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Preface

Faced with insufficient performance of traditional computational methods on
demanding real-world problems, computer scientists have decades agd star
designing a novel class of problem solving techniques inspired by biologi-
cal phenomena, such as collaboration and competition among individuals in a
struggle for limited resources, recombination and propagation of genetic ma-
terial from generation to generation, and emergent behavior of inskxties
and bird flocks. Simplified models of these mechanisms are nowadays em-
ployed in problem solving techniques, known as evolutionary computatibn, a
colony optimization, particle swarm optimization and others, that alleviate the
shortcomings of traditional algorithms in large-scale applications where lit-
tle is known about the properties of the underlying problems. Moreowver, th
bioinspired techniques are becoming increasingly popular for their tofss
capability of providing alternative solutions and amenability to implementation
in distributed computing environments. It is therefore not surprising thgt the
are being regularly used in tackling search and optimization tasks in science,
engineering and business.

This volume contains some of the recent theoretical and practical contri-
butions to the field of bioinspired optimization. The papers were presented
at the Second International Conference on Bioinspired Optimization Method
and their Applications (BIOMA 2006), held in Ljubljana, Slovenia, on 9 and
10 October 2006. Encouraged by the success of the first BIOMA 4,200
organized the conference again to bring together theoreticians aritipnacs
to present their recent achievements in a single stream of talks, anchgecha
the ideas in informal discussions. After the review process, 16 papgesat-
cepted for publication, contributed by 35 (co)authors coming from 7 trimsn

Professor @nter Rudolph from the University of Dortmund, widely known
for his numerous theoretical studies of evolutionary algorithm propedidis;
ered an invited talk on deployment scenarios of parallelized code in staxhas
optimization. The remaining contributions were divided into two categories,
one dealing with theoretic and algorithmic issues, and the other presenting
practical applications. Theoretical and algorithmic studies address kpetdia
topics in bioinspired optimization: entropy driven exploration and exploitation

vii
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in evolutionary algorithms, niching for multimodal optimization problems, self-
adaptation in differential evolution, stopping criteria for constrained optimiza
tion with particle swarms, a non-parametric genetic algorithm, takeover time
in evolutionary algorithms processing parallel subpopulations with migrating
individuals, and stigmergy as a numerical optimization concept. Reportson ap
plied work come from a variety of application domains: dietary menu planning,
optimal mission planning for autonomous unmanned aerial vehicles, database
index optimization, job scheduling on computational grids, optimization of met-
allurgical production processes, characterization of biosystem coityphaih
electron paramagnetic resonance, and genetic programming of setvgankse

BIOMA 2006 was sponsored by the Slovenian Research Agency. dt wa
organized as part of the 9th International Multiconference Informatcamie®y
(IS 2006) taking place at the def Stefan Institute, Ljubjana, from 9 to 14
October 2006. BIOMA was held at thezkf Stefan International Postgraduate
School that also includes bioinspired optimization in its curriculum.

We are grateful to the conference sponsors, members of the progiam a
organizing committees, the invited speaker, and regular paper prestmters
taking part in shaping the conference. We hope you find the eventadigy
and the book inspiring, and invite you to meet again at the next BIOMA.

Ljubljana, 25 September 2006

BOGDAN FILIPIE AND JURIJ SILC



DEPLOYMENT SCENARIOS OF PARALLELIZED
CODE IN STOCHASTIC OPTIMIZATION

Glnter Rudolph

Department of Computer Science
University of Dortmund, Germany
guenter.rudolph@uni-dortmund.de

Abstract The benefit of using parallel hardware in real-time environments is abvieor
example, ifitis necessary to solve some optimization task periodically imemar
time window a parallelized optimization algorithm can possibly meet the time
constraints. In case of deterministic algorithms the situation is clear. Butifee
randomized algorithms some questions appear: As randomized algerithst
be run more than once to get a reliable solution we can execute the setpaigia
in parallel independently or we can execute the parallelized code simulisigieo
on the parallel hardware in a successive manner. Which approaetiesWe
analyze several scenarios analytically and offer conditions for derigien to
deploy the parallelized code and when not.

Keywords:  Parallel optimization, Randomized algorithms, Stochastic optimization

1. Introduction

The utility of a parallelized deterministic optimization algorithm is evident:
Since the deterministic algorithm is run only once, the parallel version dgliver
the solution more rapidly. In case of randomized optimization algorithms the
situation changes. Typically, these randomized algorithms (RAs) must be run
several times to avoid bad results produced by some unlucky sequersse of
dom variables used in the RA. This observation raises the question if therbur
of developing a parallel randomized algorithm is worth the effort: Instéad o
running a parallelized RA several times in sequence on the parallel hadwa
one can also run the original sequential code independently in parafieVeral
processors. Which are the situations in which running the parallelizedisode
advantageous? And when the recommendation should be the other wd$ roun

Here, we analyze some situations based on certain scenarios. Our main as-
sumption is that we have a periodically appearing optimization task. Therefore
it is reasonable to use tlexpectation of random variablésr comparisons: If
the expected runtime of successive runs of the parallelized code is laghtha
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expected runtime of parallel runs of the sequential code, then and omlytthe
is advisable to deploy the parallelized RA.

This approach also has the appealing aspect that we can elude from the
ongoing discussion how to measure the performance of parallelized R2k [1
in terms of speedup, efficiency and related measures.

Here we extend and generalize our findings presented in [4]. For tifiegel
Section 2 presents some mathematical results used in the sequel. Sections 3 and
4 present several scenarios and offer conditions for deciding wdhdeploy
the parallelized code and when not. Finally, our conclusions can be found
Section 5.

2. Mathematical Preliminaries

Let Xy, Xo,..., X, be independent and identically distributed (i.i.d.) ran-
dom variables. Their minimum and maximum are denoted by = min{ X},
Xo,..., Xp}andX,,, = max{Xy, X, ..., X, }, respectively. For certain dis-
tributions of theX, the expectation of the minimum and maximum can be cal-
culated analytically. For example [3, p. 35], if th&, are uniformly distributed
in the interval[a, b ] then

E[ X, ] = b;a, V[Xp] = (bzza)27

p
and E[X,,]=a+(b—a . @
[Xppl=at(b—a) —=. @)
Moreover, there exist numerous inequalities for the expectations, é#ubno
based on some assumptions. The most general inequality is probablyirgiven
[3, p. 59 and 63] since it only assumes the existence of the second moment.

1
E[Xip] = at (b a)

Theorem 1
Let X, X1, Xs, ..., X, be i.i.d. random variables wit[ X?] < co. Then

p—1 p—1
E[X|-—D|X|<E[ X1, <E X, LE X|+ ——D[X
[X] = 5= DIX] < E[Xip] < E[Xpp] < E[X]+ 5 DIX]
whereD| X | denotes the standard deviationof 0

Another result that will be useful is known as Wald’s equation. A pr@of ¢
be found e.g. in [5, p. 166f].

Theorem 2

Let N be a positive, integer-valued random variable &qd Xs, . . . be ani.i.d.
sequence of random variables whérés also independent of th€,. Then the
expectation and variance of the random sum consisting of thé\imembers
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of the X, are given by

N
E[ZXk] = E[N]-E[X;] )
k;l
v Zxk] = E[N]-V[X1]+V[N]-E[X;]? 3
k=1
whereV| - | denotes the variance. 0

3. Scenario: Run RA Multiple Times, Choose Best
Solution Found

In practice, nobody runs a randomized algorithm only once. Rather,Ahe R
is run multiple times and the best solution found within some time limit is used.
Figure 1 illustrates our two options how to use the parallel hardware.

SEQ PAR

minnEE 1 |

Figure 1. Left: The sequential code is run independently in paralleb gmocessors. Right:
The parallelized code is run gnprocessors simultaneously fpisuccessive runs.

3.1 Fixed Iteration Number

Let ¢ be the running time of the sequential algorithm apd= ct/p the
running time of the parallelized sequential algorithm, where 1 aggregates
the communication and other overhead costs of the parallelized version. Let
be the maximum number of times we can run the RA before we must use the
best solution found and assume that p wherep is the number of processors.
Thenr = t is the total running time of running the sequential algorithm on
p processors in parallel. Since the total running time sliccessive runs of
the parallelized version is, = p x t, = ct we can see easily that nothing is
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gained by a parallelization. Even worse, every effort invested in thisisask
waste of resources.

3.2 Random Iteration Number

The situation changes if the running time of the RA is a random variable. For
instance, this may be caused by some stopping rule that is independetiiérom
iteration counter. LeT’ be the random running time of the sequential algorithm
and7), = ¢T'/p the running time of the parallelized sequential algorithm with
¢ > 1. Again, assume = p. Then the random total running tinf&of running
the sequential algorithm gmprocessors in parallel is

R = max{ T(l),T(?), e ,T(p) } = Tp:p

whereT'(i) is the running time at processorClearly, thel'(i) are independent
and identically distributed. Assume tfi&ti) is normally distributed with mean
t > 0 and variance?. Then the expectation d? can be approximated [3] via

E[R]=E[T,,| ~E[T]|+D[T]/2logp. (4)

The random total running time,, of p sucessive runs of the parallelized version
is given by

with expectation
E[R,] =cE[T].

Thus, the parallelized version is faster if

E[Rp]<E[R]<:>C<1+E[[§% x /2 log p. (5)

In other words, the larger is the coefficient of variation= D[ T']/E[T] the
larger the benefit achieved by the parallelization of the sequential algorAlm!
seen from this analysis, this scenario can be an appropriate field ofydegid
of parallelized RAs.

One may object that the conclusions drawn from the relationship in Egn. (5)
are shaky since Eqgn. (4) is an approximation only. In order to invalidate this
objection we first consider an example for which the result can be repead
exactly in analytical manner. Next we generalize the result by means of The
rem 1.

