used in the subsequent
steps of searching for the next index column. Obviously, each table columncan
be used in a single index only once.

4. Adaptation Module Design

The improvement of GALIO by adding a new module for adaptation of
column index probabilities is based on the information on ‘usability’ of the
proposed index configurations in previously evaluated query access paths. The
term ‘usability of an index’ is used to specify the usage of the index in the
query explain plan access path produced by the database optimizer. During the
algorithm execution, probabilities for the columns that are members of ‘unus-
able’ indexes are reduced, while the probabilities of the other table columns are
increased. After a new index configuration is evaluated, that is, query workload
access paths are estimated, the algorithm adapts table column probabilities for
the next generation. Each time an index is marked as ‘unusable’, the probability
of the first index column is decreased. Probabilities of other columns are in-
creased in equal shares of the total probability reduction of unusable columns.
This process is carried out after the evaluation of each new index configuration.

The adaptation module uses as its input two groups of parameters. The
first group is related to table statistics, while the second group is associated
with the index usability and obtained from the usage of previously indexed
columns (binary indexes) in the explained query access paths. The main task
of the adaptation module is to obtain knowledge from the previously explained
queries and to change the probabilities of columns to participate in new index

A Genetic Algorithm for Database Index Optimization 115

creation. The first group of input parameters is mostly static whereas the second
group depends on the algorithm behavior and results. The probabilities oftable
columns are initialized from table data statistics. The adaptation system changes
these probabilities from temporary results of the algorithm in each execution
step. This process consecutively directs the search towards the optimal result.
Figure 1 shows the integration and the data flow between the adaptation module
and the genetic algorithm implemented in the GALIO tool.

5. Modifications of Genetic Operators

In GALIO, each candidate solution (index configuration) is representedin
the form of a matrix, where the matrix columns are table columns sorted in the
lexical order and grouped by tables in the configuration [7]. The propagation
of good genetic material (usable indexes) among index configurations is part
of the computer-simulated evolution process. It is performed by two genetic
operators: recombination and mutation [5].

Figure 1. Adaptation module and the genetic algorithm data flow.

Column probabilities based on the number of distinct values are integral part
of the index configuration genome. The index configuration matrix includes a
row with the number of distinct values for each column in the tables, as shown
in Figure 2.

The mutation operator adds a new index to an existing index configuration.
After the evaluation of the query work load on the mutated index configura-
tion, the number of distinct values for each first column of unusable indexes
recalculated. The applied mutation operator is illustrated in Figure 3.

116 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

T1C1 T1C2 · · · T1Ci · · · T1Cn · · · Tn, C1 TnC2 · · · TnCi · · · TnCn

0 λ11 λ12 · · · λ1i · · · λ1n · · · λn1 λn2 · · · λni · · · λnn

1 1 2 1
.
.
.
i 1 2 3 2 1
.
.
.
n 1 2

Figure 2. Representation of index configuration in the genetic algorithm.

T1C1 T1C2 · · · T1Ci · · · T1Cn · · · Tn, C1 TnC2 · · · TnCi · · · TnCn

0 λ11 λ12 · · · λ1i · · · λ1n · · · λn1 λn2 · · · λni · · · λnn

1 1 2 1
.
.
.
i 1 2 3 2 1
.
.
.
n 1 2

n + 1 —1−— — — —2−—
n + 2 —1−— — — —3−— — — —2−—

λ′

1i = λ1i × β λ′

n2
= λn2 × β

Figure 3. The adapted mutation operator.

The recombination operator is more complex. First, the parents simply
add their index configurations, like in the original recombination operator in
GALIO. The default row is recalculated in a way that minimal values for the
number of distinct values from parents are inherited in the offspring configura-
tion:

∀i, j γoffspring
ij = min〈λfirst

ij , λsecond
ij 〉|i table index, j column index

The numbers of distinct values calculated in this way represent a new row in
the offspring configuration matrix. After the query workload is evaluated and
the usability of indexes is known, the number of distinct values for each first
column of unusable indexes is recalculated again. This process is illustratedin
Figure 4.

6. Test Environment and Results

The test database system contains a copy of the real production data from an
e-banking application for the last four years. The query workload is based on a
two-week application log and covers all implemented application query func-

A Genetic Algorithm for Database Index Optimization 117

T1C1 T1C2 · · · T1Ci · · · T1Cn · · · Tn, C1 TnC2 · · · TnCi · · · TnCn

0 λ11 λ12 · · · λ1i · · · λ1n · · · λn1 λn2 · · · λni · · · λnn

1 1 2 1
.
.
.
i 1 2 3 2 1
.
.
.
n 1 2

×
T1C1 T1C2 · · · T1Ci · · · T1Cn · · · Tn, C1 TnC2 · · · TnCi · · · TnCn

0 λ11 λ12 · · · λ1i · · · λ1n · · · λn1 λn2 · · · λni · · · λnn

1 1 2 1
.
.
.
i 1 2 1 2
.
.
.
j 1

= ∀i, j γ
offspring
ij

= min〈λfirst
ij

, λsecond
ij 〉|i table index, j column index

T1C1 T1C2 · · · T1Ci · · · T1Cn · · · Tn, C1 TnC2 · · · TnCi · · · TnCn

0 λ11 λ12 · · · λ1i · · · λ1n · · · λn1 λn2 · · · λni · · · λnn

1 —1−— 2 1
.
.
.
i 1 2 3 2 1
.
.
.
n 1 2

n+1 1 2 1
.
.
.

n + i —1−— — — —2−— —1−— — — —2−—
.
.
.

n + j 1

γ′

11
= γ11 × β γ′

12
= γ12 × β γ′

n2
= γn2 × β

Figure 4. The modified recombination operator.

tionalities. The query log contains 84 different types of queries from regular
usage. The total number of query executions is 620,716. For individualqueries
the number of executions varies from 2 to 52,505. The query complexity in-
creases from the most simple (one table select queries or updates) to highly
complex queries with 10 tables, with sub-queries and unions. The percentage

118 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

of different query types in entire query workload is: 59 % of select queries,
28 % of update queries, 11 % of insert queries, and 2 % of delete queries. The
query complexity is expressed as the number of elementary database operations
needed to obtain the query result records from the tables. The most frequently
used operations are full scans, index scans, different joins and nested loops.
On average, each query in the workload has 8.46 different elementary database
operations. The physical size of the database files is 13 GB. The total number
of columns for tables in the model (882) is constrained to the number of 198
different table columns favorable for secondary indexes.

The imported query workload statistics influence the genetic algorithm set-
tings. The most important factor is the average number of columns in query
search criteria for table records. For the testing query workload, it wasthe
average number of 2 to 3 different column search criteria per table. GALIO
was configured to search for optimum secondary indexes of up to 3 columns.
Another crucial factor is the number of indexes per table. This configuration
parameter is set to the maximum of 5 indexes on each table. An advantageous
property of GALIO is removing of indexes not used in a query explain paths
from the proposed index configuration. This allows setting up any value for the
maximum number of indexes per table higher than the lower limit of the number
of the indexes used in query explain paths. Large value of this parameter can
cause unnecessary combinatorial complexity of the search and low performance
of the genetic algorithm.

Mutation and recombination probabilities were set to balance with equal
probability between the two genetic operators. As a result, on average halfof
individuals were mutated and recombined in each generation, without exclusive
right to one or other operator for a specific individual. It is also possiblethat
an unchanged individual passes to the next generation. The tested population
sizes were 10 to 30 individuals, and the population of 15 individuals was found
a compromise between time efficiency and resource requirements of the applied
algorithm. The average execution time was up to 30 minutes on a nowadays
standard Pentium hardware configuration where the database server and the
genetic algorithm ran on the same machine.

A typical resulting index configuration contains 38 different secondaryin-
dexes. There are two tables with 4 indexes recommended (payments and ac-
counts tables with high employability in the e-banking application system).
We also have two tables with 3 indexes (payment packages and user company
relation table). The remaining indexed tables have one index (30 % of total
number of 44 tables) and two indexes (30 % of total number of tables). These
values demonstrate suitable algorithm behavior in deleting unusable indexes
from index configurations. There are 17 tables (38not indexed. They, without
exception, belong to a group of tables with small number of records. On av-
erage, one-column indexes contribute with approximately 60 %, two column

A Genetic Algorithm for Database Index Optimization 119

indexes with 30 %, and three column indexes with 10 % to the total number of
indexes in the resulting configuration.

The best result of the original GALIO algorithm was compared with the re-
sult of the modified algorithm and with the human-defined index configuration.
The resulting index configurations were evaluated with the absolute value of
cost function from the original algorithm [7]. The result of the modified al-
gorithm (cost value 3,409) is 34 % better than the query workload cost result
of the human-defined secondary index configuration (cost value 5,659). More-
over, in comparing the original and modified algorithm, the result is even more
significant. The index configuration cost for the modified algorithm represents
only 40 % of the original GALIO result (cost value 8,509).

7. Conclusion

After the described phase of development, the genetic algorithm for the
database index selection achieves significant results in real-world e-banking
database application, especially with respect to efficiency and robustness. Sat-
isfactory results are also achieved in comparison with human-defined solutions.
Future work will be concerned with improving the algorithm and comparing its
results with those of other algorithms for the index selection problem as well
as with the results of database index advisors included in commercial database
management systems. We also plan to improve the evaluation method for in-
dex maintenance cost and extend it to include other index statistics information.
Furthermore, it is possible to incorporate index data file space configuration pa-
rameters and other types of indexes, like bit-mapped or functional indexes, into
the existing genetic algorithm. It seems is possible to design a general biologi-
cally inspired algorithm for tuning database management systems with various
data structures, not only b-tree indexes, for query optimization.

References

[1] S. Chauduri and V.R. Narasayya. An efficient cost-driven index selection tool for Microsoft
SQL server. InProc. 23rd International Conference on Very Large Data Bases, pages 146–
155, Athens, Greece, 1997.

[2] D. Corner. The difficulty of optimum index selection.ACM Trans. Database Syst.,
3(4):440–445, 1978.

[3] Database Engine Tuning Advisor Reference.msdn2.microsoft.com/en-us/
library/ms173494.aspx.

[4] DB2 Advisor: An optimizer smart enough to recommend its own indexes.www-128.ibm.
com/developerworks/db2/library/techarticle/dm-0107lohman/.

[5] A.E. Eiben and J.E. Smith.Introduction to Evolutionary Computing. Springer-Verlag,
Berlin, Heildelberg, New York, 2003.

120 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[6] M.M. Hammer and A.Y. Chan. Index selection in a self adaptive database management
system. InProc. ACM SIGMOD International Conference on Management of Data, pages
1–8, Washington, DC, USA, 1976.

[7] V. Kovačevíc and B. Filipǐc. A genetic algorithm based tool for the database index selec-
tion problem. InProc. 8th International Multiconference Information Society (IS 2005),
Intelligent systems, pages 378–381, Ljubljana, Slovenia, 2006.

[8] Oracle Using Advisors to Optimize Database Performance.download-east.oracle.

com/docs/cd/B16240 01/doc/server.102/b14196/montune003.htm.

[9] K. Sattler, I. Geist, and E. Schallehn. QUIET: Continuous query-driven index tuning. in
Proc. 29th International Conference on Very Large Data Bases, pages 1129–1132, Berlin,
Germany, 2003.

[10] M. Schkolnik. The optimal selection of secondary indices for files.Inf. Syst., 1(4):141–146,
1975.

[11] G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and A. Skelley. DB2 Advisor: An optimizer
smart enough to recommend its own indexes. InProc. 16th International Conference on
Data Engineering (ICDE 2000), pages 101–110, San Diego, CA, USA, 2000.

AN EXPERIMENTAL STUDY ON GA
REPLACEMENT OPERATORS FOR
SCHEDULING ON GRIDS

Fatos Xhafa
Department of Languages and Informatics Systems

Technical University of Catalonia, Barcelona, Spain

fatos@lsi.upc.edu

Abstract Computational Grids (CG) represent new computational frameworks that offer
large computational power by connecting geographically distributed resources.
Obtaining efficient and optimal assignments of jobs to the grid nodes is a main
issues in such distributed environments. In this paper, we present a basic GA for
Scheduling Jobs on Computational Grids and study two versions of it based on
the replacement operators: Steady-State Genetic Algorithm (SSGA) and Strug-
gle Genetic Algorithm (SGA). Considering the value of makespan, we aim to
compare their behavior in a real CG. The interest of SSGA is its accentuated con-
vergence of the population that rapidly reaches good solutions although itis soon
stagnated. The SGA is based on a struggle replacement policy that adaptively
maintains diversity over population. The experimental results show that SGA
outperforms SSGA for moderate size instances. On the other hand, forlarger
size instances, SGA is not able to improve the results obtained by the SSGA.

Keywords: Computational grids, Genetic algorithms, Replacement operators, Scheduling

1. Introduction

The constant growth of communications, in terms of quality and availability,
is increasing the interest on grid computing paradigm [5] by which geographi-
cally distributed computing resources can be logically coupled together working
as a computational unit. An efficient use of distributed resources is highly de-
pendent on the resource allocation by grid schedulers. Moreover, due to the
dynamics of a CG, grid schedulers must generate optimal schedules at a mini-
mal amount of time. Job Scheduling on Computational Grids is multiobjective:
makespan, flowtime and resource utilization are among most important criteria.
In this work, makespan and flowtime are both optimized, but only makespan is
reported and used for comparing purpose.

121

122 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Several heuristics are being addressed in the literature for Job Scheduling
on Computational Grids [1, 4, 8, 11]. In particular, Genetic Algorithms (GA)
[7] have proved to be a good alternative for solving combinatorial optimization
problems. One important characteristic of GAs is the tendency of the population
to converge to a fixed point where all individuals share almost the same genetic
characteristics. If this convergence is accelerated, by means of the selection
and replacement strategy, good solutions will be faster obtained but, population
will rapidly converge to worse solutions than those that could have been found
if a slower convergence had been maintained. Thus, an appropriate balance of
selection pressure must be used to increase the quality of solutions.

In this paper, we present a basic GA algorithm for the problem, and an
experimental study on two replacement operators: steady-state and struggle
replacement. First, we consider the steady-state replacement strategy, in which
only a portion of the population, the worst individuals, is replaced by the newly
generated ones. Thus, the selection pressure is increased and as a result the
population converges prematurely to a sub-optimal solution. By this manner,
the quality of solutions is rapidly increased although the algorithm is soon stag-
nated. Then, we consider an implementation of a Struggle Genetic Algorithm
(SGA), where a new individual replaces the individual that is most similar to
it rather than replacing the worst one. The SGA is similar to the Steady-State
Genetic Algorithm (SSGA) but it is able to adaptively maintain diversity among
individuals, thus aspiring to better solutions.