Assume thaf’(i) ~ U(t —e,t + ¢) are uniformly distributed in the interval
[t —e,t+¢] for somet,e > 0. For sake of brevity we shall writ€ instead of
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T'(7). Insertion in Egn. (1) yields

€ p—1
E|T|=t, V|T|=—, E|lT,p|=t+c¢ .
7] 7] (Typ] =17

Thus,E[R,] < E[R]ifandonlyifct <t+e(p—1)/(p+ 1) or equivalently

e p—1 D[T] p-1
C<1+t\/§p+1\/§_1+E[T]Xp+1\/§‘ (6)

Forexample, if we use 9 processors and the running time is uniformly disdlibute
between 40 and 60 seconds then Eqn. (6) yields 1 + 4/25 = 1.16. As
a consequence, the efficientyc of the parallelization must be larger than
25/29 ~ 86.2%. Otherwise, one should run the sequential code in parallel
independently.

Next, we generalize our findings. Comparison of Eqgn. (5) and Egn. (6)
reveals the same pattern:

D[T]
C<1+ﬁ><9(p) (7)
for some functiory(-) depending on the number of processprdn order to

derive condition Eqn. (7) analytically recall that the condition originallydsea
E[T),.
E[R,] <E[R] & CcE[T|<E[Tp] & c< E[[ﬁ]

Evidently, this condition is fulfilled if we boun#| 7., | from above via The-
orem 1, that is valid for arbitrary runtime distributions. We obtain

E[T]+D[T] x 2= _
C<E[Tp:p]S [T]+D[T] vt DIT] - p—1
E[T] E[T] E[T] V2p—1
confirming that the pattern in Eqn. (7) did not appear by chance. Mergoe
have shown that

p—1
g(p)g\/ﬁ

regardless of the runtime distribution’6f

4. Scenario: Run Until Satisfactory Solution Found

One might argue that the previous scenario is not always the case. For
example, if we need only a satisfactory solution then we can stop the RA as
soon as such a solution has been detected. In principle, this can happen in
single run of the RA. Figure 2 illustrates our two options how to use the parallel
hardware.
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SEQ PAR

Figure 2. Left: The sequential code is run independently in paralleb@mocessors until a
satisfactory solution is found. Right: The parallelized code is run replgad@dp processors
simultaneously until a satisfactory solution is found.

41 Fixed Iteration Number

As in the previous scenario lebe the running time of the sequential algo-
rithm and¢, = ct/p the running time of the parallelized sequential algorithm
with ¢ > 1. Suppose there exists a success probability(0, 1) for each run
of the RA such that the random varialtlerepresents the number of runs until
a successful run occurs. The random varialdlbas geometrical distribution
with probability function

P{G=k}=s(1-s)k"
fork=1,2,...ands € (0,1) with

1—s
s2

E[G] zé and V(G| =

The time until a successful run occurs on a single processbes G. There-
fore, the random total running tin¥e of running the sequential algorithm gn
processors in parallel is

R= min{ S(l),S(?),...,S(p)} = Sl;p = tGl;p

whereG ., denotes the minimum of independent and identically distributed
geometrical random variables. According to [6] we have

(1—s)"

FlGiel = I--oF

1
= VOl

such that .

E[R]:tE[GLp}:m.
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The random total running tim&,, of p successive runs of the parallelized
version is given by

c
R,=t,S=-1tS
» = lp P

with expectation

c ct
E[R,] = StE[S]= <.
1y = rEls] =<
Since
sp
E[Rp]<E[R]<’:>C<m

there are constellations in which a parallelized version is useful. Figure 3
is intended to provide an impression about the interrelationships. For small
success probabilitiesas one usually faces in optimizations task in which RAs
are used as last remedy, the efficiency of the parallel implementation must
be extremely high for recommending the deployment of the parallelized code.
Especially in real-time environments assumed here itis unlikely to achieve such
a high efficiency.

0995 [ S N s ettt S
0.99 - L | et O e |
0.985 |- ' RN . l
0.98 | . . e , ]

0.975 - L + L . L -

efficiency (1/c)

0.97 = -

0.965 |- ' ' ' ' .

0.96 » » ; ; : .

0.955
0.001 0.002 0.008 0.004 0.005 0.006 0.007 0.008 0.009 0.01

success probability

Figure 3.  Success probability versus efficiency /c of the parallel implementation for some
processor numbers.
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4.2 Random Iteration Number

Let7'(i) be the random running time of rin Then

G
S=> T(i)
=1

is the random time until the first successful run on a single processoargiag
to Theorem 2 we havE[ S| = E[G]E[T']. As a consequence, the random
total running timeR of running the sequential algorithm @nprocessors in
parallel is

R = mln{S(l),S(2), : aS(p)} = Sl:p
with

E[R]=E[Si1p] <E[S]=E[T]E[G].

The random total running timé&,, of p successive runs of the parallelized

version is given by
€] G
. c .
Ry = ZTp(Z) = EZT(Z)
i=1 =1

with
C
E[R,]=-E[T|E[G]=-E[S]|=—.
[Rp] p[][] p[] s
Our condition reads

E[R,] <E[R] < ]E?E[S] < E[S1p].

We can expresg[ S| in terms ofE[T' | andE[ G| but there is a problem for
E[S1.,]: Although we can use the lower bound of Theorem 1 to claim that there
is a nonnegative-valued functidr(-) with E[S1.,] = E[S] — D[S] x h(p)

and we can expred3[ S | in terms of moments df’ andG via Theorem 2, the
resulting formula

c D[S]
pE[S]<E[S] D[S]| x h(p) < C<p< E[S] Xh(p))
does not yield much insight for analyzing the situation.

Therefore we take a look at our conditigrE[ S| < E[S1.,] again. If each
T; has aminimum runtime > 0thenE[.S| > « E[G]andE[S1.,,| > a E[G].
Since c
E[S] > EQE[G] — 0asp — oo

[0

whereas
E[S1p] > aE[G] > 0regardless op
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we may conclude that there exists a processor numpsuch thate[ R, | <
E[R] for all p > po. Thus, this scenario is well suited for parallelized code if
many processors are available.

5. Conclusions

We have shown that the recommendation for a deployment of parallelized
code depends on several constraints. If we have a fixed time slot amg&ot
running time of the algorithm then the deployment of parallelized code is a
waste of resources. If we can wait until completion of the randomizeditigor
which has a random running time, then we need a moderately efficient paralle
implementation and a large variation in the running time to favor the parallelized
code. If we are in the situation to repeat the algorithm until it fulfills some
criterion, then the condition for deploying parallelized code demands &hard
achievable efficiency of the code in caseofstantunning time. Ifthe running
time is random then parallelized code may lead to shorter overall running time
if many processors are available. The theory in its current state, hovdees
not yet provide a condition to quantify the number of processors that Ipeust
available. Nevertheless, the theory provides some clues that randomgun
times of the randomized algorithms more often lead to recommendations for
deploying parallelized code.
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Abstract Every evolutionary algorithm needs to address two important facetforaxpn
and exploitation of a search space. Evolutionary search must conxpilogation
of the new regions of the space with exploitation of the potential solutionsigirea
identified. The necessity of balancing exploration with exploitation needs to be
intelligent. This paper introduces an entropy-driven exploration ankbitafion
approach for evolutionary algorithms. Entropy represents the anobdigtorder
of the population, where an increase in entropy represents an inénediser-
sity. New kinds of entropy to express diversity and to control the entospen
approach are discussed.

Keywords:  Entropy, Evolutionary algorithms, Exploitation, Exploration, Parametatrob

1. Introduction

Evolutionary algorithms (EAS) [1, 9] are general purpose searchinigods
with good yet implicit balance between exploration and exploitation. Explo-

15
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ration is a process of visiting entirely new regions of a search spacefand o

seeing if anything promising may be found in the regions. Exploitation is a

process of using information gathered from the previously visited points in

the search space to determine which regions might be profitable to be visited
next. Exploitation techniques are good at finding local maxima. However, ho

is the balance between exploration and exploitation achieved in EAs? More
importantly, how can the balance be controlled?

In EAs, the selection process and operators (e.g., crossover and muggtio
tablish a balance between the exploration and exploitation of the searah spac
[5]. A selection process drives searching towards the regions ofdsieit-
dividuals. Hence, exploitation is done by selection. The mutation operator
randomly modifies individuals, with a given probability, and thus increases th
structural diversity of the population. From this point of view, the mutation
operator is more an exploration operator. Such an operator helps wereco
the genetic diversity lost during the selection phase and to explore new solu
tions avoiding premature convergence. On the other hand, mutation can also
be seen as an exploitation operator, because most of the genetic matedal is p
served. However, note that in some EAs (e.g., evolutionary strategiegjonuta
has a much bigger exploration role than in genetic algorithms. The crossover
operator combines two or more parents to generate better offspring. aSuch
combination can be derived from the idea that the exchange of information
between good individuals will generate even better offspring. From thiig p
of view, the crossover operator is more an exploitation operator. Haweve
a good crossover operator should also generate individuals in theratkpto
zone. Therefore, good balance between exploration and exploitatiohsiisE
achieved by selection, good mutation/crossover operators and by determin
parametersy,, p., tournament size), which control mutation/crossover and
selection, respectively. There have been a variety of studies on deitggmin
the best control parameter values [3, 4]. The main problem is to find & set o
control parameters, which optimally balances exploration and exploitation: if
crossover and mutation rates are very high, much of the space will beedplo
but there is a high probability of losing good solutions and of failing to exploit
existing schema. If crossover and mutation rates are low, the searehispat
explored. The population diversity is therefore rapidly decreasingeaddhg
up in a premature convergence to a non-optimal solution. Despite that, many
researchers believed that EAs are effective because of a gooafatiplo-
ration/exploitation. However, this ratio of EAs is implicitly controlled. In some
other search techniques such as reinforcement learning [14], enexphcit
control over exploration and exploitation. In EAs, one no longer hafici#xp
and respective control over exploitation and exploration, becauseifficaitd
to delimit exploration from exploitation.
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In this paper, an entropy-driven exploration and exploitation appr@&ach
presented. The exploration/exploitation of the search space is adapliee on
based on the current status of the evolutionary process. The on-kmpaad
tion mechanism involves a decision process as to whether more exploitation or
exploration is needed depending on the current progress of the algaitt
on the current estimated potential of discovering better solutions. This deci-
sion process is described by a domain-specific languageAfP@grammable
Parameter Control for Evolutionary Algorithms) [8]. Because of spaosid-
eration, the paper only presents the experimental results using genetic algo
rithms. Experimenting the mutation role for balancing between exploration
and exploitation in evolutionary strategies is our future work.

The paper is organized as follows. Section 2 describes the related lmork.
Section 3, entropy is introduced to control exploration and exploitatiortiddec
4 shows the examples and experimental results. Finally, Section 5 presents th
conclusion.

2. Related Work

Optimal balance between exploration and exploitation has been mainly con-
trolled by determining the best control parameter values. There are #yvarie
of studies on this topic [4, 7, 8]. Recommendations on control parameters fo
a particular set of problems can be found in [3, 11]. In [4], an ovendé
this problem has been given, where the authors distinguish betweangsara
ter tuning and parameter control. Furthermore, methods for parameteolcontr
have been classified into deterministic, adaptive, and self-adaptiveodateg
the deterministic category adjusts parameters by deterministic rules; the adap-
tive category utilizes the feedback of the evolutionary process to cahiol
direction and magnitude of parameters; and the self-adaptive categmgem
parameters into individuals and undergoes mutation and recombination.

One of the earliest researchers that investigated entropy in EAs waa Ros
[10], whose experiments showed that populations appeared to be stachlin
optima when entropy did not change or decrease monotonically in sugeessi
generations. Rosca used fithess values in a population to define entiibpy a
free energy measure. Our work extends Rosca’s in trying to find diffevays
to compute entropy in EAs. Moreover, using entropy as a measure and pro
grammable parameter control by PR(B], we are able to control exploration
and exploitation in an adaptable manner.

Diversity-Guided Evolutionary Algorithm (DGEA) [13] uses a distance-to
average-point measure to alternate between phases of exploratioxpéwithe
tion. It can be expressed easily as a ER@ogram. Moreover, DGEA does
not use entropy as a measure for diversity.
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3. Entropy in EAs

Entropy is a concept in information theory, thermodynamics, and statistical
mechanics. The basic concept of entropy in information theory has to do with
how much randomness there is in a signal or random event. Shannon [12]
defines entropy in terms of a discrete random evemiith possible statek..n
as:

n 1 n
H(z) = pi 10g2(;) == pilogypi. 1)

Statistical mechanics explains entropy as the amount of uncertainty which
remains about a system, after its observable macroscopic properticsdsave
taken into account. For a given set of macroscopic quantities, such asrtemp
ature and volume, entropy is a function of the probability that the system is in
various quantum states. The more states available to the system with higher
probability, the greater the disorder and thus, the greater the entroplye If
system has only one possible state, there is no uncertainty, and the esftropy
the system is zero. If the system hapossible states which are equiprobable
(pi = 1), the entropy is the highest:

1 1
H = —n—logy(—) = logy n. (2
n

n

High Low

A 4

Entropy

Sizes of Classes
Sizes of Classes
Sizes of Classes

Numbers of Classes Numbers of Classes Numbers of Classes

(a) (b) (©)

Figure 1. The relationship between entropy and the numbers and sizes of classes.

As such, entropy represents also a succinct measure of diversitpgiial
diversity refers to the differences between individuals in a populatidwighw
in nature imply structure (genotype) and behavior (phenotype) diffeenn
EAs, identical genotypes produce the same fithess. Thus, a decregsein
type diversity will necessarily cause a decrease in phenotype divefstyce,
to measure entropy/diversity, one needs to define some structural e®asur
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Such measures, however, might be computational intensive in some irsstance
of EAs (e.g., genetic programming) [2]. Fortunately, based on the deskcrib
entropy/diversity relationship between genotype and phenotype, suagunes
at the phenotype level are sufficient. Figure 1 shows how the numbe:sizas
of classes of a population affect entropy. High entropy in EAs revealpris-
ence of many unique fitness values, where the population is evenly distribute
over those values, as shown in Figure 1(a). Figure 1(c) represanentoopy
computed from a population which contains fewer unique fithess valuesgs ma
individuals have the same fitness.

Rosca [10] calculates entropy for a population by first placing fitndsesa
into fitness classes and counting the size of each fitness class. j;his the
proportion of the population occupied by the population partitioBntropy is

then defined as:
- Zpi logs pi. 3)

This paper extends [10] to experiment with entropy, using differenitilex
cases of fitness classes, to facilitate explicit balance between exploraton a
exploitation.

Number of Individuals
Number of Individuals

Number of Individuals

Fitness

Proportional
Fitness P1 P2 P3 P4 P5 Fitness P4 P2 P1 P3 P5 P1 P3 P5 P7 P9 P11 P13 P15

Figure 2. Linear (left), Gaussian (middle), and Fitness proportional (right).

Figure 2 shows three new cases for defining fitness classes:

m Linear: Assign a predefined yet changeable value to the number offitnes
classespn. For each generation, the interval between the best and worst
fitness values is evenly partitioned intasub-intervals as fithess classes
(the left chart of Figure 2). An individual whose fitness value is otip
in a specific sub-interval is classified into the corresponding fitness class

m  Gaussian: The partition of fitness classes in this case is derived from
Gaussian distribution. For each generation, fithess classes ared'sprea
out’ from the average fithess valuevgrage) with the standard deviation
(o). For example, the upper/lower bound of the first fithess class (P1 in
the middle chart) is computed aserage + o. The boundaries of the
successive classes (P2 — P5) can be generalizectasge + io, where
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i€ Ztandi < 5. For each generation, the lower bound of the leftmost
fitness class is less than or equal to the smallest fithess value, and the
upper bound of the rightmost fithess class is larger than or equal to the
biggest fitness value.

m Fitness proportional: The fitness proportional approach is a variation of
Rosca’ approach [10]. Rosca'’s fithess classes are partitioned ikidind
uals having the same phenotypgsis the proportion of a population oc-

cupied in the'” partition. In our approach, is formalized as%

wheref; is the fithess value of an individual; is the criterion for catego-
rizing fitness classes. As all individuals of a population have diffepgnt
(namely, different fithess values), the number of fithess classegials

the population sizeHopsize). If more than one individual contains the
same fitness value (i.ey = p;, wherei # j), p; log, p; is eliminated in

the Eqgn. (1) and < Popsize. Itis because two identical fitness classes
are not necessary, and the elimination complies with the definition of
diversity. Figure 2(c) shows 15 fithess classes sorteg; bgnd each of
which has one or more individuals occupied.

4, Examples

Entropy driven exploration and exploitation have been experimented with on
the suite of test functions presented in [15]. Due to lack of space oniyges
using theSphere Modedire presented in this section:

d
= a3, (4)

wherex; € [—100,100], d (dimension)= 30, andmin(f) = f(0,...,0) =
0. Best fitness value (B), Average fitness value (A), Worst fithessevaij),
Population Diversity (D), Standard Deviation (S), Linear Entropy (Ey€sian
Entropy (G), Fitness Proportional Entropy (P), and Rosca EntropyntR
respect to a population from generations 0 to 1500 (X-axis) are incindee
following figures. Curves B, A, and W use the same definitions as all other E
curves E, G, P are defined in Section 3; curve S is the standard deviétien o
fitness values of all individuals; curve D is the Euclidean distance betaleen
individuals; and curve R is the entropy defined in [10]. All but entropgves
(E, G, P, and R) use the left Y-axis as the coordinate. The experimestdts
in the figures are the average values out of fifty rounds. Table 1 shevirsitial
values set up for the examples.

Figure 3 shows the results of a deterministic approach, which initializes
pm = 0.11375 and adjusts the value using the Fogarty formula [6]. In Figure 3,
curves E, P, and R dramatically descend before generation 550. SRir&eW,
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Table 1. Initial values of parameters in the following examples.

PARAMETER VALUE PARAMETER VALUE
Maxgen 1500 Popsize 100
Pm 0.005 Pe 0.75
Epoch 50 Round 50

1.00E+06 1 2.00|

1.00E+04

1.00E+402 1

1.00E+00

1.00E-02

1.00E-04 1

1.00E-06 1

1.00E-08

0 500 1000 1500

Figure 3. The Fogarty deterministic approach.

D, and S also precipitately decrease from generations 0 to 550. Sucmaifo
tion indicates that the evolutionary process is inclined from more on exploratio
toward more on exploitation during this early phase. From generations 550 to
1035, more exploitation is applied than exploration such that curves B, &, W,
and D become more and more flat. After generation 1035, the evolutiorary pr
cess reaches the stable state which implies that no further process isamgces
The best value found using Fogarty deterministic approagH se—5.