Several grid scenarios have been considered to study the behavior ofthe
replacement operators. The experimental results show that SGA performs better
than SSGA for moderate grid sizes, but as the grid size increases SGA is not
able to reach as good results as those of SSGA. More precisely, SGA improves
makespan values obtained by SSGA maintaining a similar convergence for
small size instances presented in Braun et al. [3] that are currently usedas a
benchmark for the problem. However, for larger size instances, SGA maintains
a too diversified population, which prevents it from improving makespan values
obtained by SSGA. This shows how good an intensive policy performs when
the grid scenario gets larger, as compared to an explorative policy, especially
in a real time environment.

The rest of the paper is organized as follows. In Section 2 we give the
problem definition and in Section 3 the basic GA is detailed. The Steady-State
and Struggle replacement operators are explained in Section 4. In Section5 we
present the experimental results of the SGA and the SSGA and compare their
behavior. Finally, we conclude in Section 6 with some remarks and indicate
directions for future work.

Replacement Operators for GAs on Grids 123

2. Problem Definition

Job Scheduling on Computational Grids consists of a dynamic set of inde-
pendent jobs to be scheduled on a dynamic set of resources. An instance of the
problem, at a certain instant of time, is characterized by:

A set ofN independent jobs to be scheduled. Each job has associated its
workload (in million of instructions). Every job must be entirely executed
in unique machine.

A set ofM heterogeneous machines with ready time value for each ma-
chine indicating when this machine is available. Each machine has also
associated its corresponding computing capacity (inmips).

An N ×M matrixETC (Expected Time to Compute) (ETC[i][j] is the
expected execution time of jobi in machinej.)

Regarding the optimization criteria, makespan and flowtime are both mini-
mized. The makespan of a schedule consists of the completion time of the last
processed job; the flowtime consists of the sum of the completion times of each
job in the schedule. By lettingcj the completion time jobj finishes processing,
the two objectives are formally defined as:

makespan: min
Si∈Sched

{ max
j∈Jobs

cj} andflowtime: min
Si∈Sched

{
∑

j∈Jobs

cj},

whereSched is the set of all possible schedules andJobs the set of all jobs to
be scheduled. Notice that both objectives are contradictory.

3. GAs for Scheduling on Computational Grids

The starting point for this work was the development of a basic GA im-
plementation for the problem using an adaptation of GA skeleton presented
in [2]. The genetic representation, the specific optimization criteria as well as
the genetic operators used are described next.

Genetic representation. Each individual encodes a solution by means of a
vector containing the schedule. Each position of the vector represents a job and
its value indicates the machine it is assigned to. Vectors have size ofN and
their values are positive integers in[1, M]. Thus, all possible representations are
feasible solutions. Incompatibilities between jobs and machines have not been
considered as infeasibility in this work, but they can be represented adding a
penalization in theETC matrix for the corresponding job and machine (a value
of +∞).

124 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Evaluation. Every individual has a fitness value used to measure the quality
of solution it represents. Values of makespan and flowtime are both mini-
mized although only makespan is reported here. The approach adopted here
is the simultaneous one by which fitness function considers both values si-
multaneously. We have to take into account that even though makespan and
flowtime are measured in the same unit (seconds), the values they can take are
in incomparable ranges, due to the fact that flowtime has a higher magnitude
order over makespan, and its difference increases as more jobs and machines
are considered. For this reason, the value of mean flowtime,flowtime/N ,
is used to evaluate flowtime. Additionally, both values are weighted in order
to balance their importance. Fitness value is thus calculated as:fitness =
λ ·makespan + (1− λ) ·mean flowtime, whereλ will a priori be fixed.

Population initialization. The individuals of the population are randomly
generated to create the first generation. Additionally, one individual is generated
using theLongest Job to Fastest Resource - Shortest Job to Fastest Resource
(LJFR-SJFR) heuristic given in [1], which optimizes alternatively both values of
makespan and flowtime. A third method used for initialization is theMinimum
Completion Timeheuristic (MCT), described in [3], which computes a possible
solution by allocating each job to the machine in which it will finish earlier.

Selection operator. For each generation, an intermediate population is
formed by selecting pairs of individuals from the global population to pro-
duce the offspring. The selection strategy is a key factor to control selection
pressure during the evolution. We have used thek-Tournament: for each indi-
vidual to be selected for the intermediate population,k individuals are randomly
chosen from the global population and the best fitted of them is copied onto the
intermediate population.

Crossover operator. We have used theFitness Based Crossoverby which
the crossing mask is built according to the fitness of the two solutions to be
crossed.

Mutation. In this implementation we used the rebalance mutation operator,
which tries to reduce the workload of one of the most overloaded machines (in
terms of their completion times) by swapping if possible or moving jobs from
the overloaded machine. After the rebalancing is done, the solution is mutated
by applying the Move mutation that randomly moves jobs from one machine
to another one.

Replacement Operators for GAs on Grids 125

4. Replacement Operators

The main focus of this work is on two replacements operators, namely steady-
state and struggle replacement. In both cases, the algorithm works with an
overlapping population where in each generation a portion of the populationis
replaced by the new individuals, maintaining the size of the population constant.
In this way, there is another inherent selection mechanism that rejects the portion
of the population to be replaced through which the selection pressure can be
easily regulated.

4.1 Steady-State Genetic Algorithm (SSGA)

The steady-state strategy was popularized by the GENITOR program [10]. It
consists of the replacement of the worst individuals by the newly generated ones.
Consequently, the best individuals are considerably favored and the population
often converges prematurely. However, although there is risk of stagnation,
SSGA performs very well if good solutions have to be rapidly found. This is
the case of Scheduling on Grids where resource allocation is constrainedby a
time limit.

4.2 Struggle Genetic Algorithm (SGA)

The Struggle GA developed in [6] is similar to SSGA. However, in the SGA,
a new individual replaces the individual that is most similar to it only in case the
new individual obtains a better fitness value than the one to be replaced. This is
done in order to adaptively maintain certain diversity among the population and
thus aspiring to better solutions. In order to compare the similarity between
solutions, a measure of similarity or distance function has to be defined. In
our case, we have used Hamming distance to evaluate similarity between two
solutions.

Another issue to be considered is that struggle replacement is strongly con-
strained by its computational cost of quadratic order of population size. Inorder
to obtain a linear cost, we have designed a hash table to find, given a newly
created individual, the individual most similar to it in a constant computational
cost.

5. Experimental Study

We conducted an experimental study, initially to tune the parameters of the
basic GA, obtain computational results for SSGA and SGA algorithms and
compare the behavior of the two replacement operators.

Instance description. The instances used for the experimenting consists of,
on the one hand, (a subset of) instances given in Braun et al. [3], known for its

126 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

high level of difficulty. All these instances consist of 512 jobs and 16 machines.
We will refer to these instances asbenchmark. Further, because the benchmark
instances are of rather small size, we have generated a set of instancesof larger
sizes following theETC matrix model of Braun et al. [3].

We have generated instances of four different sizes (Small, Medium, Large
and Very Large) according to the number of jobs and machines, as shownin
Table 1. These instances consists of inconsistentETC matrices with high task
heterogeneity and high machine heterogeneity.

Table 1. Sizes of static instances.

Benchmark Small Medium Large Very Large

No. Jobs 512 512 1024 2048 4,096
No. Machines 16 32 64 128 256

Fine tuning of parameters and operators. All the parameters of the GA
implementation have been set up in order to obtain the best behavior of SSGA
and SGA; the resulting configuration is then used for both them for the restof the
experimental study. Regarding optimization criteria, more priority is given to
makespan over mean flowtime (λ = 0.75). Population size has been set accord-
ing to instance size; intermediate population size corresponds approximately to
60 % of population size (see Table 2 for specific values).

Table 2. Population sizes.

Benchmark Small Medium Large Very Large

Pop. Size 10 35 40 45 50
Int. Pop. Size 6 20 24 26 30

The rest of the parameters are set as follows:mutate probability= 0.4 and
k-Tournament parameter= 3. The search has been limited to 90 seconds,
which is commonly used as a reasonable amount of time for scheduling jobs in
a Computational Grid environment (see also [3]).

Computational results using benchmark instances. Instances from [3]
were very useful to get a first evaluation of our implementation. The experi-
mental results for this set of instances (see Table 3) are obtained on an AMD
K6TM 3D 450 MHz processor with 256 MB of RAM. Results are averaged over
10 runs. We give in Table 3 also the results obtained by the GA implemented
in [3] for the same instances. It is worth to note that the implementation of the
Braun et al. uses a population of 200 individuals and the heuristic ofMin-Min

Replacement Operators for GAs on Grids 127

to initialize it. Their executions were done on a Pentium II 400 MHz processor
with 1 GB of RAM using, in average, an execution time of 90 seconds.

Table 3. Results obtained for benchmark instances (the notation ux yyzz.0 means: u–uniform
distribution, x–inconsistency (c–consistent, i–inconsistent and s–semi-consistent), yy–job het-
erogeneity (hi–high, lo–low), zz–machine heterogeneity (hi–high, lo–low)).

Instance Braun et al. GA SSGA SGA

u c hihi.0 8,050,844.5 7,766,109.88 7,752,689.08
u c hilo.0 156,249.2 156,032.18 156,680.58
u c lohi.0 258,756.77 251,621.13 253,926.06
u c lolo.0 5,272.25 5,242.02 5,251.15
u i hihi.0 3,104,762.5 3,216,911.63 3161,104.92
u i hilo.0 75,816.13 76704.43 75,598.48
u i lohi.0 107,500.72 113,972.01 111,792.17
u i lolo.0 2,614.39 2,667.73 2,620,72
u s hihi.0 4,566,206.00 4,509,660.58 4,433,792.28
u s hilo.0 98,519.4 99,859.48 98,560.04
u s lohi.0 130,616.53 131,796.29 130,425.85
u s lolo.0 3,583.44 3,600.79 3,534.31

111000

113000

115000

117000

119000

121000

123000

125000

127000

0 10 20 30 40 50 60 70 80 90

Sec

Makespan

SSGA

SGA

111000

113000

115000

117000

119000

121000

123000

125000

127000

0 10 20 30 40 50 60 70 80 90

Sec

Makespan

SSGA

SGA

Figure 1. Makespan reduction by SSGA and SGA for the instance ui lohi.0 using a population
of 10 individuals (left) and 30 individuals (right).

As can be seen from Table 3, the results obtained by SSGA and SGA reach
the same level of quality as those obtained by the implementation from [3] taken
as reference in our work. SSGA outperforms results of [3] for almost half of the
instances having an average of deviation of 2.23 % from the best known value
for the rest of instances (6.02 % in the worst case). SGA outperforms more than
half of the results obtained by the reference GA having a deviation of 1.27 %
in average for the other instances (3.99 % in the worst case). This showsthat
good results can be obtained despite the selective policy followed by SSGA
and SGA, which force a fast convergence in order to reach a fast reduction of
makespan.

128 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

On the other hand, the results also show that SGA outperforms SSGA for the
majority of instances, mainly for inconsistent and partially consistent matrices
(this means that SGA performs better when job-machine constraints have to be
managed). Figure 1 shows makespan reduction obtained by the SSGA and SGA.
Both algorithms perform an accentuated reduction in time rapidly reaching good
values, however SGA maintains more diversity among population thus reducing
its tendency to converge and reaching better results than those of SSGA.

Figure 2. Makespan reduction by SSGA and SGA for the small instance scenario (left) and
medium instance scenario (right).

The experiments show a certain constancy on the number of iterations needed
by SGA to reach SSGA results. However, as the population size is increased, the
point where SGA improves SSGA is delayed (see Figure 1). This is explained
by the fact that now the computation time of each iteration is higher due to the
larger population.

Computational results using larger size instances. Larger size instances
have been generated in order to represent scheduling environments ofa larger
magnitude. This time, the executions are done in an AMD AthlonTM XP 1600+
(1400 MHz) processor with 256 MB of RAM. Again, the search has beenlimited
to 90 seconds. We show in Table 4 the results (averaged over 10 runs) for the
makespan for different grid scenarios: small, medium, large and very large,
respectively.

From Table 4 we can clearly observe the diminution of the advantage that
SGA obtains over SSGA when the instance is larger (see also Figures 2 and3.)
SGA obtains a better balance between exploitation and exploration of search
space reaching better results than those of SSGA. However, for a realgrid
where the number of jobs and machines is highly variable, SSGA gives a higher
guarantee of a satisfactory performance.

Replacement Operators for GAs on Grids 129

Table 4. Results obtained for larger static instances.

Instance SSGA SGA

Small 1,029,592.60 1,027,901.58
Medium 529,425.13 529,365.42
Large 282,460.00 286,614.78
Very Large 160,993.02 168,804.68

Figure 3. Makespan reduction by SSGA and SGA for the large instance scenario (left) and
very large instance scenario (right).

6. Conclusions and Further Work

In order to exploit the potential of a Computational Grid, any grid scheduler
must provide good schedules in a reasonable amount of time. We have studied
two known versions of GA heuristic for the scheduling problem, namely Steady-
State GA (SSGA) and Struggle GA (SGA). The results of this work show that,
even though SGA outperforms SSGA when considering a moderate number of
jobs and machines, for larger scenarios SGA maintains too high diversity and
it is not able to reach the results obtained by SSGA. Moreover, as more jobs
and machines are considered, the distance between the makespan reduction
obtained by SSGA and SGA is rapidly increased and thus making SSGA more
adequate for dynamic grid environments.

Although different grid scenarios have been used, our ultimate goal is to
study the performance of SGA and SSGA on dynamic environment. We are
currently testing a grid simulator based on HyperSim package [9] that we will
use to study the performance of SSGA and SGA.

130 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Acknowledgement

This research is supported by Projects ASCE TIN2005-09198-C02-02 and
FP6-2004-IST-FETPI (AEOLUS).

References

[1] A. Abraham, R. Buyya, and B. Nath. Nature’s heuristics for scheduling jobs on compu-
tational grids. InProc. 8th IEEE International Conference on Advanced Computing and
Communications, Cochin, India, 2000.

[2] E. Alba, F. Almeida, M. Blesa, J. Cabeza, C. Cotta, M. Dı́az, I. Dorta, J. Gabarró, C. Léon,
J. Luna, L. Moreno, C. Pablos, J. Petit, A. Rojas, and F. Xhafa. MALLBA: A library of
skeletons for combinatorial optimisation.Lect. Notes Comput. Sc., 2400:927–932, 2002.

[3] T.D. Braun, H.J. Siegel, N. Beck, L.L. B̈olöni, M. Maheswaran, A.I. Reuther, J.P. Robert-
son, M.D. Theys, and B. Yao. A comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous distributed computing systems.J. Parallel
and Distr. Comput., 61(6):810–837, 2001.

[4] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An architecture for a resource man-
agement and scheduling system in a global computational grid. InProc. 4th International
Conference on High Performance Computing in Asia-Pacific Region, Beijing, China, 2000.

[5] I. Foster and C. Kesselman.The Grid - Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, 1998.

[6] T. Gruninger. Multimodal optimization using genetic algorithms. Master’s thesis, Stuttgart
University, 1996.

[7] J.H. Holland.Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, 1975.

[8] V. Di Martino and M. Mililotti. Sub optimal scheduling in a grid using genetic algorithms.
Parallel Comput., 30(5-6):553—565, 2004.

[9] S. Phatanapherom and V. Kachitvichyanukul. Fast simulation modelfor grid scheduling
using hypersim. InProc. 35th Winter Simulation Conference, New Orleans, LA, USA,
2003.

[10] D. Whitley. The genitor algorithm and selective pressure: Why rank-based allocation of
reproductive trials is best. InProc. 3rd International Conference on Genetic Algorithms,
pages 116–121, Fairfax, VA, USA, 1989.

[11] A.Y. Zomaya and Y.H. Teh. Observations on using genetic algorithms for dynamic load-
balancing.IEEE Trans. Parallel and Distributed Systems, 12(9):899–911, 2001.

A GRID-BASED PARALLEL OPTIMIZATION
ALGORITHM APPLIED TO A PROBLEM IN
METAL CASTING INDUSTRY

Jürgen Jakumeit
ACCESS e. V.

Aachen, Germany

jakumeit@access.rwth-aachen.de

Thomas Barth, Julian Reichwald, Manfred Grauer, Frank Thilo
Information Systems Institute

University of Siegen, Germany

{barth,reichwald,grauer,thilo}@fb5.uni-siegen.de

Thomas Friese, Matthew Smith, Bernd Freisleben
Department of Mathematics and Computer Science

University of Marburg, Germany

{friese,matthew,freisleb}@informatik.uni-marburg.de

Abstract Since customers’ quality requirements in casting industry are constantly increas-
ing while ‘time to market’ must be reduced at the same time, utilizing numerical
simulation of the physical casting process and its subsequent optimization isan
important topic in casting industry. Simulation-based optimization of casting
processes requires consideration of these characteristics: Handling the numer-
ical properties of the optimization problem and the demand for computational
resources due to excessive runtime of simulation. In this paper, a distributed opti-
mization algorithm is presented, integrating features from ‘traditional’, determin-
istic optimization algorithms, their parallel extensions and Genetic Algorithms.
In order to answer the demand for computational resources, its implementation
within a Grid Computing infrastructure is briefly discussed. Similarities between
the aforementioned classes of algorithms allow their application within the same
Grid-based environment. Preliminary results from such an environment inte-
grating optimization algorithm and a simulation code for metal casting are also
presented. The developed framework and the application show that gridtechnol-

131

132 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

ogy can be an important tool to utilize a variety of optimization techniques and
the necessary resources for the optimization of industrial processes.

Keywords: Distributed optimization, Grid computing, Metal casting processes, Numerical
simulation

1. Introduction

The design of an optimization algorithm appropriate to solve ‘real life’ prob-
lems in an engineering domain like metal casting has to take several aspects
into account simultaneously:

Mathematical characteristics of the optimization problemProperties
of the search space such as multimodality, ruggedness, non-differentiable
objective and/or constraint functions imply the use of direct methods.
Since finding the (a priori unknown) global optimum in such a search
space is almost impossible to assure (e.g. by a mathematical proof) for
general problems, it is widely accepted to apply heuristics to approximate
the global optimum.

Characteristics of the solution processDue to the fact that objective
and/or constraint functions are given implicitly by computationally ex-
pensive numerical simulation codes a ‘traditional’ sequential solution
process is inapplicable. In order to get a solution to a problem in reason-
able time non-sequential optimization algorithms are a mean to speed up
the solution process substantially.

(Software-)Technical requirements on an adequate problem solv-
ing environment High demand for computational resources necessary
to solve typical problems exhibiting the aforementioned characteristics
leads to non-traditional approaches to the design and implementation of
distributed problem solving environments.

Service-oriented Grid computing has gained tremendous interest in various
application domains. Many of those applications stem from an academic envi-
ronment and have traditionally been designed as monolithic solutions that are
hard to adapt, even to slight changes in the application requirements. Required
adaptations must be implemented by programmers specialized both in Grid
middleware and the applications. The paradigm shift to service-orientation in
Grid middleware opens the possibility to use a far more flexible software devel-
opment approach, namely to compose applications from standard components,
promising easier development and modification of Grid applications. Even
though, Grid technology has only seen a slow adoption in commercial appli-
cation domains such as engineering. We see two main reasons for this slow
adoption: On the one hand, the inherent complexity of current service-oriented

A Grid-Based Parallel Optimization Algorithm 133

Grid middleware systems is still prohibitive for everyday use by an application
domain expert who has no background in middleware development, Grid com-
puting or even computer science. On the other hand, an engineering solution to
a concrete problem is often a team effort undertaken by a number of involved
engineers, and other non-IT personnel. Current support for collaborative soft-
ware development is often limited to the use of CVS, email and conference
calls. Such offer only limited support to ease the entry of engineers not trained
in formal software development processes into the Grid.

As application the optimization of the Bridgman casting process of gas tur-
bine blades was chosen. The highest gas turbine efficiency is achievedtoday
with single-crystal (SX) or directionally solidified (DS) blading material, com-
monly casted in a Bridgman furnace (Figure 5). The Bridgman process is
controlled by time dependent parameters (withdrawal speed, heater tempera-
tures), which are ideal for the application of numerical optimization [6, 7, 8]. In
addition, the blade casting is the most expensive process during the manufac-
turing of a turbine. This reduction of production cost by optimization attracts
interest of commercial users in industry.

The paper is organized as follows: In the next section related work on Grid
Computing and non-linear optimization is briefly discussed. Afterwards the
Distributed Polytope algorithm is introduced used to solve a problem from
metal casting. A Grid-based Problem Solving Environment designed for the
solution of this kind of problems is presented in Section 4. A prototypical imple-
mentation of a Grid-based PSE is used to solve a problem from metal casting
as described in Section 5. Preliminary results of this optimization problem
followed by a summary and some areas for future work conclude the paper.

2. Related Work

Development of direct optimization algorithms for simulation-based opti-
mization is under research for several decades. Simplex-based methodswere
successfully applied to engineering problems and demonstrated their robustness
[15, 28]. Since the computation of objective and constraint function values of
the Simplex- (or Complex-) points are independent the development towardsa
parallel strategy is obvious and resulted in approaches like the Parallel Direct
Search (PDS, [24]) and Multidirectional Search (MDS, [25]). A subset of direct
methods can be subsumed under the class of Pattern Search algorithms (seee.g.
[14]) which are also easy to parallelize. The problem of handling infeasible
solutions within any optimization strategy can be solved by using e.g. penal-
ties (see e.g. [17]) or repair mechanisms as known from Genetic Algorithms,
which is the preferred approach in this case [21]. Repairing infeasible solutions
preserves implicit information on the search space and allows exploration of

134 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

regions in the search space maybe not covered by the search strategy of the
optimization method.

Supporting workflows – especially concerning the complex processes ofpre-
and postprocessing of simulation models and simulation-based optimization –
with software systems and especially service-oriented architectures realized
with web services have received considerable attention in both academia and
industry. Several other research projects try to cope with similar subjects in
related fields.

Supporting business processes with software systems and especially service-
oriented architectures realized with web services have received considerable
attention in both academia and industry. Several other research projects try to
cope with similar subjects in related fields.

The Geodise project (see [23, 29]) focuses on optimization, design andfluid
dynamics, especially in aerodynamics. Its main goal is to provide a distributed
problem solving environment (PSE) for engineers working in the mentioned
fields by utilizing e.g. MATLAB and adding Grid functionality to it. Although
first Geodise implementations were based on the Globus Toolkit version 2,
the core Geodise Toolbox is now part of the managed program of theOpen
Middleware Infrastructure Institute(OMII) [19].

A Grid-enabled problem solving environment for engineering design where
distributed parties are able to collaborate has been introduced by Goodyeret al.
[9]. The system makes use of the gViz Library [4] which allows collaborative
visualization on the Grid and provides the user to start Grid jobs on Globus
Toolkit based hosts. The main focus is put on collaborative application steering
and result visualization of given simulation problems.

The P-GRADE Portal (see [22]) aims to be a workflow-oriented compu-
tational Grid portal, where multiple clients can collaboratively participate in
design, development and execution of a workflow as well as multiple Grids
may be incorporated in the workflow execution. The P-GRADE Portal is based
on the Globus Toolkit version 2 for file transfer operations and job execution,
the workflow execution is done by a proprietary implementation. P-GRADE
neither uses Grid service and business process standards such as BPEL, nor does
the proposed collaborative editing approach support real time collaboration on
a process in an on-line meeting style.

The mentioned software systems are examples for the large variety of prob-
lem solving environments, collaborative Grid application systems and collab-
orative workflow development systems. However, none of the mentioned sys-
tems provides both a problem solving environment for engineering problems
as well as sophisticated support for the collaborative software development
process for Grid applications and their execution in a service-oriented Grid
environment. Collaboration support often relies on out-of-band collaboration

A Grid-Based Parallel Optimization Algorithm 135

and synchronization techniques such as exchanging e-mail or CVS like server
based communication.

3. The Distributed Polytope Algorithm

This following sections introduce the design of a distributed optimization al-
gorithm which is based on traditional, direct optimization methods, their parallel
extensions as well as aspects from the class of Genetic Algorithms. Beyond
the principle design of the algorithm presented here, a detailed performance
analysis regarding properties like parallel speedup and efficiency is presented
in [1, 2].

The proposed distributed direct optimization algorithm is based on the con-
cepts of both the simplex-based parallel direct search method [5] for bound-
constrained and the sequential Complex Box method ([3, 10]) for constrained
nonlinear optimization. Since constraint handling is of great importance, es-
pecially when taking into account the computational cost of each individual
evaluation of objective and constraint functions, the algorithm tries to retrieve
knowledge about the search space (feasible and infeasible regions) by inte-
grating infeasible solutions into the search process. This is done by repairing
infeasible solutions using a parallel algorithm for moving them into a feasible
region of the search space. The aspect of repairing infeasible solutions is taken
from Genetic Algorithms were this technique can be used to assure a feasible
population after recombination/mutation operations.

In contrast to earlier applications of the Distributed Polytope method to
simulation-based problems in engineering (see e.g. [11, 20]) this repair mecha-
nism is also applied to solutions from the polytope which were ‘out of bounds’
after the reflection operations in exploration instead of setting the violated bound
to the maximum/minimum allowed value. This way the approaches of using
penalty functions and repairing infeasible solutions as constraint handlingcan
be integrated in a problem formulation and solved by the Distributed Polytope
algorithm.

Additionally, the problem of finding the global optimum is tackled by a
hybrid approach combining the more global simplex/complex methods with
(parallel) local search strategies to overcome the weakness of relativelyslow
local convergence of simplex/complex methods. The basic idea of the algorithm
is the adaptation of the search strategy according to problem size and resources.
To achieve this, different parameters of the algorithm are provided determining
the degree of parallelism, i.e., the number of parallel constraint and objective
function evaluations per iteration and the multiplicity of search directions.

Both previously mentioned methods are based on geometrical operations
(reflection, contraction) performed on the vertices of an (at least)(n + 1)–
dimensional polyhedron in then–dimensional solution space of the optimiza-

136 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 1. Repair of the infeasible solution
vInfeasible using a parallel binary search along
the direction towards the weighted center of
gravity vCOG. The first attempt yields the in-
feasible solutionv1,Repair1, the second parallel
attempt the feasible solutionv1,Repair2.

tion problem. The basic parameters are the sizes ≥ n + 1 of the polytope (the
number of vertices), the number of verticese which are modified using reflec-
tion and contraction, and the ‘look ahead’ factor which controls the numberof
new verticesl generated by reflecting or contracting one vertex. Additionally,
the point on which the vertices are reflected can also be varied. The vertices
can be reflected on the best solution or the weighted center of gravity (vertices
weighted with the value of the objective function of the vertex). In Figure 2,
various alternatives are illustrated. Different settings of the aforementioned
parameters yield different search strategies by introducing additional search
directions. It can be seen that reflection on the best vertex restricts the search
to the direction of this vertex while reflection on the weighted center of gravity
allows searching in all directions given by the vertices of the polytope.

Figure 2. Reflected (vi,R) and contracted (vi,C) solutions when reflecting on a vertex (v1,
left) or on the center of gravity (vCOG, right).

The strategy used throughout the algorithm to repair infeasible solutions is
depicted in Figure 1. The characteristics of the feasible region obviously de-
termine the effort of repairing an infeasible vertex. In Figure 3, the scheme of
a line search in a search space with discontiguous feasible regions is shown.
The number of repair steps depends on the topology of the search spaceand
the process of the line search. Since the topology of the search space ofa gen-
eral simulation-based problem is unpredictable, a precise number of infeasible
solutions and repair steps is generally unavailable prior to the optimization.

The algorithm used for the solution of the subsequently presented optimiza-
tion problems comprises the following steps (n denotes the dimension of the
optimization problem,p the number of available workstations in the network):

A Grid-Based Parallel Optimization Algorithm 137

Figure 3. Scheme of a repair using a line search on a search space with unconnected infeasible
regions.

1 Initialization: The starting polytope consisting ofs > n + 1 randomly
generated solutions is built and the constraints are evaluated onp work-
stations in parallel. Infeasible solutions are repaired using a parallel
binary search directed towards the weighted center of gravity of feasible
solutions.

2 Exploration: The e ≤ s worst solutions are reflected on, respectively
moved towards the weighted center of gravity (reflection/contraction).
Each of these reflections is performedl times in parallel (see Figure 2)
yielding2·e·l new solutions. All solutions are evaluated onpworkstations
in parallel. Infeasible solutions are repaired using parallel binary search.
The s solutions for the polytope of the next iteration are selected from
these solutions.

3 Local Search: When the exploration is terminated (e.g., after the max-
imum number of iterations) a parallel local search starts from the best
solution. It evaluates in parallelp random solutions in an environment
with radiusr around the best solution. The radius is reduced if the local
search fails to find a better solution. Infeasible solutions are rejected in-
stead of being repaired as in the previous phases. The local search stops
after a given number of iterations or when the improvement is less than
a givenǫ.

This approach has been already successfully applied to several problems
from engineering domains other than metal casting: in groundwater manage-
ment [11] and in the aircraft industry [20]. Analyzes concerning speedup and
efficiency have been performed to evaluate scalability [1].