Figure 4 presents the results using ghsuccess rule [9]. Such a rule deter-
minesp,, to be increased when the successful permutation ¢gtes (greater
than%, and to be decreased whenis less thar%. In Figure 4, a good bal-
ance between exploration and exploitation (yet still more on exploratiojean
found before generation 900: curves E and R are stable in the raatyesdn
1.4 and 1.65 and between 1.55 to 2.00, respectively; curves B, A, WdD a
are smoothly decreased; apg is changed every 50 generations to adjust the
mutation step. From generations 900 to 1220, curves E and R steeply decline
and curve G has downhill move. Such curves show that the evolutionary p
cess is inclined from exploring to exploiting the current regions with religtive
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1.00E-02 1

1.00E-03

1.00E-04 1

1.00E-05

1.00E-06

1.00E-07

1.00E-08

0 500 1000 1500

T 1
Figure 4. ¢ success rule approach.

small mutation steps. From generations 1220 to 1320, all entropy cumes ar
getting flat and curve D has a ‘saw-toothed’ shape. Such curves implghtha
searching process in the exploitation phase and is not stuck in local optirea. T
best value found using tngsuccess rule approachdss2 e—8. Before exam-

init;
while ( t < Maxgen ) do
callGA;
if ( Entropy > 0.5 ) then
pm := pm * 0.82
fi;
if ( Entropy < 0.5 ) then
pm := pm * 1.22
fi;
t := t + Epoch

P ©Oow-JoUld W

= o

end;

Figure 5. PPGasource code for an entropy-driven approach.

ining the last chart, an entropy-driven approach written in ##ntroduced

in Figure 5. When entropy is greater than Qu5, is decreased to facilitate

the exploitation phase. Smaller mutation steps avoid the increase of population
diversity. As entropy is smaller than 0.5, more exploration is required to avoid
local optima. Thereforey,, is increased to diversify the search regions. Such
an example perfectly shows that balance between exploration and expioitatio
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can be adjusted in synergy of entropy ang Figure 6 shows the result using
this source code.

1.00E+06

1.00E+02

1.00E+00

1.00E-02

1.00E-04

1.00E-06

1.00E-08 0.00
0 500 1000 1500

Figure 6. Entropy-driven approach.

In Figure 6, curves E, P, and R steeply decline between generatiorts 0 an
450. Curves B, A, W, S, and D also diagonally traverse the plane. Wiree ¢
E is between its midpoint (at generation 350) and upper bound (0.74 tq 1.68)
pm is decreased (line 5 of Figure 5) to balance exploitation against explaration
As curve E is between its lower bound and midpoint (0 to 0.74), exploration
outperforms exploitation by raising,,. This phenomenon can be observed
from curve D that declines more steeply and has a drastie/-toothetl shape
from generations 400 to 500. Curve R is similar to curve E interms of the shape
and the balance between exploration and exploitation. The best valudifun
the same as in th? success rule. However, please note that the convergence is
much better in the entropy-driven approach. Hence, many fitness toakia
over 500 generations can be skipped.

Figures 3, 4, and 6 also conclude that the linear and Rosca apprdaches
defining fitness classes are superior to Gaussian and fitness proalosties in
terms of providing the information for balancing exploration and exploitation.

5. Conclusion

The opinions on the research on exploration and exploitation are still widely
divided [4]. In this paper, we introduce a novel entropy-driveriepgiion and
exploitation approach. The balance between exploration and exploitation is
fulfilled by the synergy op,,, p. and entropy on-line. The on-line adaptation
mechanism involves PR&as to whether more exploitation or exploration is
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needed depending on the current progress of the algorithm and onrtieatc
estimated potential of discovering better solutions. The experimental results in
Figures 3, 4, and 6 show that our approach can easily interpret therinéof
exploration and exploitation using curve E and auxiliary curves.
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Abstract Although a large number of evolutionary algorithms have been progossf-
ciently treat multimodal problems, it is currently unclear under what itimms
they can be faster than iterated local search algorithms. We tackle thisoques
assuming we had means to efficiently and errorlessly determine thegona:-
ing basin of attraction for each individual (basin identification) by emplgwn
simplified niching model EA that avoids superfluous local searchesitéarlo
simulations show that outperforming the iterated local search is possitdigf-bu
ficult; the expected speedup is rather low if basins are approximatelfhequa
sized.

Keywords:  Niching evolutionary algorithms, Basin model, Monte Carlo simulations

1. Introduction

Niching in evolutionary algorithmg{EA) appears to be a heterogenous col-
lection of techniques applied to enhance their ability to cope with multimodal
objective functions by implementing some form of parallelization, either in
terms of search space or time, or both. Does it contain all EA variants sug-
gested for multimodal optimization? Surely not. But to state what exactly dis-
tinguishes niching approaches from other ones seems non-trivial, espital
existing, partly contradictory definitions—tl&olutionary computatioEC)
community apparently does not yet possess a unified taxonomic view on mul-
timodal evolutionary optimization. It is our aim to contribute to a movement
into this direction by investigating what niching actually is and what it can do
to improve evolutionary algorithms.

1.1 Niching Definitions

Out of the large set of publications dealing with niching or similar techniques
in EC (e.g., De Jong [4] and Goldberg [7] as some of the earliest) we select
only two opinions to show where to locate possible disagreements in defining

25
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niching. Mahfoud [12] gives the following functional specification ofhing
methods in an optimization context (p. 61):

The litmus test for a niching method, therefore, will be whether it posséssesmpability to
find multiple, final solutions within a reasonable amount of time, and to maiti@im for an
extended period of time.

He additionally states that the multiple solutions correspond to multiple local
optimizers. Beyer et al. [6] include the process of separation, too. twe
they also add diversity maintenance in their definition:

Niching—process of separation of individuals according to their states irséfaech space
or maintenance of diversity by appropriate techniques, e.g., locallptipn models, fithess
sharing, or distributed EA

Whenever speaking of niches in EAs for static black box optimization, au-
thors usually identify them with basins of attraction, at least for real-vaiped
timization. As Mahfoud points out, diversity maintenance is related to niching
but must not be pursued too rigorously because it enables, but dogsar-
antee finding many basins, depending on the basin distribution within search
space. In this sense, combining parts of both specifications, referrbastos
of attraction, and leaving out diversity maintenance leads us to the following
new definition:

Niching in EAs is a two-step procedure that a) concurrently or subsgtudistributes indi-
viduals onto distinct basins of attraction and b) facilitates approximation of tneesponding
(local) optimizers.

Undoubtedly, all EAs have local search capabilities. Therefore, it must
be the process of locating basins that induces difficulties and requipesi-€x
mentation with many EA variants to establish niching. In accordance to the ex-
plicit/implicit diversity maintenance scheme suggested by Eiben and Smith [5],
we further partition niching EAs into two groups, performing explicit or im-
plicit basin identification Explicit basin identification methods—detecting the
basin of each individual—divide the individuals into subpopulations, r@icg
to their basins.

1.2 Existing Approaches

Over the last 30 years, a large variety of niching techniques has bgen su
gested. Comprehensive comparative studies are rare, but the existng (
Mahfoud [11], Watson [23]) give hints on the relation between fitnesisieape
properties and performance of different niching methods. Howeespite
several recent approaches (Beasley et al. [8frdvski [16, 17], Jelasity [8],
Ursem [21], Wineberg [24], Li et al. [9], Streichert et al. [20],i§}19], Ando
et al. [1]), in the face of a multitude of possibilities one is tempted to resort to
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the ‘traditional’ methodsrowding[4] and sharing[7], or variations thereof.
What is the reason for this dissatisfactory tentativeness? There maydralse
e.g.:

»  The diverse character of the proposed methods, algorithmically as well as

indescent from different origins, complicates gathering a viable owervie
Available results are not directly comparable.

= Only few taxonomic attempts exists for multimodal EAs, and the existing
ones by Ursem [22], and Eiben and Smith [5] utilize different, mutually
incomparable criteria, as avoid/repair strategy in the former and diversity
maintenance in the latter case.

= The aspired task is not concrete enough or unreachable.

As the stream of new methods does not cease, one may ask what the moti-
vation behind designing new niching EAs is. The seemingly underlying, yet
unreached aim is to convincingly beat one of the simplest algorithms for mul-
timodal objective functions, the iterated/parallelized hillclimber/local search.
According to the NFL, this task is venturous when optimizing general multi-
modal problems, but it may be possible for problem classes exhibiting certain
exploitable properties.

1.3 Biological Background

Importing concepts from biology (ecology), which undoubtedly is the origin
ofthe generalidea of niching for EAs, appears problematic. Biologistterad
to view separation into niches as a process the affected living beingslgtiike
part in, also treated asiche constructionOdling-Smee et al. [15]. Whereas
individuals in canonical EAs are merely collections of values without a ‘life
of their own’, living beings act on highly dynamic fithness landscapes arst mu
pursuit several objectives (e.g., food and reproduction).

The related problem of speciation—the term species often denotes sepa-
rate subpopulations in niching EAs—currently is one of the most progeessi
research topics in evolutionary biology, with Mayr’s reproductively isada
populations [13, 14] and the allopatric (geographic) speciation mechassm
predominant concepts. Although these two can be (and are) adaptexkfor
EAs, biologists are still far from having reached consensus conggatiiiis-
sues raised with the problem of speciation, and thus not able to provideerpr
foundation to argue on in the EC field. The current state of the speciation de
bate is summarized in Coyne and Orr [3]. As an example for a controversially
discussed yet unsolved problem, we name the formation and maintenance of
sexual reproduction. This issue is dismissed in EA research, in faasestial
populations, for which in turn no widely accepted speciation concept éRists
biology. In consequence, biological terms shall be used with extremevbare
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applied to niching EAs to prevent conceiving meanings where there &re on
metaphors.