This schematic overview of the Distributed Polytope algorithm exhibits some
principle similarities between simplex-, complex- and polytope-based meth-
ods and Genetic Algorithms: Algorithms of both classes are based on a set

138 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

(‘population’ vs. ‘simplex/complex/polytope’) of solutions (‘individuals’ vs.
‘vertices’). In a single iteration a subset of elements is selected and some new
elements are calculated with special operators (‘recombination/mutation’ vs.
‘reflection/contraction’). All the elements of this set can be evaluated indepen-
dently from each other and therefore they are particularly suitable for distributed
computation. Nevertheless it must be remarked that large population (or poly-
tope) sizes—as typically used in Genetic Algorithms—should be carefully used
in simulation-based optimization since any of the objective and constraint func-
tion evaluations may take several hours. The number of simulations together
with the available degree of parallelism determines the overall runtime of the
optimization. Since the (heuristic) determination of a search direction by reflec-
tion/contraction as utilized in the Distributed Polytope algorithm seems to be a
good compromise between robustness and the necessary number of simulations
it is selected for further analysis and application to problems in engineering.
Simplex-based as well as Genetic Algorithms can be applied in distributed envi-
ronments such that they can utilize a larger number of computational resources
in order to speed up the overall optimization time (see e.g. [7]). Hence, a Grid-
based PSE like the one presented in the next section is useful for algorithms
from both classes.

4. A Grid-Based Environment for Simulation-Based
Optimization of Casting Problems

In this section, a simplified view on a sample application from an engineering
domain is presented to motivate the need for support in the distributed software
development process of a Grid software system for engineering applications.
The concrete use case comes from casting, a sub-domain of metal forming.
Only those parts relevant to the Grid are briefly sketched; they do not reflect
the entire complex field of metal forming. For more information regarding
the complexity involved in collaborative engineering particularly in the field of
metal forming and casting, the reader is referred to e.g. [18, 27].

In the metal casting industry, customers’ quality requirements, e.g. al-
lowed tolerances in a casting product’s geometry compared to the specifica-
tion, are constantly increasing. Therefore, the use of numerical simulation
and simulation-based optimization is gaining importance, since the creation
of prototypes is in many cases too expensive and prohibitively time consum-
ing. The benefit of this ‘virtual prototyping’ based on numerical simulation is
constrained by the accuracy (i.e., the difference between simulated and thereal
physical behavior of a casting process) of the simulation environment. Boththe
creation and use of the simulation as well as optimization application require
great expertise in the metal casting domain. Furthermore, applying numerical
simulation for this purpose introduces an extremely high demand for compu-

A Grid-Based Parallel Optimization Algorithm 139

tational capacity since a single—sufficiently precise—simulation run typically
lasts several hours up to days. Since many small and medium sized engineer-
ing enterprises are not capable of acquiring and maintaining high performance
computing resources, outsourcing of computationally demanding tasks is nec-
essary. Grid computing promises to offer the infrastructural components to
realize this outsourcing activity as easy as plugging into the electrical power
Grid. However, currently the implementation of a Grid application still requires
these firms to involve Grid specialists to adapt and maintain their applications
in a Grid environment.

To summarize, the utilization of numerical simulation in the casting industry
demands a variety of competencies:

knowledge about the physical properties of casting in industrial practice
(casting engineer)

modeling a casting engineering process for simulation (casting engineers
together with IT specialists)

adapting existing simulation software to the Grid (Grid specialists con-
sulting the casting engineers)

setting up and maintaining a simulation and/or optimization environment
for the engineers’ customers (Grid specialists, casting engineers and their
customers)

interpreting a simulation’s result (casting engineer and customer).

These requirements lead to a software platform which enables the integration
of the aforementioned competencies and resources during the software design
process. Since most of the possible users of simulation in the casting industry
are small to medium enterprises (SME), lacking at least one of the requirements,
the Grid software platform must be able to facilitate both renting computational
resources on demand as well as the collaborative involvement of Grid experts,
casting engineers and their customers.

As a concrete sample scenario, we introduce the engineering process of
collaborative development of a metal casting model. The following two services
form the most important building blocks for the overall problem solving process
to be deployed on a Grid system.

The Distributed Polytope Service. This service is an implementation of
the distributed polytope optimization algorithm as introduced in 3. During its
runtime, it requires an a priori unknown number of evaluations of both an objec-
tive function and corresponding constraint functions, in this case calculated by
the metal casting simulation software CASTS [13]. The service has to save its
state each time an evaluation request occurs, and it passes the data set which is

140 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

to be evaluated to the process execution engine instead of directly invoking the
simulation service. Considering these conditions, the service was implemented
by utilizing the web service resource framework (WSRF), which allows the cre-
ation of stateful web service resources. Beside a service operation which allows
a client to set necessary parameters needed by the polytope algorithm, the only
Grid service operationiterate(IterateRequest) takes care of starting and
restarting the algorithm at the appropriate position – according to its internal
state and according to the input data inside theIterateRequest data structure.
A resulting data set is returned immediately after invoking the operation, telling
the process execution engine if further evaluations are needed or if the polytop
algorithm reached a predefined stop condition.

Figure 4. Persons, competencies and their functions in the collaborative processof preparing
the software environment, simulating and optimizing a process model.

The CASTS Service. The main purpose of this service is to wrap the metal
casting legacy software CASTS as a Grid service. However, theCasts Service
does not only provide a service-wrapped version of CASTS, but it also takes
care of the following operations: It is capable of modifying the input model
of the casting process according to a set of parameters passed to the service.
This parameter set is the input received from the distributed polytop algorithm.
The service executes the CASTS legacy application on a number of different
execution platforms. In this case, a 128-node cluster computer with two 64-bit
AMD Opteron CPUs and 2 GB main memory per node was utilized, leading
the execution subsystem to incorporate the local resource manager Torque [26]
and the scheduling system Maui [16]. The execution state of a cluster job
is monitored and exposed by the Casts Service. The execution subsystem is
highly modularized so that the service also works on single workstations without

A Grid-Based Parallel Optimization Algorithm 141

local queuing/scheduling. The service also provides functionality to evaluate
the simulation result (which is done by CritCASTS, a legacy software system
bundled with CASTS) and determining the objective function value as well as
the constraint function values.

An overall view of the collaborative and distributed development scenariois
shown in Figure 4. The gray zones mark the network domains of the different
experts, they are geographically distributed, and their collaboration takesplace
via the shared and synchronized process model.

5. Case Study

5.1 Bridgman Casting Process: Model and Simulator

Turbine blades of modern aircraft and power plants are made of Ni-base
superalloy and are commonly produced by directional solidification (DS) or
single crystals (SX) in a Bridgman furnace (see Figure 5). A directional heat
flow is created by withdrawing the shell mould of the turbine blade out of the
heating zone into a cooling zone. The strong temperature gradient at the in-
terface between heating and cooling zone leads to a directional solidification.
Beside the simplicity of the Bridgman principle the optimization of all pro-
cess parameters is complex for real blade geometries [8]. Technically relevant
casting parameters, such as heater’s temperature and withdrawal velocity, are
currently determined by series of expensive experiments.

Figure 5. Schematic description of a Bridg-
man furnace used for directional solidification

The hybrid FE/CV programm CASTS (Computer Aided Solidification Tech-
nologieS) [13], is used to predict numerically the transient temperature response
during the Bridgman casting process. CASTS calculates transient temperature
distributions in mold, core and alloy, taking into account both latent heat re-
lease as a function of fraction solid, and heat transfer resistance at material

142 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

interfaces. The main output is the temperature and heat flux field. Based on
this data, temperature gradients and defect maps can be calculated for each set
of input process parameters, which are the basis for the evaluation of theturbine
blade.

5.2 Optimization Variables and Target Function

Goal of the optimization was an improved withdrawal profile for the Bridg-
man process of a cluster of simplified turbine blades. The whole withdrawal
process is parameterized by eleven bounded design variables representing the
withdrawal velocities at different times.

The simulation results were evaluated applying four criteria given as follows:

the probability of surface defects formation, so called freckles. The
freckle probability was estimated based on the temperature gradients
calculated by the FEM-simulator;

the degree of curvature of the solidification front. The solidification front
should be as horizontal as possible in order to achieve a high quality
directional solidification.

the ratio G/v (temperature gradient over solidification speed) must be
greater than a critical value. At this critical value the transition from
the desired columnar dendritic growth to an undesired equiaxed grain
structure takes place.

the process time.

In order to achieve a better combination of the four criteria, a new formulation
has been developed for the first three optimization criteria, the freckle proba-
bility, the curvature of the solidification front and the G/v ratio. These criteria
are evaluated by counting the number of ‘bad’ nodes, i.e., nodes of the finite
element mesh with freckle probability above zero, a curvature of the solidifi-
cation front above 20◦or a G/v ratio below 600 Ks/cm2. The criteria can be
tuned by changing the limits (0,20◦, 600 Ks/cm2). A great advantage of this
new criteria formulation is that these three criteria can now be easily combined
due to there similar definition by the number of bad nodes.

As an objective function the overall process time has to be minimized. The
constraints are integrated into the objective function by using a two-stage ob-
jective function: As long as one constraint is not fulfilled the objective function
is the sum of the number of bad nodes and the process time in seconds. If the
latter is below 5,000 s a constant value of 5,000 is used to focus the optimiza-
tion to the fulfillment of the other constraints. If all constraints are fulfilled, the
simulation time in seconds becomes the objective function and the optimization
searches for a further reduction of the process time.

A Grid-Based Parallel Optimization Algorithm 143

This handling of constraints is similar to the use of penalty functions. In
contrast to the usual approach (adding a penalty term to the objective function
and solving an unconstrained problem) in this context the objective functionin-
tegrates a kind of penalty terms and infeasible solutions (i.e., solutions violating
bounds on the design variables) are although repaired.

5.3 Results

As a first step towards a complete Grid-based environment for simulation-
based optimization of casting processes, the Distributed Polytope algorithm
was applied in a parallel testbed (up to 300 CPUs available in a cluster system)
to the 11-dimensional test problem. The essential parameters were set toe =
10, l = 3 yielding 2el = 60 newly computed solutions per iteration, using a
polytope sizes = 2n = 22. e andl were set to the respective values to assure
a simultaneous search in many directions (e = 10 directions per exploratory
step) but with limited (l = 3) ‘look ahead’ and hence a limited extent of the
polytope.

In Figure 6 the results of the Distributed Polytope algorithm running on 20
CPUs are compared to those from Metamodel Assisted Derandomized Evolu-
tion Strategy (MADES) utilizing 4 CPUs. The MADES was optimized over
several years for the optimization of such engineering processes. A detailed
description can be found in [6] and latest results were published in [12].It
can be seen that the results (7,447 from the Distributed Polytope vs. 7,513
from MADES) as well as the trajectories of the objective function values dur-
ing the optimization runs are comparable. Both algorithms are not able to
improve beyond a certain quality of the objective function which is reached by
MADES substantially earlier (t = 15, 000 s) than by the Distributed Polytope
(t = 21, 000 s). It must be analyzed whether the switching between explo-
ration and termination phase can be adjusted in order to avoid this behavior.
It must be noted that there was no tuning concerning the parameter set of the
Distributed Polytope and the shown results were computed in a single run. In
order to validate the solution quality additional runs must be performed. Fur-
thermore, parameter studies for the main parameterse andl as well as the degree
of parallelism must be performed to evaluate the behavior of the algorithm in
detail.

6. Conclusions

In this paper, a grid infrastructure is introduced, which simplifies the use
of distributed, parallel numerical optimization by bioinspired and related op-
timization strategies. As showcase the optimization of an industrial casting
process was chosen. Based on the Grid Computing toolkit GLOBUS, Grid
Services for the Distributed Polytope optimization algorithm and the casting

144 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

7200

7400

7600

7800

8000

8200

8400

8600

8800

9000

0 5000 10000 15000 20000 25000 30000 35000 40000

time [s]

O
b

je
c

ti
v

e
 f

u
n

c
ti

o
n

 v
a

lu
e

Polytope (20 CPUs) MADES (4 CPUs)

Figure 6. Comparison of the Distributed Polytope algorithm (using 20 CPUs) with the MADES
algorithm (running on 4 CPUs) when solving a problem based on the CASTSsimulation system.

simulation package CASTS were developed and tested. This Grid Service-
based environment was applied to solve a test problem from metal casting.

A Distributed Polytope Algorithm was used as optimization strategy. The
algorithm integrates aspects from traditional deterministic sequential simplex-
based methods, parallel search strategies and non-deterministic bioinspired
methods like Genetic Algorithms. This combination of approaches was used
for the design of the algorithm in order to satisfy requirements concerning math-
ematical properties and runtime behavior specific for solution processes inthe
simulation-based optimization of problems from engineering, in this case from
metal casting.

As first application the optimization of process parameter of casting a ge-
ometrically simplified gas turbine blade in a Bridgman process was selected.
The results were compared to the distributed evolutionary strategy MADES and
demonstrate the applicability of a scalable distributed optimization algorithm
integrated into a distributed, Grid-based infrastructure for numerical optimiza-
tion of industrial processes.

As a next step different degrees of parallelism as well as different settings
for other parameters of the Distributed Polytope algorithm will be evaluated
concerning quality of result and runtime of the optimization. This will be the
basis for a detailed comparison to other optimization strategies. From the soft-
ware engineering point of view the integration of the complete workflow from

A Grid-Based Parallel Optimization Algorithm 145

modeling, calibration of the model to optimization is planned to be integrated
within the Grid-based environment.

Acknowledgements

Parts of the work presented in this paper are supported by a grant fromthe
German Ministry of Education and Research (BMBF) (D-Grid initiative, In-
Grid project).

References

[1] T. Barth, B. Freisleben, M. Grauer, and F. Thilo. Distributed solutionof optimal hybrid
control problems on networks of workstations. InProc. IEEE International Conference
on Cluster Computing (CLUSTER’2000), pages 162–169, Chemnitz, Germany, 2000.

[2] T. Barth, B. Freisleben, M. Grauer, and F. Thilo. A scalable algorithm for the solution of
simulation-based optimization problems. InProc. International Conference on Parallel
and Distributed Programming Techniques and Applications (PDPTA’2000), pages 469–
475, Las Vegas, Nevada, USA, 2000.

[3] M. Box. A new Method of Constrained Optimization and a Comparison withother Meth-
ods.Computer J., 8:42–52, 1965.

[4] K. Brodlie, D. Duce, J. Gallop, M. Sagar, J. Walton, and J. Wood. Visualization in Grid
Computing Environments. InProc. IEEE Visualization, pages 155–162, Austin, Texas,
USA, 2004.

[5] J. Dennis and V. Torczon. Direct search methods on parallel machines.SIAM J. Optim.,
1:448.474, 1991.

[6] M. Emmerich and J. Jakumeit. Metamodel-assisted optimisation with constraints: A case
study in material process design. InEUROGEN 2003, Barcelona, Spain, 2003.

[7] M. Emmerich, M. Schallmo, and T. B̈ack. Industrial applications of evolutionary algo-
rithms: A comparison to traditional methods. In I. Parmee et al.:Optimisation in Industry,
Springer, Berlin, pages 304–314, 2001.