2. Aims and Methods

In the following, our main task is to gather evidence in favor of or against the
(in EC) prevalent belief that niching EAs can outperform iterated locaicke
(ILS, see Lourenco et al. [10]) algorithms. Note that this is an existeral p
condition for designing further niching EAs as these are usually algoritlignica
much more complex. We thus do the second step prior to the first and simply
assume the existence of an efficient basin identification method for population
based EAs. This would enable deciding if any two individuals are located in
the same basin or not. The first question to investigate thus is:

= Given that basin identification works, how much faster can a niching EA
be in terms of aedundancy factofmeasuring superfluous local searches,
see Beasley et al. [2]), compared to ILS algorithms?

We employ a very simple niching model EA and estimate the amount of local
searches needed for reasonable basin numbers and populationysizearts
of Monte Carlo simulations.

3. Simplistic Niching Model EA

Modeling the behavior of a real niching EA on an idealized multimodal
objective function still bears enormous complexity. The whole local search
process in the detected basins must be considered, and is likely to heavily
depend on algorithm and problem parameters.

Hence, for our niching model EA, we choose the single local searafiasfu
measurement. We further assume that for any (start) population of gesants,
abasin identification method exists that returns an errorless search gmastrio
mapping in negligible time. This condition describes an optimal situation—
for any real niching EA, basin identification will require computational iffo
Additionally, it may not be possible to detect the basin of an individual asaso
it enters it. Thus, the implied advantage of our ideal niching EA which consists
of breaking unnecessary local searches at the start may not babéaliz full.

But, unless other techniques are applied to reduce the optimization effprt (e
utilization of attained information to speed up subsequent local searcimgs),
niching EA can not be faster in terms of local searches than the nichinglmode
EA—we obtain an estimation for a lower bound.

In a real niching EA, the number of coveredf a total ofb basins for a
randomly initialized start population would fluctuate according to population
size and basin distribution. However, we set it constant to simplify studying
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Figure 1. Left: Four phases of a heuristic optimization process. We are interesietsicting
to andts. Right: Niching model EA population after initialization and basin identification.
Individuals residing in one basin are connected by lines.

the effect of saving local searches. Summarizing, the model is baseda on th
following assumptions:

» Basin identification is perfect and has zero cost.
= Local searches always succeed and have equal cast of
= Any start population covers exactyof b existing basins.

Without basin identification, one is thrown back to iterated/parallelized local
searches for which the required effort is known [2]. Covering thelesbasin
set with randomly initialized local searches results in a relative local search
overhead, measured by the redundancy fagtor

b
1 >3
R—;i ~ v +Inb. (1)

For entering each of th& basins at least onceé? x b local searches are
necessary on average. Hetesz 0.577 is the Euler-Mascheroni constant.

Instead of conducting single local searches, the niching model EAteiga
starts with arandomly initialized set of individuals and performs only necgssa
local searches until all basins have been visited (Figure 2). We dgaoifg
how the local searches are implemented; they may be realized e.g. by mating
restrictions, or separate populations, or embedded helper methods. Hiote th
basin identification only needs to detect if individuals are located in the same
basin; it is not required to properly recognize each basin as suchréFigu
right).

Whatkind of performance data do niching model EA simulation runs deliver?
Figure 1 (left) displays the phases of any heuristic optimization algorithm in
terms of basin detection. During setup, the algorithm is prepared and started
and yields the first result ity. This approximation phase lasts until the global
optimizer is hit the first time ab. It shall be noted that especially in real-world
applications, this point is often never reached because evaluations nhay be
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niching model EA {
repeat {
randomly initialize individuals o of b basins;
basin identification: match individuals to basins;
select one individual per basia c individuals;
performe local searches on selected individuals;
} until stopped externally (all basins visited);

Figure 2.  Niching model EA in pseudo-code.

costly. The coverage phase is needed to visit each basin at leastmoherds
with t3. Unless the number of basins is known in advance, it seems impossible
to determinegs from inside an optimization algorithm. It is up to the user to
stop it when no new information can be obtained from running furthgr (n
case of the niching model EA; andts are measurable because the basin set
is known. Note that the redundancy factor stated in Eqgn. (1) is equivien
t3 which thus not refers to the expected first hitting time but to the end of the
coverage phase.

In the following, we present two experiments in order to investigate the
influence of basin numbérand coverage/parallelized searchem t, andis
for the niching model EA. Firstly, equally sized basins are studied. Ségond
we review occuring changes for unequally sized basins.

Experiment 1: Global optimizer/coverage detection times, equal basins.
Pre-experimental planning: The appropriate number of repeats is determined
to 10,000 during first tests; relative standard deviations are thus dedreell
below 1 %.

Task: Measurel, andts and detect how they relate to the number of basins
and parallel searches (covered basins)

Setup: We simulate alb, c € {1,2,...,50} : b > ¢ with 10,000 repeats each.
Probabilities for encountering any basin during random initialization aralequ
and set toj .

Experimentation/Visualization: Figure 3 depicts averaged measurestfor
(left) andts (right).

Observations: Whereas the number of parallel searchetearly affects s, it
seems to lack any influence eswhich only depends on the number of badins
(E(tg) = b). To clarify the influence of onts, we picture measured, divided

by the approximation given by Eqgn. (1) (Figure 4).

Discussion: Different values for do not changé, at all, meaning that parallel
searches do not increase or decrease the expected time needecktataire
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Figure 3. Left: l\ﬁgléss(u)red redundancy factots), right: local saesgfcﬁw)es needed to locate the
global optimum {z). Both are averaged from 10,000 simulations per point.
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Figure 4. Measured redundancy facteg)as g
fraction of the approximation for repeated sing|&
N 20
local searches (see Eqn. (1)) for the same nui@- 05
ber of basing. If £ < 0.9, the coefficient of the g 10
observed linear relation is similar t¢/1 — ¢ 0.0

(by visual comparison), resulting in the approx- ‘ ‘ Lo g — ~
imationts (b, c) = /1 — £(v +Inb). 10 20 30 40
basins (b)

global optimum. Approaches targetting at this effect for approximatelylgqua
sized basins are thus doomed to fail. Nevertheless, the amount of locdiesga
needed for complete coveragg)(is reduced for > 1. However, the save is
small and the utilized basin identification technique must be very efficient not
to loose it again.

Experiment 2: Deteat, andts for unequally sized basins.

Pre-experimental planning: The maximum size difference was fixedltoas
first experiments indicate a sufficient change in obtained results.

Task: Similar to Exp. 1.

Setup: Similar to Exp. 1, but with uniform randomly distributed relative basin
sizes betweem.0 and10.0.

Experimentation/Visualization: Averaged» andt; measures are depicted in
Figure 5.

Observations: Firstly, measured values fag arrive at much higher values
than for the case of equal basins. Secondly, the growth rate on theabdsin
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Figure 5. Redbg;gg%‘y factorg, left) and local searches Bgsmg(me global optimizer, (
right), averages of 10,000 simulations. Relative basin size sizdstark).

(c = 1) appears to be between logarithmic and linear—compared to logarithmic
in Exp. 1. In contrast to the findings of Exp.th,now is affected by changing
values ofc. Forb = ¢, that is, all basins are covered by the parallel search,
to = b still holds. But the lowef; is, the larget; gets.

Discussion: Obviously, optimization gets harder if basins are unequally sized.
This is well in accordance with expectation. Naw,andts both depend on

7. We may conclude that larger relative basin size differences lead ta large
potential performance advantages of niching EAs. On the other hasih ba
identification probably gets harder, too.

4. Conclusions

Previous studies (e.g., Preuss et al. [18]) have shown that canBrisalre
not well suited for multimodal optimization. Are niching EAs? According to
our simulations, the is some exploitable potential, but itis small for equally sized
basins. Itappears that chances are getting better the larger basiiffsizades
are. However, we assumed existence of an efficient basin identificatibodje
which utilizes population topologies in search space and thus depends on the
number of dimensions of a problem. Whether and for what problems such
technique can be fast enough to enable outperforming an ILS still remains to
be seen.

References

[1] S. Ando, E. Suzuki, and S. Kobayashi. Sample-based Crowdigtipdd for Multimodal
Optimization in Continuous Domain. IRroc. IEEE Congress on Evolutionary Compu-
tation (CEC 2005)Edinburgh, UK, 2005.

[2] D. Beasley, D.R. Bull, and R.R. Martin. A sequential niche techniffuenultimodal
function optimization.Evol. Comput.1(2):101-125, 1993.

[3] J.A. Coyne and H.A. OrrSpeciation Sinauer Associates, Inc., Sunderland, MA, 2004.



Niching Prospects 33

[4]
(5]
(6]

[7]

(8]
9]
(10]

(11]

[12]
[13]
[14]
[15]

(16]

(17]

(18]

(19]

(20]

(21]

K.A. De Jong. An analysis of the behavior of a class of genetic adaptive systehis.
thesis, University of Michigan, 1975.

A.E. Eiben and J.E. Smithlntroduction to Evolutionary ComputingSpringer, Berlin,
Heidelberg, New York, 2003.

H.-G. Beyer, E. Brucherseifer, W. Jakob, H. Pohlheim, B. ®wmif, and
T.B. To. Evolutionary algorithms — terms and definitions. VDI/VDE guideline
3550, leaf 3, 2003 s11-www. cs.uni-dortmund.de/people/beyer/EA-glossary/
def-engl-html.html.

D.E. Goldberg and J. Richardson. Genetic algorithms with sharingdittimodal function
optimization. InProc. 2nd International Conference on Genetic Algorithpegyes 41-49,
Mahwah, NJ, USA, 1987.

M. Jelasity. Uego, an abstract niching technique for global optimimaticect. Notes
Comput. S¢.1498:378-387, 1998.

J.-P.Li, M.E. Balazs, G.T. Parks, and P.J. Clarkson. A spamaserving genetic algorithm
for multimodal function optimizationEvol. Comput.10(3):207-234, 2002.

H.R. Lourenco, O. Martin, and T. &zle. Iterated local search. In F. Glover and
G.A. Kochenberger, editorslandbook of MetaheuristicKluwer, 2002.

S.W. Mahfoud. A comparison of parallel and sequential nichirghods. InProc. 6th
International Conference on Genetic Algorithnmages 136-143, San Francisco, CA,
USA, 1995.

S.W. Mahfoud Niching methods for genetic algorithn8hD thesis, University of lllinois
at Urbana-Champaign, IL, 1995.

E. Mayr. Systematics and the Origin of Speci€olumbia University Press, New York,
1942.

E. Mayr. Species, classification, and evolution. In R. Arai, M. Karad Y. Doi, editors,
Biodiversity and EvolutionNational Science Museum Foundation, Tokyo, 1995.

F.J. Odling-Smee, K.N. Laland, and M.W. Feldmétiche Construction—The neglected
process in evolutianPrinceton University Press, Princeton and Oxford, 2003.

A. Pétrowski. A clearing procedure as a niching method for genetic algorithins
Proc. IEEE International Conference on Evolutionary Computation QCI©96) pages
798-803, Nagoya, Japan, 1996.

A. Petrowski and M.G. Genet. A Classification Tree for Speciation.Ptac. IEEE
Congress on Evolutionary Computation (CEC 199%)ges 204-211, Washington, DC,
USA, 1999.

M. Preuss, L. Sabnemann, and M. Emmerich. Counteracting genetic drift and disruptive
recombination in £ T \)-ea on multimodal fitness landscapes. Amc. Genetic and
Evolutionary Computation Conference (GECCO 20@&)ges 865-872, New York, NY,
USA, 2005.

O. M. Shirand T. Bck. Niching in evolution strategies. Rroc. Genetic and Evolutionary
Computation Conference (GECCO 200pages 915-916, New York, NY, USA, 2005.

F. Streichert, G. Stein, H. Ulmer, and A. Zell. A clustering basedingtmethod for
evolutionary algorithms. IfProc. Genetic and Evolutionary Computation Conference
(GECCO 2003)pages 644—645, Chicago, IL, USA, 2003.

R. K. Ursem. Multinational evolutionary algorithms. Broc. IEEE Congress on Evolu-
tionary Computation (CEC 1999yolume 3, pages 1633-1640, Washington, DC, USA,
1999.



34 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

[22] R. K. Ursem. Models for Evolutionary Algorithms and Their Applications in System
Identification and Control OptimizatiorPhD thesis, EVALIfe, Department of Computer
Science, University of Aarhus, 2003.

[23] J.-P. Watson. A performance assessment of modern nichétigatis for parameter opti-
mization problems. IRroc. Genetic and Evolutionary Computation Conference (GECCO
1999) volume 1, pages 702-709, Orlando, FL, USA, 1999.

[24] M. Wineberg. Improving the Behavior of the Genetic Algorithm in a Dynamic Environ-
ment PhD thesis, Carleton University, Ottawa, Canada, 2000.



CONTROL PARAMETERS IN SELF-ADAPTIVE
DIFFERENTIAL EVOLUTION

Janez Brest, VilienZumer, Mirjam Sepesy Maec
Faculty of Electrical Engineering and Computer Science
University of Maribor, Slovenia
{janez.brest,zumer,mirjam.sepesy}@uni—mb.si

Abstract In this paper we present experimental results to show deep view on éibw s
adaptive mechanism works in differential evolution algorithm. The resilts
the self-adaptive differential evolution algorithm were evaluated on thef 24
benchmark functions provided for the CEC2006 special sessionmsirained
real parameter optimization. In this paper we especially focus on hovettieot
parameters are being changed during the evolutionary process.

Keywords:  Control parameters, Differential evolution, Self-adapting

1. Introduction

Differential Evolution (DE) [8, 9, 10, 13, 14, 15, 16] has been showhe
a powerful evolutionary algorithm for global optimization in many real prob-
lems [11, 12]. Although the DE algorithm has been shown to be a simple yet
powerful evolutionary algorithm for optimizing continuous functions, asee
still faced with the problem of preliminary testing and hand-tuning of the evo-
lutionary parameters prior to commencing the actual optimization process [16].

Different problems usually require different setting for the controbpae-
ters. Self-adaptation allows an evolution strategy to adapt itself to anyajener
class of problems by reconfiguring itself accordingly, and to do this without
any user interaction [1, 2, 6]. Based on the experiment in [4], the sitges
of changing control parameters during the optimization process is also con-
firmed. In literature, self-adaptation is usually applied tokhendC' R control
parameters [3, 4].

In our previous paper [5] the performance of the self-adaptive reffitial
evolution algorithm was evaluated on the set of 24 benchmark functiors pro
vided for the CEC2006 special session on constrained real paraméteiza-
tion [7]. The method in [5] extended individuals that have not only decision
variables but also control parametdrsand C' R, whereF' is a scaling factor
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andCR is a crossover rate. These parameters are changed/optimized by DE,
too. The authors utilized the lexicographic ordering, in which the constraint
violation precedes the objective function, to solve constrained problems.

In this paper we investigate how these parameters adapt during search fo
some of the test functions (i.e. some typical runs). Do they really changle muc
and how?

The main focus in this paper is related with our previous paper [5] where the
performance of the self-adaptive differential evolution algorithm watuesed
on the set of 24 benchmark functions [7]. In [5] results are presehiaad
efficient our self-adaptive DE algorithm is on constraint-base optimization.
this paper we focus only on a self-adapting control parameters. Wetwant
answer, how the control parameter are being changed during the exalytio
process.

2. Background

In this section we give overview of previous works, which gives thasbas
of this paper. The original differential evolution (DE) algorithm is brieflep
sented. Then the self-adaptive mechanism used in our DE algorithm is dutline

21 The Differential Evolution Algorithm

DE creates new candidate solutions by combining the parent individual and
several otherindividuals of the same population. A candidate replaqesre et
only if it has better fitness value. DE has three parameters: amplificatiom facto
of the difference vectotf’, crossover control parametér,R, and population
size,NP.

The population of the original DE algorithm [13, 14, 15] contaW® D-
dimensional vectors:

3_3},@ = {xi,l,G, Ti2.Gy--- 7131‘,D,G}7 1=1,2,...,NP.

G denotes the generation. During one generation for each vector, DEyasmplo
the mutation and crossover operations to produce a trial vector:

ﬁi,G = {ui,l,Gaui,Q,Ga .o '7ui,D,G}7 i = 1727 s 7NP

Then a selection operation is used to choose vectors for the next tienera
(G+1).

The initial population is selected randomly in a uniform manner between the
lower (x;0,,) and upper £;..,,) bounds defined for each variable. These
bounds are specified by the user according to the nature of the probksen. A
initialization, DE performs several vector transforms (operations) in egs®
called evolution.
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2.2 Mutation Operation

Mutation for each population vector creates a mutant vector:
Tiq = Vic = {vi1,6,vi26,-->VipG) i =1,2,...,NP.

Mutant vector can be created by using one of the mutation strategies. arkere
many original DE strategies. The strategies used in this paper are:

= ‘rand/1" Ui,G = fm,G + F- (er,G — fr37g),

= ‘current to best/1";
77i,G = -i"i,G +F- (fbest,G - fi,G) +F- (fm,G - frz,G)v

= ‘rand/2"
6i,G = fTLG +F- (f”"Q,G - frg,G) +F- (f’m,G - frs,G)a

where the indexes,, o, r3, 74, 75 represent the random and mutually different
integers generated within ranfle NV P] and also different from indekx F'is a
mutation scale factor within the rang 2], usually less tha. Z. ¢ is the
best vector in generatio@.

2.3 Crossover Operation

After mutation, a ‘binary’ crossover operation forms the final trial vector
according to the-th population vector and its corresponding mutant vector.

Ui i = Vi,j,G if Tand((), 1) < CROIj = jrand
b z;jq Otherwise

i=1,2,...,NPandj=1,2,...,D.

CR is a crossover parameter or factor within the rafige) and presents the
probability of creating parameters for trial vector from a mutant vectatexn
Jrand 1S @ randomly chosen integer within the rarigeN P]. It is responsible
for the trial vector containing at least one parameter from the mutant vector

2.4 Selection Operation

The selection operation selects according to the fitness value of the popu-
lation vector and its corresponding trial vector, which vector will suntive
be a member of the next generation. For example, if we have a minimization
problem, we will use the following selection rule:

2yl = e I fliie) < f(Tig),
ve #;c otherwise
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2.5 The Self-Adaptive Differential Evolution Algorithm

In [4] a self-adaptive control mechanism was used to change the tontro
parameterg” andC' R during the run.

iva 1 1 2 2 3 3
X16 e CR s Fic | CRc | Rs CR G
iva 1 1 2 2 3
X206 R CR Re | CRs | Re CRyc
iva 1 1 2 2 3 3
‘ XNP.G ‘ Fup.c ‘ CRirc ‘ Fup.c ‘ CPNP,G‘ Fup.c ‘ CRNP,G‘
\\/ first DE strategy second DE strategy  third DE strate
population

Figure 1. Self-adapting: encoding aspect of three DE strategies.

Figure 1 shows a solution how the control parameters of three original DE’
strategies are encoded in each individual. Each strategy uses its owal con
parameters. The solution to apply even more strategies into our algorithm is
straight-forward. New control parametef$,,, andCR} |, k = 1,2,3,
were calculated as follows:

Pk _ {Fl + randy * F, if randy < 1,
1,G+1

Fia otherwise,

C’RI»“G - rands if randy < 7o,
nG CR;c otherwise.

and they produce control parametdrsand CR in a new parent vectork
represents selected DE strategy. When a new parent vector is calcolated
one strategy is active. In each iteration one strategy is chosen to be. active
rand;, j € {1,2,3, 4} are uniform random values withinthe rarigel]. = and

T9 represent probabilities to adjust control parameféendC R, respectively.