[8] M.S.G. Laschet and N. Hofmann. Optimization tools for casting processes. InProc. 7th
Conference on Casting, Welding and advanced Solidification, pages 1095–1102, San
Diego, USA, 1998.

[9] C. Goodyer, M. Berzins, P. Jimack, and L. Scales. A Grid-enables Problem Solving Envi-
ronment for Parallel Computational Engineering Design.Adv. Eng. Software, 37(7):439–
449, 2006.

[10] M. Grauer.Verfahrenstechnische Berechnungsmethoden. Chapter Optimierung verfahren-
stechnischer Systeme, pages 127–129, Verlag Chemie, 1987.

[11] M. Grauer, T. Barth, S. Kaden, and I. Michels. Decision support and distributed computing
in groundwater management. InWater Industry Systems: Modelling and Optimization
Applications, pages 23–38, 1999.

[12] J. Jakumeit, M. Emmerich, and F. Hediger. Inverse modeling andnumerical optimization
of heater temperatures in a bridgman process. InProc. of Modeling of Casting, Welding
and Advanced Solidification Processes XI, pages 1019–1026, 2006.

[13] G. Laschet, J. Neises, and I. Steinbach. Micro- Macrosimulation of casting processes.
4ieme école d’́et́e de Mod́elisation nuḿerique en thermique, page 1.42, 1998.

146 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[14] R. Lewis and V. Torczon. Pattern search algorithms for bound constrained minimization.
SIAM J. Optim., 9(4):1082–1099, 1999.

[15] R. Lewis, V. Torczon, and M. Trosset. Direct search methods:Then and now.J. Comput.
App. Math., 124(1-2):191–207, 2000.

[16] Maui cluster scheduler.http://www.clusterresources.com/pages/products/
maui-cluster-scheduler.php.

[17] Z. Michalewicz and D. B. Fogel.How to solve it: modern heuristics. 2nd edition, Springer,
2004.

[18] T. Nguyen and V. Selmin. Collaborative Multidisciplinary Design in Virtual Environments.
In Proc. 10th International Conference on CSCW in Design, pages 420–425, Nanjing,
China, 2006.

[19] Open Middleware Infrastructure Institute (OMII).http://www.omii.ac.uk/.

[20] G. Schneider, F. van Dalen, T. Barth, H. Hörnlein, and M. Stettner. Determining wing
aspect ratio of a regional aircraft with multidisciplinary optimisation. InProc. CEAS
Conference on Multidisciplinary Aircraft Design and Optimization, Cologne, Germany,
2001.

[21] M. Schoenauer and S. Xanthakis. Constrained ga optimization. InProc. 5th International
Conference on Genetic Algorithms, pages 573–580, Urbana-Champaign, IL, USA, 1993.

[22] G. Sipos and P. Kacsuk. Collaborative Workflow editing in the P-GRADE. InProc. Inter-
national Scientific Conference microCAD 2005, Miskolc, Hungary, 2005.

[23] W. Song, Y.-S. Ong, H.-K. Ng, A. Keane, S. Cox, and B. Lee.A service-oriented ap-
proach for aerodynamic shape optimization across institutional boundaries. InProc. 8th
International Conference on Control, Automation, Robotics and Vision, Kunming, China,
2004.

[24] V. Torczon and M. Trosset. From evolutionary operation to parallel direct search: pattern
search algorithms for numerical optimization, 1998.

[25] V. J. Torczon. ulti-Directional Search: A Direct Search Algorithmfor Parallel Machines.
PhD thesis, Housten, TX, 1989.

[26] Torque resource manager.http://www.clusterresources.com/pages/products/

torque-resource-manager.php.

[27] S. Woyak, H. Kim, J. Mullins, and J. Sobieszczanski-Sobieski. A Web Centric Archi-
tecture for Deploying Multi-Disciplinary Engineering Design Processes. In Proc. 10th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, New
York, USA, 2004.

[28] M. Wright. Direct search methods: Once scorned, now respectable, 1995.

[29] G. Xue, W. Song, S. Cox, and A. Keane. Numerical Optimization asGrid Services for
Engineering Design.J. Grid Comput., 2(3):223–238, 2004.

MAINTAINING SOLUTION DIVERSITY IN A
HYBRID EVOLUTIONARY ALGORITHM FOR
EPR-BASED SPIN LABEL CHARACTERIZATION
OF BIOSYSTEM COMPLEXITY

Aleh A. Kavalenka, JanežStrancar
Solid State Physics Department

Jǒzef Stefan Institute, Ljubljana, Slovenia

{oleg.kavalenka,janez.strancar}@ijs.si

Abstract The paper presents new ideas of maintaining population diversity in a hybrid
evolutionary algorithm used for spectrum parameter optimization when charac-
terizing the complexity of biological systems. Recent modification of the evolu-
tionary algorithm (EA) by introducing the ‘shaking’ operator enabled to maintain
solution diversity and speed-up calculations by factor of 5–7.

Keywords: Diversity, Hybrid evolutionary algorithm, Optimization, Shaking

1. Introduction

Preserving the genetic diversity throughout evolutionary algorithm genera-
tions is a key point to make the algorithm capable of revealing multiple solutions
in a complex multi-dimensional search space [10].

We apply an evolutionary optimization algorithm to study the complexity,
one of the basic properties of natural biological systems [6, 15]. Qualitatively
the complexity can be described by the number of (biochemical or biophysical)
patterns/solutions that coexist in a system. A pure system can be character-
ized only by one solution, whereas in complex systems several distributions of
solutions may exist.

Electron paramagnetic resonance (EPR) spectroscopy in combination with
nitroxide spin labeling (SL) has proven to be a powerful technique for the
exploration of heterogeneity and motion in biological systems [3]. However,
to determine the picture of the actual complexity of the biological system,
a special methodology that includes advanced spectrum analysis and inverse-
problem solving techniques has to be applied [16]. Such an analysis is based on
mathematical modeling, spectrum fitting, and spectral parameter optimization.

147

148 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

To present multiple results, a special method of solutions condensation called
GHOST was developed [15]. GHOST incorporates solution density filtering,
χ2 goodness filtering, solution-space slicing, and domains determination.

This advanced approach named Hybrid Evolutionary Optimization (HEO)
was shown to be powerful enough to study complex heterogeneous systems
although the computational demand appeared to be an obstacle for wider usage
of the method. To obtain a reliable result, the HEO procedure has to be executed
200 times. Each particular run implies 100 generations with population size of
300 candidate solutions. Since an average operator performs up to 10 spectrum
calculations, HEO on average spends 60 million spectrum calculations. As a
single spectrum calculation takes around 10 ms on a 1 GFLOPS processor,this
results in 200 hours of computer time spent for a single characterization. Our
aim was to improve the solution diversity of a single HEO run by maintaining
genetic diversity throughout the HEO routine.

2. Theory and Methodology

2.1 EPR Spectrum Analysis

The scheme of the spectrum analysis and inverse-problem solving is pre-
sented in Figure 1. Since EPR spectrum modeling has been already discussed
[16], we only present spectral parameters that are involved in calculations.
Taking into account the superposition of motional/polarity patterns, the set of
parametersϑ, ϕ, τc, W, pA, P rot is expanded for the number of spectral compo-
nentsNc. In addition, there areNc−1 weightsd of these spectral components.
Altogether, there are7Nc − 1 spectral parameters, which have to be resolved
by the optimization routine. The resolution limit of SL-EPR assumes up to 30
parameters and this allows at most 4 spectral components.

Figure 1. EPR spectrum analysis scheme.

Maintaining Solution Diversity in a Hybrid Evolutionary Algorithm 149

The goodness of fit (objective function) is the reducedχ2 criterion:

χ2 =
1

N − p

N∑

i=1

(yexp
i − ysim

i)2

σ2
, (1)

whereyexp andysim are the experimental and simulated data, respectively,σ is
the standard deviation of the experimental points,N is the number of spectral
points, andp is the number of model parameters.

2.2 Hybrid Evolutionary Optimization

HEO is a combination of the Genetic Algorithm (GA) and the Local Search
Downhill-Simplex algorithm. The optimization routine starts with a random
initialization of solutions population and continues with the tournament se-
lection and application of genetic operators for 100 generations. The 3-point
crossover with probability of 0.7 and uniform mutation with probability of 0.01
are applied together with certain knowledge-based operators and local improve-
ments (performed with Downhill-Simplex [5] with probability of 0.002). The
elite set (2 % of the population size) is used to preserve the best found individ-
uals. One HEO run assumes 100 generations of GA. GA population size is 300
individuals. In 200 HEO runs a group of 200 best parameter sets (bestfrom
each run) is accumulated and then filtered, grouped, and graphically presented
with the GHOST condensation algorithm.

Parameter Search Space. The optimization process searches for the minima
in the landscape of the parameter search space, which may contain both local
and global minima. Our particular requirement is that the optimization routine
should be able to find global minimum(a), which can be of different types, i.e.,
well-defined minima of type B or a flat valley minima of type A (see Figure 2).
The convergence to the minima of type B (discrete problems) has to be provided
as well as population diversity has to be maintained to enable the optimization
procedure to fully reveal the minimum valleys (in case of continuous problems)
already in a single run.

Figure 2. Schematic presentation of one
dimension of the parameters search space and
the effect of the local mutation procedure re-
sponsible for fine-tuning.

150 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Maintaining the Population Diversity. Simple genetic algorithm (SGA)
[7] is suitable for finding the optimum of a unimodal function in a bounded
search space. However, both experiments and analysis show that the SGA
cannot find the multiple global maxima of a multimodal function [7, 12, 13]
or a function with a flat global minimum, which is an extreme limit of the
multimodal function. This limitation can be overcome by mechanisms that
create and maintain several subpopulations within the search space, referred to
as ‘niching methods’: sequential niching methods [1]; parallel niching methods
(sharing [8], crowding [12], clearing [13] etc.); speciation methods [11, 14],
clustering [17]; multi-population methods [2]). Another way to find multiple
optima is to make several runs of an ordinary GA. In each run the GA converges
to different optima. Thus, several optima are found [4]. This strategy was
initially implemented in HEO-based approach. Since the methods that assume
creating subpopulations do not match with our specific problem, we chose the
sharing parallel niching method for maintaining diversity within a single run.

Sharing. Sharing [8, 12] requires that fitness is shared as a single resource
among similar individuals in the solutions population. The fitness sharing
method modifies the search landscape by changing the fitness function, i.e., the
value ofχ2, in densely-populated regions. As a result, the population becomes
better distributed in the search space. The fitness functionf is modified as
follows:

f ′(j) =
f(j)∑n

i=1 sh(d[i, j])
, (2)

where the sharing functionsh is a function of distanced[i, j] between two
population elements. It returns ‘1’ if the elements are identical and ‘0’ if they
cross some threshold of dissimilarity, specified by constantσshare:

sh(x) =

{
1− (x

σshare
)α if x < σshare,

0 otherwise.
(3)

Hereα is a constant, which regulates the shape of the sharing function. Fitness
sharing is demonstrated in Figure 3(a).

Shaking. The second proposed approach for improving the solution diversity
is ‘shaking’ operator. The shaking operator provides small Gaussian-like devia-
tions to the spectral parameters before the crossover operator is applied(see Fig-
ure 3(b)). The error bars indicate the width of Gaussian probability distribution
of these deviations. The standard relative uncertainties of the spectral param-
eters{ϑ, ϕ, τc, W, pA, prot, d} are{0.02, 0.02, 0.04, 0.035, 0.035, 0.04, 0.02},
respectively, which follow average uncertainties that are found empirically for
these parameters within the simulation model.

Maintaining Solution Diversity in a Hybrid Evolutionary Algorithm 151

Figure 3. Schematic presentation of population diversity improving approaches: a) fitness
sharing function; b) Gaussian shaking operator.

2.3 Projection Principle and GHOST Condensation

Large amount of solutions that come out from the multiple HEO runs is
condensed and grouped together to construct a discrete or quasi-continuous de-
scription of the system. After solution filtering according to the local solution
density and goodness of fit, the GHOST condensed results are presented in
2D cross-sections{S-τc, S-W, S-pA} (see Figure 4). The color of any point
(solution) in GHOST diagram is defined by RGB specification (where the in-
tensity of each color component (red, green, blue) represents the relative value
of the spectral parametersτc, W , pA in their definition intervals{0–3 ns},
{0–4 G}, and{0.8–1.2}, respectively). This technique enhances the possibility
to distinguish groups of solutions, and to explore optimized values of model
parameters.

Figure 4. An example of the GHOST presentation (Spectra of spin labeled horse neutrophils
membranes were fitted with EPRSIM BBW software and characterized using GHOST conden-
sation procedure. RGB (red, green, and blue) color of any solution point codes the relative values
of parametersτc, W , andpA in their definition intervals.

The most important property of the GHOST algorithm is that there is no
need to define the complexity (the number of different motional patterns) in
advance – it comes as the result from the GHOST condensation and graphical
presentation.

152 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

2.4 Evaluation Criteria

To judge the success of the modification of the HEO algorithm, the follow-
ing criteria were selected: GHOST diagram quality (domains determination,
parameters distribution); minimal fitness achievedχ2

min, and fitness deviation
σ(χ2), that is 40 % of all selectedχ2 values; HEO runs contribution histograms;
and maximal detected solution densityρmax. To check the universality of the
new algorithm we analyzed several types of EPR spectra: experimental (from
membranes and membrane proteins) and synthetic (discrete and continuous).

3. Results and Discussion

Multiple Runs. The poverty of the final solution diversity becomes obvious if
we reduce the number of HEO runs from 200 to 20 increasing the contribution
of single run from 1 to 10 on average. The results for a typical experimental
spectrum are shown in Figure 5, where the GHOST diagram (Figure 5(b))
and runs contribution histogram (Figure 5(c)) are compared with the initial
GHOST diagram based on 200 runs (Figure 5(a)). The GHOST diagrambased
on 20 runs (Figure 5(b)) incorrectly describes the experimental system.Only a
few HEO runs (first, seventh, ninth and seventeenth) contribute to the GHOST
presentation (Figure 5(c)), whereas some other runs (third, fourth, tenth, etc.)
do not contribute at all. Higherχ2

min value (see Table 1) and uneven HEO runs
contribution histogram corresponds to low solution diversity and to incorrect
solutions domains determination (Figure 5(b)). Higher solution density (see
ρmax in Table 1) indicates solution crowding in the parameter search space.

Figure 5. Characterization of spin labeled biological membrane:S-pa GHOST cross-section:
a) 200 HEO runs, one best solution is taken from a single run; b) 20 HEO runs, on average 10
solutions are taken from each run; c) HEO runs contribution histogram for the case of 20 runs
(number of runs is shown along the x-axis and runs contribution numbern along the y-axis).

Unsatisfactory result was also achieved for a synthetic 15-component spec-
trum that simulates a quasi-continuous distribution of spectral parameters (see
Table 2 and Figure 6(b)). Poorly populated GHOST arises from the veryuneven

Maintaining Solution Diversity in a Hybrid Evolutionary Algorithm 153

Table 1. Optimization parameters after 200 and 20 runs for the membrane spectrum.

Criteria 200 runs 20 runs

χ2
min 3.4 4.09

σ(χ2) 2.04 1.87
ρmax 64.2 71.5

HEO runs contribution caused by solution crowding.

Figure 6. Comparing the results of different multi-run HEO by GHOST diagrams andHEO
runs contribution histograms: a) 200 runs of original HEO; b) 20 runs of the original HEO; c)
20 runs of the modified HEO with the fitness sharing; d) 20 runs of the modified HEO with the
shaking operator.

Table 2. Optimization parameters after running various variants of multi-run HEO (see also
caption to the Figure 6).

Criteria 200 runs 20 runs 20 sharing 20 shaking

χ2
min 1.17 1.22 1.65 1.24

σ(χ2) 0.9 0.4 1.29 0.9
ρmax 69.5 75.7 69 66.1

Sharing. The sharing approach was tested on a 15-component spectrum. The
corresponding GHOST diagram better resembles the initial GHOST (compare
Figures 6(c) and 6(a)). HEO runs contribution histogram (Figure 6(c)) is more
even in comparison with the previous results. However, the distribution ofχ2

154 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

is worse than the initial (compareχ2
min and distribution widthσ(χ2) in ‘200’

and ‘20 sharing’ columns of Table 2). Additional testing [9] showed that 20
HEO runs with fitness sharing are not enough to achieve the initial quality of
systems characterization.

Grid Problem and Shaking. The cause of the solution crowding problem was
found as the shortcoming of the three-point crossover GA operator. ‘Genetic
material’, related to the promising parameters, copies and spreads in the pop-
ulation among individuals. After 20–30 generations, the population forms a
‘grid’ in the search space (see Figure 7) causing the loss of population diversity.

Figure 7. Demonstration of the ‘grid’ problem for three cross-sections of the search space.

Implementation of the shaking operator enabled the HEO algorithm to over-
come the solutions crowding and to increase the population diversity in a single
run (Figure 8).

Figure 8. Single HEO run GHOSTs (population size 600): a) initial version of the algorithm
with crowding problem – several solutions are crowded in different regions; b) version with
shaking that maintains diversity – those solutions that were crowded before now spread over the
flat minima region.

Maintaining Solution Diversity in a Hybrid Evolutionary Algorithm 155

Modified with the shaking operator, HEO needs only 20 runs instead of 200,
achieving the same quality of the systems characterization. This can be proven
by comparing the quality of the GHOST diagrams (Figures 6(a) and 6(d)), by
HEO runs contribution histogram (Figure 6(d)), and by good distribution of χ2

(Table 2).
New algorithm enhanced with the shaking operator was further tested on

several experimental and synthetic spectra in order to cover a wide range of
possible systems related to discrete and continuous problems. The results of
the characterization of four different examples [9] proved the capabilityof the
modified HEO algorithm of resolving wide range of EPR spectroscopic data.

4. Conclusion

Maintaining solutions population diversity in EA by introducing a novel
shaking operator reduced the computational demand of the original multiple
HEO approach. Extensive testing of the modified multi-run HEO on various
spectra that represent a wide range of possible applications proved its high effi-
ciency. New modification of the optimization algorithm succeeded to keep high
quality of system characterization, thereby considerably reducing the computa-
tional time by a factor of 5–7. With this successful modification, the application
of advanced EPR spectrum analysis to complex biosystems, such as biological
membranes and membrane proteins, became much more feasible.

Acknowledgment

We thank Dr. Bogdan Filipič for valuable discussions and advices about the
extensions of the hybrid evolutionary algorithm.

References

[1] D. Beasley, D.R. Bull, and R.R. Martin. A Sequential Niche Technique for Multimodal
Function Optimization.Evol. Comput., 1(2):101–125, 1993.

[2] M. Bessaou, A. Ṕetrowski, and P. Siarry. Island model cooperating with speciation for mul-
timodal optimization. InProc. 6th International Conference on Parallel Problem Solving
From Nature, pages 437–446, Paris, France, 2000.

[3] L. Columbus and W.L. Hubbell. A new spin on protein dynamics.Trends Biochem. Sci.,
27(6):288–295, 2002.

[4] P.J. Darwen and X. Yao. Every Niching Method has its Niche: FitnessSharing and Implicit
Sharing Compared.Lect. Notes Comput. Sc., 1141:398–407, 1996.

[5] B. Filipi č and J.̌Strancar. Tuning EPR spectral parameters with a genetic algorithm.Applied
Soft Computing, 1(1):83–90, 2001.

[6] B. Filipi č and J.̌Strancar. Evolutionary Computational Support for the Characterizationof
Biological Systems. In G.B. Fogel and D.W. Corne, editora,Evolutionary Computation in
Bioinformatics, pages 279–294, Morgan Kaufmann Publishers, San Francisco, 2002.

156 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[7] D.E. Goldberg.Algorithm in Search, Optimization and Machine Learning. Addison Wesley,
Reading, USA, 1989.

[8] D.E. Goldberg and J. Richardson. Genetic algorithms with sharing for multimodal function
optimization. InProc. 2nd International Conference on Genetic Algorithms, pages 41–49,
1987.

[9] A.A. Kavalenka, B. Filipǐc, M.A. Hemminga, and J.̌Strancar. Speeding up a genetic
algorithm for EPR-based spin label characterization of biosystem complexity. J. Chem. Inf.
Model., 45(6):1628–1635, 2005.

[10] Q.Z. Kenny and L. Ziwei. Population diversity in permutation-basedgenetic algorithm. In
Proceedings of the 15th European Conference on Machine Learning (ECML 2004), pages
537–547, Pisa, Italy, 2004.

[11] J.P. Li, M.E. Balazs, G.T. Parks, and P.J. Clarkson. A species conserving genetic algorithm
for multimodal function optimization.Evol. Comput., 11(1):107–109, 2003.

[12] S.W. Mahfoud. Niching Methods for Genetic Algorithms. Ph.D. thesis, University of Illi-
nois at Urbana-Champaign, Urbana, 1995.

[13] A.A. Pétrowski. Clearing procedure as a niching method for genetic algorithms.In Proc.
IEEE International Conference on Evolutionary Computation (ICEC 1996), pages 798–
803, Nagoya, Japan, 1996.

[14] W. Spears. Simple Subpopulation Schemes. InProc. 3rd Annual Conference on Evolution-
ary Programming, pages 296–307, 1994.

[15] J. Štrancar, T. Koklǐc, Z. Arsov, B. Filipǐc, D. Stopar, and M.A. Hemminga. Spin Label
EPR-based Characterization of Biosystem Complexity.J. Chem. Inf. Model., 45(2):394–
406, 2005.

[16] J. Štrancar, M.Šentjurc, and M. Schara. Fast and accurate characterization of biological
membranes by EPR spectral simulations of nitroxides.J. Magn. Reson., 142(2):254–265,
2000.

[17] F. Streichert, G. Stein, H. Ulmer, and A. Zell. A Clustering Based Niching Method for
Evolutionary Algorithms.Lect. Notes Comput. Sc., 2723:644–645, 2003.

DGPF – AN ADAPTABLE FRAMEWORK FOR
DISTRIBUTED MULTI-OBJECTIVE SEARCH
ALGORITHMS APPLIED TO THE GENETIC
PROGRAMMING OF SENSOR NETWORKS

Thomas Weise, Kurt Geihs
Distributed Systems Group

University of Kassel, Germany

{weise,geihs}@vs.uni-kassel.de

Abstract We present DGPF, a framework providing multi-objective, auto-adaptive search
algorithms with a focus on Genetic Programming. We first introduce a Common
Search API, suitable to explore arbitrary problem spaces with differentsearch
algorithms. Using our implementation of Genetic Algorithms as an example,
we elaborate on the distribution utilities of the framework which enable local,
Master/Slave, Peer-To-Peer, and P2P/MS hybrid distributed search execution.
We also discuss how heterogeneous searches consisting of multiple, cooperative
search algorithms can be constructed. Sensor networks are distributedsystems of
nodes with scarce resources. We demonstrate how Genetic Programming based
on our framework can be applied to create algorithms for sensor nodesthat use
these resources very efficiently.

Keywords: Auto-adaptation, Distributed genetic algorithms, Genetic programming, Heuris-
tic, Randomized, Search algorithms, Sensor networks, Sensor nodes

1. Introduction

Find an election algorithm for a given sensor network with minimum in-
struction count which minimizes energy consumption due to transmissions.
Construct the best aerodynamic shape of an airplane wing while maximizing
its stability using the minimal amount of material. Many search algorithms
can be applied to solve such complex problems [16]. There exist artificial ap-
proaches like Tabu Search or randomized Hill Climbing, physically inspired
ones like Simulated Annealing as well as methods of biological origin like
Genetic Algorithms.

For most problems it is not a priori possible to decide which algorithm and
parameter configuration will perform best. Practical experiences oftenapply

157

158 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

to a certain problem only and cannot be generalized. To implement different
search algorithms or to customize multiple search libraries however is normally
costly and time-consuming.

The performance of search algorithms can often be improved by distribut-
ing the computational load to a network of computers. If parameters like the
mutation-rate in Genetic Algorithms or the length of the Tabu-List in Tabu
Search are adapted dynamically, the performance may increase further [2].

When performing Genetic Programming of real algorithms with its usually
very rugged fitness landscapes, a search framework taking advantage of all these
improvement options is needed.

In this paper we introduce a Common Search API of our DGPF framework
[7, 17], allowing the evaluation of arbitrary problem spaces to be performed
with different or even multiple cooperating, distributed, auto-adaptive search al-
gorithms. We will furthermore show the utility of our framework for automated
algorithm creation for sensor networks by evaluating an experiment.

2. Related Work

In the past there have been successful applications of other search method-
ologies as back-ends of GA [9, 10, 14]. Meta-Heuristics like the one introduced
by Bachelet and Talbi [1] already confirmed that the cooperation of different,
hierarchical coupled search algorithms provides remarkable advantages. Yao
has melted GA and Simulated Annealing together to create a new, improved
version, the Genetic Annealing [20]. Our framework extends such ideasby
integrating arbitrary search algorithms to cooperatively work together on one
problem.

O’Reilly and Oppacher have suggested replacing GA as foundation for GP
[13] with other heuristics like Simulated Annealing and Stochastic Iterated Hill
Climbing. Applying such methods is simplified by our framework a lot. The GP
layer or any other given Problem Space Implementation can rest on the Common
Search API, which internally might run any search algorithm implemented.

Most of the research stated above does not concern multi-objective optimiza-
tion [16]. Our search API on the other hand provides building blocks which
ease the construction of such algorithms.

A lot of work has been done on the self-adaptation of search algorithms [2, 3].
If a search heuristic is implemented using our framework, it will automatically
be equipped with this ability too. It may use different strategies that can even
be exchanged at runtime.

3. Framework Structure

The core of our framework is formed by a Common Search API, which de-
fines some classes and prototypes to be used. This API can be accessedfrom

DGPF 159

two sides (see Figure 1): On the one side different search algorithms canbe im-
plemented, providing the functionality needed to perform randomized heuristic
searches. The user, on the other side, has to implement the functionality needed
to explore the problem space and, if needed, to simulate possible solutions. In
the style of multi-objective Genetic Algorithms, she may use different fitness
functions to evaluate the simulated solution candidates. The user-defined code
can then be used in conjunction with any search algorithm made available by the
framework. Hence, a direct comparison and selection of the optimal approach
for a given problem has become straightforward.

Figure 1. The structure of the DGP Framework’s search abilities.

Figure 2. The control loop FSM.

3.1 The Common Search API

The search API introduces four essential tools and abstractions: a finite
state machine which governs the control loop shared by the search algorithms,
means for the user to plug in fitness functions and problem domain specific
functionality, basic auto-adaptation support, and distribution utilities.

160 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Search algorithms in general, if bio-inspired, randomized, or otherwise heuris-
tic, can be performed using the finite state machine presented in Figure 2 as
control loop. They can be divided into single search steps representingfor
example a generation in Genetic Algorithms, or a state transition in Simulated
Annealing. After each step the state information, for instance containing the
best individual found in the search and its fitness values, will be updated. Sta-
tus events will now be generated to inform the application using the search
algorithm. To limit the runtime of the search, the user may provide certain
thresholds, like a maximum search time, a maximum update count, optimum
fitness values, and so on, in order to define when the search should be halted
automatically. If these criteria are not met, the search parameters can auto-adapt
to the new situation and the next step will be initiated. To investigate a custom
problem space, the user has to plug in the "Problem Space Implementation"
(see Figure 1) which consists of three parts:

1 The type of individuals to be examined, which can be anything from
simple numbers if optimizing a mathematical problem to complex con-
struction plans for airplane wings.

2 The methods needed to randomly create initial individuals and to derive
new individuals from either one or two already existing ones.

3 Means to simulate these individuals in order to check their fitness.

Based on this implementation the user can now define multiple fitness func-
tions, regarding different functional and non-functional aspects ofthe individ-
uals evaluated.

Apart from Genetic Programming for sensor networks, we exemplarily cre-
ated a Problem Space Implementation for Semantic Web Service composition,
able to solve problems like the WSC Challenge [19], as a proof of concept.

The Common Search API includes facilities for both parallelization and
distribution which will be discussed in the next section.

3.2 Genetic Algorithms and the Distribution Schemes of the
DGPF

The most popular biologically inspired search and optimization methods by
far are Genetic Algorithms. Genetic Algorithms follow a well known schema
which closely matches the search control loop FSM introduced in the previous
section. Starting with an initial population, the individuals are evaluated, sta-
tistical information is updated and individuals are selected for reproductionin
the next iteration.

Distributed Genetic Algorithms outclass their locally running counterparts
in many applications [6]. Let us thus discuss the distribution utilities of the
Common Search API exemplarily for the DGPF implementation of GA.

DGPF 161

Figure 3. Different distribution schemes for GA provided by the DGPF.

Four different distribution forms of Genetic Algorithms are provided, as il-
lustrated in Figure 3. The default method is to run a search locally (A). If more
than one machine is available in a network, the tasks of creating and evalu-
ating individuals can be distributed. This technique is called Client/Server or
Master/Slave (B) approach [4, 11]. This is useful if the evaluation involves time-
consuming simulations. If network bandwidth is limited or large populations
are needed, a Peer-To-Peer approach should be chosen (C) [6, 12]. Different
machines running Genetic Algorithms are now able to cooperate using the Is-
land Hopping paradigm. Last but no least, a hybrid distribution scheme (D) of
mixing the Peer-To-Peer and Client/Server techniques allows different networks
or clusters to cooperate on the same search.