T1, T2, F1, F,, were taken fixed values1, 0.1, 0.1, 0.9, respectively. The new

takes a value fron.1, 1.0], and the new”'R from [0, 1] in a random manner.

F; c+1 andCR; 41 are obtained before the mutation is performed. So they
influence the mutation, crossover and selection operations of the new vecto
Ti,G+1-

In experiments in [5], the proposed jDE-2 algorithm uses the following three
strategies ‘rand/1/bin’, ‘current to best/1/bin’, and ‘rand2/bin’. Thstfpair of
self-adaptive control parametefsandC R belongs to the ‘rand/1/bin’ strategy
and the second pair belongs to ‘current to best/1/bin’ strategy, etc. die p
lation sizeN P was set to 200. The maximal number of function evaluations
(FES) is 500,000 for all benchmark functions.
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The algorithm distinguishes between feasible and infeasible individuals: an
feasible solution is better than any infeasible one.

The jDE-2 algorithm was tested on 24 CEC2006 special session benchmark
functions. For 22 functions the jDE-2 algorithm has successfully foaaslible
solution. Forg20 andg22 functions no feasible solution has been found.

3. Experimental Results

In this section we present results of experiments, which were made in order
to find an answer, how the control parameters are adapted during emalytio
process.

In self-adaptive DEF andC R values are being changed during evolutionary
process. If we want to look into evolutionary process, we should lobtnass
values.

In Figures 2—4F' andC'R values of the active strategy are depicted for the
selected set of function®1, ¢02, g05, 07, ¢10, g14, g15, g16, g17, g18, g19,
¢20. A dotis plotted only when the best fithess value in generation is improved.

The values of control parameterandC R for functiong01 are quite equally
distributed,F' takes value from th@.1, 1] andC'R from the[0, 1].

For functiong02 the values of control parameté&rare in most cases less or
equald.5 in the first 200,000 evaluations. After thiatvalues are predominantly
greater thai®.5. The values of control paramet€tR are near 1 mostly.

Sometimes algorithm solves test problem before reaching the maximal num-
ber of FES, therefore some graphs (e.g., functigis ¢10, etc.) have not dots
for all FES.

It can be seen that the graphs differ from each other to a great extard
difficult to obtain (general) one set of control parameter values, whittHitwv
the best for all benchmark problems.

In the additional experiment, we run our algorithm without self-adaptation.
The values of control parameters wdre= 0.5 andC R = 0.9, and they were
fixed during evolutionary process.

The algorithm with self-adaptation performs 11 % better than algorithm with
fixed control parameters. The detailed performance results of oundaftive
algorithm are in [5].

4. Conclusions

This paper shows thatthe DE control parameféandC R changed (adapted)
their values during evolutionary process. For selected CEC2006 tvemkh
functions the graphs of" and C'R values during the evolution process are
presented in the paper.

The experimental results confirm the hypothesis that the best setting for
control parameters is problem dependent.
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In this paper we used three DE strategies. The analysis how the control

parameters are changed in particularly DE strategy is a challenge foittine fu
work.
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Abstract Although different mechanisms can be used for the termination of an izption
run, only two of them are frequently used in the literature. However, betth-m
ods have disadvantages, particularly for the optimization of real-woolol@ms.
Because especially for practical applications it is important when an ojtiimiz
algorithm is terminated as they usually contain computationally expensive-obje
tive functions, the performance of several stopping criteria that estaptively
to the state of an optimization run is evaluated for a Particle Swarm Optimization
algorithm in this work. The examination is done on the basis of a constrained
single-objective power allocation problem. Suggestions from formek won-
cerning stopping criteria for unconstrained optimization are verified angber-
isons with results for Differential Evolution are made.

Keywords:  Constraints, Particle swarm optimization, Stopping criteria

1. Introduction

Fortheoretical aspects of evolutionary algorithms (or population-basedrs
algorithms in general) stopping criteria are usually not important. Howewer, f
practical applications the choice of stopping criteria can significantly infleien
the duration of an optimization run. Due to different stopping criteria an op-
timization run might be terminated before the population has converged, or
computational resources might be wasted because the optimization run is ter-
minated late. Real-world problems mostly contain computationally expensive
objective functions that may result in optimization runs that take several day
thus wasting of computational resources has to be prevented.

In the literature mostly two stopping criteria are applied: Either an error
measure in dependence on the known optimum is used or the number of func-
tion evaluations is limited t¢fe,,,... These criteria are perfectly suitable for
e.g. comparing the performance of different algorithms but for solviat re
world problems there are some drawbacks. The first mentioned methodthas th
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disadvantage that the optimum has to be known, so it is generally not appli-
cable to real-world problems. The second method is highly dependent on the
objective function. Because generally no correlation can be seendrete
optimization problem and the required number of function evaluatifs,..

has to be determined by trial-and-error methods usually. Because the numbe
of function evaluations that is needed for convergence is subject tadlimns

due to the randomness involved in the evolutionary process, a safety rfargin
femaz IS Needed. The fluctuations can be significant as can be seenin [ wher
a test suite of 24 functions has been examined and the standard deviation of
function evaluations for reaching a predefined error measure wa<.8p 1000.

If a real-world problem with an unknown optimum would result in a similar
standard deviation, it would be difficult to chooge,, -

Therefore, it would be better to use stopping criteria that consider kdgele
from the state of the optimization run. Thus, the time of termination would be
determined adaptively, so function evaluations could be saved.

Several stopping criteria are reviewed in [8] and [9] that are senditive
the state of the optimization run by observing the improvement, movement or
distribution of the population members. In [8] stopping criteria are tested for
unconstrained single-objective optimization using Particle Swarm Optimization
(PSO) [1], and Differential Evolution (DE) [3], while in [9] the criteria\e
been adapted for constrained single-objective problems using DE. hahis
it will be examined if the suggestions regarding stopping criteria for PS@ fro
[8] hold for the real-world problem of optimizing a power allocation scheme.
Furthermore, a comparison with the results for DE in [9] will be done.

This work is organized as follows: Section 2 gives a brief introduction to
Particle Swarm Optimization and in Section 3 the used stopping criteria are
reviewed. In Section 4 results are shown and Section 5 closes with clamdus

2. Particle Swarm Optimization

Particle Swarm Optimization is derived from the behavior of social groups
like bird flocks or fish swarms. Optimization is achieved by giving each individ
ual in the search space a memory for its previous successes, informadiain a
successes of a social group and providing a way to incorporate thiddahge
into the movement of the individual. Therefore, each individual (callet-pa
cle) is characterized by its positiaf, its velocityd;, its personal best position
p; and its neighborhood best positiglh. Several neighborhood topologies
have been developed [4]. In this work then-Neumanmopology is used as it
showed promising results in the literature, e.g., in [2].

The dynamic behavior of PSO is generated by the update equations for ve-
locity and position of the particles:

ﬁi(t + 1) =w - ’17@(75) +c1rm [@(t) — f,(t)] + 627“2[]79(75) — fz(t)] (l)
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Ti(t+1)=2;(t) + v;(t + 1) (2)

Due to these equations the particles are drawn towards their personabbies
tion and their neighborhood best position, and furthermore the velocityeof th
previous iteration is kept weighted with the inertia weightOther parameters
arec; andcs which influence the impact of the cognitive and social component,
respectively. To add a stochastic element to the movement of the particles, the
numbersr; andr, are chosen randomly from the interval [0,1] in each itera-
tion. Further parameters of PSO are the populationSiZeand the maximum
velocity Vinaz.

The parameter settings for this examination are derived from a parameter
study using the same optimization problem (yet unpublished}: 0.6, ¢c; =
0.4, co = 1.4, NP = 64, Vinao = 5 (Xmaz — Xmin)-

Constraint-handling is done by modifying the replacement procedurefeor p
sonal and neighborhood best positions [5]. If two veciiasdb are compared,
a is preferred if both vectors are feasible afhtlas a better objective function
value, or if both are infeasible anthas the lower sum of constraint violation,
or if d is feasible and is not. No additional parameters are needed for this
constraint-handling technique.

3. Stopping Criteria

Stopping criteria are needed to terminate the execution of optimization al-
gorithms. In contrast to using a maximum number of function evaluations as
a stopping condition, other criteria have the advantage of reacting aelstptiv
to the state of the optimization run, thus function evaluations can be saved.
Unfortunately, it seems to be impossible to define a stopping criterion without
introducing one or more parameters. The parameter settings generalhddepe
on the given optimization problem. However, it should be investigated if there
are stopping criteria for which the parameter settings are robust to change
if parameters can be set depending on certain aspects of the probleras-It is
sumed that the general behavior of different optimization problems to s@ppin
criteriais similar. It should be kept in mind that limiting the number of function
evaluations as a stopping criterion also incorporates the choice of aproble
dependent parameter. Therefore, it is favorable to examine othabilibes
for stopping that contain the advantage of reacting adaptively to the stiie of
optimization run.

In the following the stopping criteria that incorporate information from the
state of the optimization run are reviewed shortly. Note that there is a change
compared to [8]: Instead of using the current positignior the calculation of
stopping conditions, the personal best positignare used here.

Improvement-based criteri@rminate an optimization run if only small im-
provement is made. Three different conditions are used here:
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ImpBest The improvement of the best objective function value is moni-
tored. If it falls below a given thresholdfor a number of generations

the optimization run is terminated.

ImpAv Similar to ImpBest but instead of observing the best objective
function value, the average value computed from the whole population
is checked.