The Client/Server- and the P2P-components are unified in the Common
Search API. Therefore, they can be used by all search algorithms implemented
in the DGPF, allowing even totally different algorithms like GA, Simulated

162 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Annealing, Tabu Search and Hill Climbing to be incorporated into one hetero-
geneous search.

The distribution methods discussed here are built using self-healing and error-
tolerant techniques. Thus, a Client/Server system will continue its work even
if all but one server are switched off by a hardware-reset. A searchusing the
P2P-distribution will keep running even if all other P2P-nodes are shut down.
If some of the other machines happen to be restarted, they will seamlessly be
integrated into the search again by both technologies.

Other unified base structures of the DGPF are comparators, sorting and se-
lection schemes. A comparator is used to determine which individuals are
dominated by which other ones. The sorting schemes allow individuals to be
sorted according to these comparators or by using additional statistical mea-
sures. Combined with the non-dominated individual list maintained by the
API, multi-objective search algorithms can easily be constructed. As a com-
bination of these four features, the NPG-Algorithm [8] has exemplarily been
implemented.

4. Genetic Programming of Sensor Networks

Today we experience a growing demand for distributed systems of sensors
[5]. In this chapter, we describe how the DGPF framework is used to genetically
create algorithms for such sensor networks.

Sensor nodes are small devices that gather sensor information about their
environment and transmit it wirelessly. They are restricted in resources like
memory size, processing speed, and, most important, battery power. The com-
munication among them is not reliable and the topology of their network is
volatile. The program code created for sensor nodes should thus be robust and
as efficient as possible.

Our goal is the automated creation of algorithms for sensor nodes. We apply
multi-objective Genetic Programming since it allows optimizing the algorithms
created not only for functionality but also for the economical use of resources,
especially for minimizing expensive communication.

To evaluate the fitness of such algorithms we simulate whole sensor networks.
In our model, sensor nodes are represented as virtual machines with a fixed-sized
memory architecture, asynchronous IO, and a Turing-complete instructionset
[15, 18].

Many nodes (the virtual machines) run asynchronously in the simulation at
approximately the same speed which, however, might differ from node to node
and cannot be regarded as constant. The nodes are connected wirelessly and
thus cannot a priori guarantee reliable communication. It is not possible to send
directed transmissions. Like radio broadcasts they will be received by any node
in range.

DGPF 163

With such simulations we can transform global behavior of a network into
local behavior of single nodes using GP.

4.1 Testing the Features of the DGPF for GP

To validate the utility of our framework for genetically programming sensor
networks we chose an example problem well known in the area of distributed
systems: the election. Election means to select one node out of a group of
nodes, to act as communication relay, for instance. All nodes should receive
knowledge of the id of this special node. One way to perform such an election
would be to determine the maximum id of all nodes.

In order to solve this problem, we initialize all automata with their own
id in the first memory cell. If an algorithm makes progress at all, the nodes
should have stored greater (valid) ids there after some time. A fully functional
algorithm would accomplish that the first memory cells of all nodes contain the
maximum id. If the algorithm is also resource-friendly, it should reach this goal
needing as few transmissions as possible.

Therefore we apply three fitness functions: the first function is the cumulative
of all valid ids stored in the first memory cells of the nodes in all time steps (i),
see Figure 4. It is therefore an indicator both for the functionality as well as the
convergence speed of the algorithms. The second fitness function is inversely
proportional to the count of messages sent by all nodes (ii) and the third function
is inversely proportional to the instruction count of the algorithms found (iii).

As experimental setting we use six normal PCs in a network to perform a) ho-
mogeneously distributed, non-adaptive GA using the P2P-scheme described in
Section 3.2 as well asb) randomly configured adaptive heterogeneous searches
(also P2P distributed). For the experiments of typea), four different popu-
lation sizes are tested: 2048, 4096, 6144 and 8192. When performing the
experiments of the second type, each node picks a search algorithm (GA,Hill
Climbing, Simulated Annealing). If using GA it chooses a selection scheme
(e.g., Tournament Selection), picks a population size (≤ 8192), determines mu-
tation/crossover rates, configures the caches and such and such all randomly.
For each experiment, a fixed runtime of two hours is granted. The two exper-
iments are repeated eight times each. In Figure 4 we have plotted the fitness
values of the non-dominated algorithms found by both approaches during all
runs, leaving away those algorithms having minimal code size or minimal trans-
missions while having no functional effect at all.

It now becomes clear that the auto-adaptive, randomly configured experi-
mental setting, which takes (by chance) full advantage of all features ofthe
DGPF, is able to find more algorithms with good functionality than a standard
approach would yield. Both methods whatsoever were able to find working
solutions for the election problem.

164 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Figure 4. Utility of the DGPF-Features for GP.

A trivial (and thus more understandable) one of these solutions is displayed in
Figure 5. The algorithm consists of two parts: a procedure called when thenode
starts up (procedure0) and an asynchronously called, interrupt-like routine
which receives incoming messages (procedure1). In this simple algorithm, the
nodes constantly broadcast the greatest id they encountered in a loop, reducing
network traffic only by performing dummy work. In Figure 4 this program is
represented by a gray dot in the left of the black ellipsis.

Figure 5. One of the non-dominated solutions found.

5. Future Work and Conclusion

There are three tasks in our research which are currently in progressand
soon to be completed. The first one is the integration of additional bio-inspired

DGPF 165

search algorithms into the DGPF and the evaluation of their utility for Genetic
Programming.

We will soon be able to provide an easy-to-use control and monitoring in-
terface for the DGPF. It will graphically present the rich statistical information
collected from the events created by the control FSMs. The user will be able
to control a distributed search, to modify all parameters of the different nodes
manually and to access the search results at any given time.

The focus of our development effort is put on Genetic Programming and its
application to sensor networks. We are now able to perform research ondifferent
technologies in this area since we have laid a solid foundation of efficient search
algorithms suitable for this purpose. With this foundation and the results of our
future research, we hope to increase the performance of Genetic Programming
and the quality of its results in that sector significantly.

In this paper we have presented a framework for heuristic randomized multi-
objective search algorithms that incorporates the results of many of the best
contributions to the area of randomized heuristic search. Although our ownre-
search interests concentrate on Genetic Programming, our new search API can
easily be customized to any given problem space. The resulting auto-adaptive
applications can be distributed over a network, performing heterogeneous, co-
operative searches. Furthermore, we provide the framework and all results to
the research community under the LGPL. More information on our researchas
well as the fully documented Java source code of the DGPF can be found at
http://dgpf.sourceforge.net [7].

References

[1] V. Bachelet and E.-G. Talbi. A Parallel Co-evolutionary Metaheuristic. Lect. Notes Com-
put. Sc., 1800:628–635, 2000.

[2] T. Bäck and M. Scḧutz. Intelligent Mutation Rate Control in Canonical Genetic Algo-
rithms.Lect. Notes Comp. Sc., 1079:158–167, 1996.

[3] D. Büche, S.D. M̈uller, and P. Koumoutsakos. Self-Adaptation for Multi-objective Evo-
lutionary Algorithms. InProc. Second International Conference on Evolutionary Multi-
Criterion Optimization (EMO 2003), Faro, Portugal, 2003.

[4] E. Cantu-Paz. Designing Efficient Master-Slave Parallel Genetic Algorithms. InProc.
Third Annual Conference on Genetic Programming, 1998.

[5] C.-Y. Chong and S.P. Kumar. Sensor networks: evolution, opportunities, and challenges.
Proceedings of the IEEE91(8):1247–1256, 2003.

[6] F.S. Chong and W.B. Langdon. Java based Distributed Genetic Programming on the Inter-
net. InProc. Genetic and Evolutionary Computation Conference (GECCO 1999), Volume
2, page 1229, Orlando, FL, USA, 1999.

[7] Distributed Genetic Programming Framework, LGPL licensed, Open-Source Java Frame-
work. http://dgpf.sourceforge.net.

166 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[8] J. Horn, N. Nafpliotis, and D. Goldberg. A niched pareto genetic algorithm for multiobjec-
tive optimization. InProc. First IEEE Conference on Evolutionary Compuation, Volume
1, pages 82–87, Orlando, FL, USA, 1994.

[9] H. Ishibuchi, T. Yoshida, and T Murata. Balance between genetic search and local search
in hybrid evolutionary multi-criterion optimization algorithms. InProc. Genetic and Evo-
lutionary Computation Conference (GECCO 2002), New York, NJ, USA, 2002.

[10] D. Levine. Application of a hybrid genetic algorithm to airline crew scheduling.Computers
& Operations Research, 23(6):547-558, 1996.

[11] S. Luke. ECJ: A Java-based evolutionary computation and geneticprogramming system,
2000.http://cs.gmu.edu/∼eclab/projects/ecj/.

[12] W.N. Martin, J. Lienig, and J.P. Cohoon. Island (migration) models: evolutionary algo-
rithms based on punctuated equilibria. In Bäck, Fogel, Michalewicz (eds.),Handbook of
evolutionary Computation, IOP Publishing and Oxford University Press, 1997.

[13] U.-M. O’Reilly and F. Oppacher. Program Search with a Hierarchical Variable Length
Representation: Genetic Programming, Simulated Annealing and Hill Climbing. Lect.
Notes Comput. Sc., 866:397–406, 1994.

[14] L. Shi and S. Olafsson. A New Hybrid Genetic Algorithm. InLate Breaking Papers at the
Genetic Programming 1998 Conference, Madison, WI, USA, 1998.

[15] A. Teller. Turing completeness in the language of genetic programming with indexed mem-
ory. In Proc. IEEE World Congress on Computational Intelligence, Volume 1, Orlando,
FL, USA, 1994.

[16] M. Villalobos-Arias, C.A . Coello Coello, and O. Hernández-Lerma. Asymptotic Conver-
gence of Some Metaheuristics Used for Multiobjective Optimization.Lect. Notes Comput.
Sc., 3469:95–111, 2005.

[17] T. Weise and K. Geihs. Genetic Programming Techniques for Sensor Networks. InProc.
5. GI/ITG KuVS Fachgespräch "Drahtlose Sensornetze", Stuttgart, Germany, 2006.

[18] J.R. Woodward. Evolving turing complete representations. InProc. Congress on Evolu-
tionary Computation (CEC 2003), Volume 2, pages 830–837, Birmingham, UK, 2003.

[19] WS-Challenge 06.http://insel.flp.cs.tu-berlin.de/wsc06/.

[20] X. Yao. Optimization by genetic annealing. InProc. Second Australian Conference on
Neural Networks, pages, 94–97, Sydney, Australia, 1991.

COMPUTER-ASSISTED ANALYSIS OF A
METALLURGICAL PRODUCTION PROCESS IN
VIEW OF MULTIPLE OBJECTIVES

Bogdan Filipǐc, Tea Tǔsar
Department of Intelligent Systems

Jǒzef Stefan Institute, Ljubljana, Slovenia

{bogdan.filipic,tea.tusar}@ijs.si

Erkki Laitinen
Department of Mathematical Sciences

University of Oulu, Finland

erkki.laitinen@oulu.fi

Abstract Numerical experiments in optimizing secondary coolant flows on a steel casting
machine with respect to multiple objectives were performed using the recently
proposed Differential Evolution for Multiobjective Optimization (DEMO). Cal-
culations were done for a selected steel grade under the assumption of steady-state
caster operation. Their aim was to find suitable sets of coolant flow settings un-
der conflicting requirements for minimum temperature deviations and predefined
core length in the caster. In contrast to solutions produced in single-objective op-
timization, approximation sets of Pareto optimal fronts provide more information
to a plant engineer and allow for better insight into the casting process behavior.

Keywords: Continuous casting of steel, Coolant flows, DEMO, Differential evolution,Mul-
tiobjective optimization, Process parameters

1. Introduction

Like the majority of modern production processes, material production and
processing nowadays strongly rely on numerical analysis and computer sup-
port. Numerical simulators enable insight into process development, allow for
execution of numerical experiments and facilitate manual process optimiza-
tion. Moreover, reliable process simulators and efficient optimization proce-
dures make it possible to automate process parameter optimization and improve
material properties. A way of achieving these goals is to couple the process

167

168 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

simulator with an optimization algorithm via a cost function which allows for
automatic assessment of the simulation results.

Continuous casting of steel is an example of a process to which novel compu-
tational approaches have been applied intensively over the last years toenhance
product characteristics and minimize production costs. In this complex metal-
lurgical process molten steel is cooled and shaped into semi-manufactures.To
cast high quality steel, it is important to properly control the metal flow and heat
transfer during the process. They depend on numerous parameters, including
the casting temperature, casting speed and coolant flows. Finding optimal val-
ues of process parameters is hard since various, often conflicting criteria need
to be applied, the number of possible parameter settings is high, and parame-
ter tuning through real-world experimentation is not feasible because of safety
risk and high costs. Techniques applied to overcome these difficulties include
knowledge-based heuristic search [2] and evolutionary algorithms [1, 6, 8, 9].
However, the predominant optimization approach taken in the applied studies
so far was to aggregate multiple criteria into a single cost value and solve the
optimization problem empirically using the simulator-optimizer coupling.

In this paper we report on preliminary numerical experiments in optimizing
secondary coolant flows on a steel casting machine with respect to multiple
objectives using a multiobjective optimization evolutionary algorithm. Calcu-
lations were done for a selected steel grade under the assumption of steady-state
caster operation. Their purpose was to get better insight into process behavior
and find optimized sets of coolant flow settings under conflicting objectives.
The paper describes the optimization task and the multiobjective optimization
approach, and reports on the performed numerical experiments and obtained
results.

2. The Optimization Task

In continuous casting, liquid steel is poured into a bottomless mold which is
cooled with internal water flow. The cooling in the mold extracts heat from the
molten steel and initiates the formation of a solid shell. The shell formation is
crucial for the support of the slab behind the mold exit. The slab then entersinto
the secondary cooling area in which it is cooled by water sprays. The secondary
cooling region is divided into cooling zones where the amount of the cooling
water can be controlled separately.

In this study we consider a casting machine with the secondary cooling area
divided into nine zones. In each zone, cooling water is dispersed to the slab at
the center and corner positions. Target temperatures are specified forthe slab
center and corner in every zone. Water flows should be tuned in such a way that
the resulting slab surface temperatures match the target temperatures as closely
as possible. From metallurgical practice this is known to reduce cracks and

Computer-Assisted Analysis of a Metallurgical ProductionProcess 169

inhomogeneities in the structure of the cast steel. Formally, cost functionc1 is
introduced to measure deviations of actual temperatures from the target ones:

c1 =

NZ∑

i=1

|T center
i − T center∗

i |+
NZ∑

i=1

|T corner
i − T corner∗

i |, (1)

whereNz denotes the number of zones,T center
i andT corner

i the slab center and
corner temperatures in zonei, andT center∗

i andT corner∗
i the respective target

temperatures in zonei.
There is also a requirement for core length,lcore, which is the distance be-

tween the mold exit and the point of complete solidification of the slab. The
target value for the core length,lcore∗, is prespecified, and the actual core length
should be as close to it as possible. Shorter core length may result in unwanted
deformations of the slab as it solidifies to early, while longer core length may
threaten the process safety. We formally treat this requirement as cost function
c2:

c2 = |lcore − lcore∗|. (2)

The optimization task is to minimize bothc1 andc1 over possible cooling
patterns (water flow settings). It is known that the two objectives are conflicting,
hence it is reasonable to handle this optimization problem as a multiobjective
one. Water flows cannot be set arbitrarily, but according to the technological
constraints. For each zone, minimum and maximum values are prescribed for
the center and corner water flows.

A prerequisite for optimization of this process is an accurate numerical sim-
ulator, capable of calculating the temperature field in the slab as a function of
process parameters and evaluating it with respect to cost functions Eqn.(1)
and Egn. (2). For this purpose we used the mathematical model of the process
with Finite Element Method (FEM) discretization of the temperature field and
the corresponding nonlinear equations solved with relaxation iterative methods,
already applied in previous single-objective optimization study of the casting
process [7].

3. Multiobjective Optimization

3.1 Pareto Optimality

Consider the multiobjective optimization problem (MOP) of finding the min-
imum of the cost functionc:

c : X → Z

c : (x1, . . . , xn) 7→ (c1(x1, . . . , xn), . . . , cm(x1, . . . , xn)),

whereX is ann-dimensional decision space, andZ ⊆ R
m is anm-dimensional

objective space (m ≥ 2). The objective vectors fromZ can be partially ordered

170 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

using the concept ofPareto dominance: z
1 dominatesz2 (z1 ≺ z

2) iff z
1 is not

worse thanz2 in all objectives and better in at least one objective. When the
objectives are conflicting, there exists a set of optimal objective vectors called
Pareto optimal front. Each vector from the Pareto optimal front represents a
different trade-off between the objectives and without additional information
no vector can be preferred to another.

With a multiobjective optimizer we search for anapproximation setthat
approximates the Pareto optimal front as well as possible. When solving MOPs
in practice it is often important to provide the user with a diverse choice of trade-
offs. Therefore, beside including vectors close to the Pareto optimal front, the
approximation set should also contain near-optimal vectors that are as distinct
as possible.

3.2 DEMO

Finding a good approximation set in a single run requires a population-
based method. Consequently, evolutionary algorithms have been frequently
used as multiobjective optimizers [3]. Among them, the recently proposed
Differential Evolution for Multiobjective Optimization (DEMO) [11] is applied
in optimizing the described metallurgical process.

DEMO is based on Differential Evolution (DE) [10], an evolutionary algo-
rithm for single-objective optimization that has proved to be very successful in
solving numerical optimization problems. In DE, each solution is encoded as
ann-dimensional vector. New solutions, also called candidates, are constructed
using operations such as vector addition and scalar multiplication. After the
creation of a candidate, the candidate is compared with its parent and the best
of them remains in the population, while the other one is discarded.

Because the objective space in MOPs is multidimensional, DE needs to be
modified to deal with multiple objectives. DEMO is a modification of DE
with a particular mechanism for deciding which solution should remain in the
population. For each parent in the population, DEMO constructs the candidate
solution using DE. If the candidate dominates the parent, it replaces the parent
in the current population. If the parent dominates the candidate, the candidate
is discarded. Otherwise, if the candidate and its parent are incomparable,the
candidate is added to the population. After constructing candidates for each
parent individual in the population, the population has possibly increased. In
this case, it is truncated to the original size using nondominated sorting and
crowding distance metric (as in NSGA-II [4]). This steps are repeated until a
stopping criterion is met.

DEMO is a simple but powerful algorithm, fully presented in [11] in three
variants. Throughout this paper, the elementary variant, called DEMO/parent,
is used.

Computer-Assisted Analysis of a Metallurgical ProductionProcess 171

4. Experiments and Results

4.1 Experimental Setup

Numerical experiments in multiobjective optimization of the casting process
were performed for a selected steel grade with the slab cross-section of1.70 m
× 0.21 m. Candidate solutions were encoded as 18-dimensional real-valued
vectors, representing water flow values at the center and corner positions in 9
zones of the secondary cooling area. Search intervals for cooling water flows
at both center and corner positions in zones 1, 2 and 3 were between 0 and
50 m3/h, while in the zones 4–9 between 0 and 10 m3/h. Table 1 shows the
prescribed target slab surface temperatures. The target value for thecore length
lcore∗ was 27 m.

Table 1. Target surface temperatures in◦C.

Zone number 1 2 3 4 5 6 7 8 9

Center position 1,050 1,040 980 970 960 950 940 930 920
Corner position 880 870 810 800 790 780 770 760 750

DEMO was integrated with the numerical simulator of the casting process
into an automated optimization environment. DEMO evolved sets of candidate
solutions in search for a good approximation set, and the simulator served asa
solution evaluator. Steady-state operation of the casting machine was assumed
and optimization performed in the off-line manner.

The most limiting factor for experimental analysis is the computational com-
plexity of the casting process simulation. A single simulator run takes about
40 seconds on a 1.8-GHz Pentium IV computer. In initial experimentation we
found DEMO runs with 5,000 solution evaluations (and therefore taking about
55 hours) well compromising between the execution time and solution quality.
Further algorithm settings were also adopted according to the initial parameter
tuning experiments [5] and were as follows: population size 50, number of
generations 100, scaling factor 0.5 and crossover probability 0.05.

4.2 Results and Discussion

The primary result of this study were approximation sets of Pareto optimal
fronts. Figure 1 shows the approximation sets found by DEMO for five cast-
ing speeds, ranging from 1.0 m/min to 1.8 m/min. Each set of nondominated
solutions is the final result of a single DEMO run at a constant casting speed.

We can observe that the two objectives are really conflicting in the sense
that finding a minimum for one of them the optimization procedure fails to do
so for the other and vice versa. It is also obvious that the casting speed has a

172 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000

D
ev

ia
tio

n
fr

om
 ta

rg
et

 c
or

e
le

ng
th

 [m
]

Sum of deviations from target temeratures [C]

1.0 m/min
1.2 m/min
1.4 m/min
1.6 m/min
1.8 m/min

Figure 1. Nondominated solutions found with DEMO for different casting speeds. The dashed
horizontal line denotes the maximum allowed deviation of the core length fromthe target value
(7 m).

decisive impact on the result. Moreover, the higher the casting speed, themore
the two objectives can be met simultaneously. This corresponds with practical
experience on the considered casting machine, where the process is easier to
control at the usual casting speed (1.6–1.8 m/min). Lower casting speed is
clearly shown as disadvantageous and in practice it is only set exceptionally,
for example, when a new batch of steel is awaited.

A detailed analysis of the solution properties also reveals that, in view of
the objectivec1, the majority of actual surface temperatures are higher than
the target temperatures, while regardingc2, the actual core length is almost
always shorter than the target value. Unexpectedly, the deviation is sometimes
even greater than 7 m, meaning that the actual core length is less than 20 m,
which is unacceptable. This threshold value is shown in Figure 1 and should
be considered as an additional constraint in future studies.

Looking into decision space, one can also observe certain rules. In case
of applying trade-off solutions from the middle of the approximation sets, the
amount of coolant spent increases with the casting speed (see the left-hand side
diagrams in Figures 2–6). This is an expected result as higher casting speed
implies more intense cooling. On the other hand, the distributions of tempera-
ture differences across the secondary cooling zones (right-hand side diagrams
in Figures 2–6) exhibit two characteristics. First, the target temperatures are
much more difficult to achieve at the center than in the corner slab positions.
Second, the differences at the center are rather non-uniform. While some are

Computer-Assisted Analysis of a Metallurgical ProductionProcess 173

close to zero, others reach up to 200◦C at lower casting speeds. Such a situation
is not wanted in practice calls for reformulation of objectivec1.

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9

W
at

er
 fl

ow
s

[m
3/

h]

Zones

center
corner

-100

-50

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9D
ev

ia
tio

ns
 fr

om
 ta

rg
et

 te
m

er
at

ur
es

 [C
]

Zones

center
corner

Figure 2. A trade-off solution from the middle of the approximation set for the castingspeed
speed of 1.0 m/min:c1 = 740◦C, c2 = 8.5 m.

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9

W
at

er
 fl

ow
s

[m
3/

h]

Zones

center
corner

-100

-50

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9D
ev

ia
tio

ns
 fr

om
 ta

rg
et

 te
m

er
at

ur
es

 [C
]

Zones

center
corner

Figure 3. A trade-off solution from the middle of the approximation set for the castingspeed
speed of 1.2 m/min:c1 = 915◦C, c2 = 4.5 m.

Finally, it is worth checking the extreme solutions from an approximation
set at a given casting speed. Figures 7 and 8 clearly show how one objective
is met at the expense of the other. None of these would normally be used
in practice. Instead, a plant engineer would rather select a trade-off setting
balancing between the two objectives.

5. Conclusion

Optimization of process parameter settings in continuous casting of steel
is a key to higher product quality. Nowadays it is often performed through
virtual experimentation involving numerical process simulators and advanced
optimization techniques. In this preliminary study of optimizing 18 cooling

174 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9

W
at

er
 fl

ow
s

[m
3/

h]

Zones

center
corner

-100

-50

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9D
ev

ia
tio

ns
 fr

om
 ta

rg
et

 te
m

er
at

ur
es

 [C
]

Zones

center
corner

Figure 4. A trade-off solution from the middle of the approximation set for the castingspeed
speed of 1.4 m/min:c1 = 537◦C, c2 = 2.9 m.

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9

W
at

er
 fl

ow
s

[m
3/

h]

Zones

center
corner

-100

-50

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9D
ev

ia
tio

ns
 fr

om
 ta

rg
et

 te
m

er
at

ur
es

 [C
]

Zones

center
corner

Figure 5. A trade-off solution from the middle of the approximation set for the castingspeed
speed of 1.6 m/min:c1 = 247◦C, c2 = 1.5 m.

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9

W
at

er
 fl

ow
s

[m
3/

h]

Zones

center
corner

-100

-50

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9D
ev

ia
tio

ns
 fr

om
 ta

rg
et

 te
m

er
at

ur
es

 [C
]

Zones

center
corner

Figure 6. A trade-off solution from the middle of the approximation set for the castingspeed
speed of 1.8 m/min:c1 = 80◦C, c2 = 0.2 m.

water flows for an industrial casting machine the multiobjective optimization
was brought into play.

Computer-Assisted Analysis of a Metallurgical ProductionProcess 175

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9

W
at

er
 fl

ow
s

[m
3/

h]

Zones

center
corner

-100

-50

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9D
ev

ia
tio

ns
 fr

om
 ta

rg
et

 te
m

er
at

ur
es

 [C
]

Zones

center
corner

Figure 7. The leftmost solution from the approximation set for the casting speed speed of 1.4
m/min: c1 = 85◦C, c2 = 5.6 m.

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8 9

W
at

er
 fl

ow
s

[m
3/

h]

Zones

center
corner

-100

-50

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9D
ev

ia
tio

ns
 fr

om
 ta

rg
et

 te
m

er
at

ur
es

 [C
]

Zones

center
corner

Figure 8. The rightmost solution from the approximation set for the casting speed speed of
1.4 m/min:c1 = 1,419◦C, c2 = 0.0 m.

The analysis assumes steady-state process conditions, hence the resultsare
not primarily intended for control purposes but rather for better understanding
of the process and evaluation of the casting machine performance. The resulting
approximation sets of Pareto optimal fronts indeed offer a more general view of
the process properties. The results support some facts already knownin practice
and, at the same time, show critical points, such as the need to reformulate the
temperature deviation criterion to ensure uniform distribution of temperature
differences over the zones, and extend the optimization problem definition with
an additional constraint. From the practical point of view, further studieswill
also explore how much the optimization results are affected by the factors that
were kept constant so far, such as steel grade, slab geometry and casting machine
characteristics.

176 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Acknowledgment

The work presented in the paper was supported by the Slovenian Research
Agency and the Academy of Finland under the Slovenian-Finnish project BI-
FI/04-05-009Numerical Optimization of Continuous Casting of Steel, and by
the Slovenian Research Agency under the Research Programme P2-0209 Arti-
ficial Intelligence and Intelligent Systems.

References

[1] N. Chakraborti, R. S. P. Gupta, and T. K. Tiwari. Optimisation of continuous casting pro-
cess using genetic algorithms: studies of spray and radiation cooling regions.Ironmaking
and Steelmaking, 30(4):273–278, 2003.

[2] N. Cheung and A. Garcia. The use of a heuristic search technique for the optimization
of quality of steel billets produced by continuous casting.Engineering Applications of
Artificial Intelligence, 14(2):229–238, 2001.

[3] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley &
Sons, Chichester, UK, 2001.

[4] K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: NSGA–II.IEEE Trans. Evol. Comput., 6(2):182–197, 2002.

[5] M. Depolli, T. Tušar, and B. Filipǐc. Tuning parameters of a multiobjective optimiza-
tion evolutionary algorithm on an industrial problem. InProc. Fifteenth International
Electrotechnical and Computer Science Conference (ERK 2006), vol. B, pages 95–98,
Portorǒz, Slovenia, 2006. In Slovenian.

[6] B. Filipi č. Efficient simulation-based optimization of process parameters in continuous
casting of steel. In D. B̈uche, N. Hofmann (Eds.),COST 526: Automatic Process Opti-
mization in Materials Technology: First Invited Conference, pages 193–198, Morschach,
Switzerland, 2005.

[7] B. Filipi č and E. Laitinen. Model-based tuning of process parameters for steady-state steel
casting.Informatica, 29(4):491-–496, 2005.

[8] B. Filipi č and T. Robǐc. A comparative study of coolant flow optimization on a steel
casting machine. InProc. IEEE Congress on Evolutionary Computation (CEC 2004), vol.
1, pages 569–573, Portland, OR, USA, 2004.

[9] B. Filipi č and B.Šarler. Evolving parameter settings for continuous casting of steel.
In Proc. 6th European Conference on Intelligent Techniques and Soft Computing (EU-
FIT’98), vol. 1, pages 444–449, Aachen, Germany, 1998.

[10] K. V. Price and R. Storn. Differential evolution – a simple evolution strategy for fast
optimization.Dr. Dobb’s Journal, 22(4):18–24, 1997.

[11] T. Robǐc and B. Filipǐc. DEMO: Differential evolution for multiobjective optimization.
Lect. Notes Comput. Sc., 3410:520–533, 2005.