NoAcc Itis observed if any neys; are accepted in a specified number of
generationg. For DE this criterion is slightly different (the acceptance
of new population members is considered).

For movement-based criteriaot the improvement but the movement of in-
dividuals is regarded. Two variants of movement-based criteria arédened
that differ in the regarded space:

MovObj The movement of the individuals with respect to their objective
function value (objective space) is examined if it is below a threshold
for a number of generations MovObjis different fromimpAvonly if

the regarded algorithm allows deterioration of the individuals’ objective
function value. This is the case for PSO in contrast to DE, byt ase
considered here instead 8f, MovObj = ImpAvholds in this case also.
Therefore, this criterion is not regarded further in this work.

MovPar. The movement with respect to positions (parameter space) is
checked if it is below a thresholdfor a number of generations

The distribution-based criteriaconsider the diversity in the population. If
the diversity is low, the individuals are close to each other, so it is assuraed th
convergence has been obtained.

StdDev It is checked if the standard deviation of positions is below a
thresholdm.

MaxDist The distance from every population member to the best in-
dividual is observed. The optimization run is stopped if the maximum
distance is below a threshotd.

MaxDistQuick MaxDistQuickis a generalization dflaxDist Instead of
using the whole population for the computation of the maximum distance
to the best population member, only the be%t of the individuals are
regarded. To achieve this, a quicksort algorithm is employed for sorting
the individuals due to their objective function value.

Diff : The difference between best and worst objective function is cldecke
if it is below a thresholdi. A further demand is that at leas6 of the
individuals are feasible because otherwi# could lead to undesired
results if e.g. only two individuals are feasible and they are close to each
other by chance. In contrast to the previous three criteria that arerused
parameter spac®jff considers objective space.
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Because functions have different features it may be beneficial toleoup
several criteria. Up to now twoombined criterighave been regarded:

m  ComCrit This criterion is a combination dinpAvandMaxDist Only
if the condition oflmpAuvis fulfilled, MaxDistis checked.

» Diff_MaxDistQuick Diff is a criterion that is rather easy to check, but it
fails with flat surfaces. Therefore, if its condition has been fulfilled, the
MaxDistQuickcriterion is checked afterwards.

4, Results

As a basis for the examination a real-world problem was used that consists
of optimizing a power allocation scheme for a Code Division Multiple Access
(CDMA) system [9]. The overall power is minimized considering the powers
of 16 individual users as parameters. Because multiple users sendi-data s
multaneously in a CDMA system, multi-user interference degrades the system
performance. By the application of a parallel interference cancelatibnitpee
the multi-user interference can be estimated and subtracted from theegkceiv
signal before detection, thus the system performance improves. dtergfe
convergence of the parallel interference cancelation technique iporeted
in the optimization problem as a constraint.

In the following results are shown sorted according to the type of stopping
criterion. Optimization runs are regarded as successful if an objecthe f
tion value of f(z) < 18.5 has been reached [9]. As performance measures
the convergence rate and the success performance (mean numbectafrfu
evaluations weighed with the total number of runs divided by the number of
successful runs) are given. To allow easy comparisons, figuoesirsty suc-
cess performances are scaled to 20,000. A maximum number of generations
Gmaz = 1000 is used to terminate the algorithm if the examined stopping crite-
ria do not lead to termination in appropriate time. If a run is not stopped before
G.mae 1S reached, the run is considered unsuccessful.

4.1 Improvement- and Movement-Based Criteria

BecausdmpAy, ImpBestandMovPar rely on similar mechanisms, the con-
vergence rate and success performance of these criteria are disfuggéher.
Considering the convergence rate, almost no dependence on the rofigéer
erationgy is observable (Figure 1(a)). For decreasing values of the improvement
thresholdt generally the convergence rate increases, exceglémPar that
was not able to terminate several runs before readfiipg, for small settings
of t.

The success performance lofipAvand MovPar (Figure 1(b)) has similar
characteristics as for DE in [9]. FdmpBestthe results are different: The
success performance for= 5 is considerably better for PSO. Furthermore,
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[ Jimpav
[limpBest
I MovPar

[ Jimpav
[1impBest
I MovPar

convergence rate in %
success performance

10 107 s 5
(a) Convergence rate (b) Success performance

Figure 1. Results for criteridmpAy, ImpBestandMovPar.

the success performance is dependeritanmd independent fromwhereas for
DE it depends more og than ont. The reason for the different results is not
clear yet. Itis interesting to note that although the convergence rated®ar

is smaller fort = 10~2 than fort = 10~%, the success performance is better
due to a large difference in the average number of function evaluations.

The results foimpAvandIimpBestare considerably better here than in [8]
for unconstrained single-objective problems. FopAvthe reason might be
that the personal bests are regarded here instead of the curréimnsodut
ImpBestdid not change because only the global best result is regardedndn co
trast, forMovParthe results are worse. However, suitable parameter settings for
ImpAvandimpBestcannot be derived from knowledge about the optimization
problem. Furthermore, it is indicated in [8] that problems arise for functions
with a flat surface, but it is usually not known in advance if a functiorspeses
this property. Therefore, it will be necessary to do examinations onmpen
settings for the application of these stopping criteria. Based on the examined
problem parameter settings @k 10...15 andt ~ 107°...10~* are recom-
mended. However, these settings are dependent on the optimization problem
and the desired accuracy.

CriterionNoAccshowed good results for DE in [9] but not a single run could
be terminated before reachirdg,,,, for PSO. Apparently, the personal best
positions improve too often to allow a stopping criterion IkeAcc

4.2 Distribution-Based Criteria

For MaxDistthe convergence rate does not get above 80 % because of runs
that could not be terminated before reachiig,... The results foStdDevare
shifted in contrast tdMaxDist and higher convergence rates are reached (Fig-
ure 2(a)). Furthermor&tdDewyields a lower minimum success performance
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Figure 3. Results for criterioMaxDistQuick

thanMaxDist(Figure 2(b)). The performance is highly dependent on the setting
of m. However, it is connected to the desired accuracy. Similar results have
been found in [9] for DE. Compared to DE, the same settings of parameter
yield the lowest success performancesNtaxDistandStdDey respectively.

The convergence rate and success performanégagDistQuickis given
for 1073 < m < 10~!in Figures 3(a) and 3(b). Other parameter settings are
omitted because the success performance was above 20,000. Theyeonee
rate is fluctuating form = 0.1 with different settings op, indicating that the
performance is not robust for these parameter settingsmFer{10=2, 103}
and varyingp the convergence rate is approximately constant but the success
performance rises with increasipg Thus, a similar result is obtained as in
[8]: Because less function evaluations are needed for convergfesioaller
values ofp are used and the convergence probability is not compromised, it is
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recommended to use e.§.3 < p < 0.5. For DE the success performance
depends less op and increases more strongly with decreasing In spite

of the increased computational effort for the incorporated quickégotithm,
MaxDistQuickis considered to be superior MaxDist and StdDevfor PSO.

For future work it would be also interesting to evaluate a similar criterion based
on standard deviation instead of maximum distance.

It may be confusing that the success performancevfaxDistQuickwith
p = 1is not equal to the results dflaxDist The reason is that the success
performance is sensitive to even small changes in the number of sudcessf
runs. If the average number of function evaluations is regarded, shdtse
from MaxDistQuickwith p = 1 andMaxDistare similar (not shown here).

For criterionDiff no definite trend can be observed regarding the demanded
percentage of feasible individuals in the population (Figures 4(a) and 4(b))
which is assumed to be due to the fact that all individuals get feasible quite
fast here. Similar results were found for DE in [9]. However, the ssgce
performance depends on the difference threstiaklexpected. As for the other
distribution-based criteria, the settingdif dependent on the desired accuracy.
The highest convergence rate is achieved with 102 but althoughl = 10~}
results in a worse convergence rate, the success performance is better
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Figure 4. Results for criteriomiff.

Criterion Diff is advantageous in contrast to the distribution-based criteria
in parameter space if several parameter combinations yield the same objective
function value. However, it is likely to produce bad results for a functidgh w
a flat surface.

4.3 Combined Criteria

The convergence rate and success performance for both comhieed are
given form > 10~2 because smaller valuesmaflead to success performances
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larger than 20,000 (Figures 5(a), 5(b), 6(a), and 6(b)). Thdtsezte different
than for DE as the success performance increases less with decnesdsigf

m. Especially forDiff_MaxDistQuickthe results are rather independent from
m. However, a strong dependencedatan be seen, in particular for the success
performance. For the combined criteria the dependence of parametegsettin
on the desired accuracy of the results cannot be seen anymore, seemalge
might be easier to use the individual criteria.
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Figure 5. Results for criteriorComCrit
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Figure 6. Results for criteriorDiff_MaxDistQuick

5. Conclusions

In this work stopping criteria were studied that react adaptively to the state
of an optimization run based on improvement, movement or the distribution of
individuals. In contrast to other examinations, not the current positiotihb
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personal best positions were used for the calculations. It was shawithth
stopping criteria can be used for constrained problems using PSO. A similar
behavior as for DE could be found for several stopping criteria. lildde
interesting to make comparisons with other Evolutionary Algorithms in future
work.

Although parameter settings have to be determined in dependence on the
used optimization problem, general statements could be made. It was not pos-
sible to determine one criterion that will be best for all problems, but becaus
of their adaptive nature generally improved performance for real-waodb-
lems is expected in contrast to termination after a limited number of function
evaluations.

For multi-objective optimization it will be even more challenging to define
suitable stopping criteria [6] but also even more important because usually
the population will not converge to one point in the search space but to the
Pareto-optimal front, thus using error measures is difficult. Thereiffogean
interesting field of research for future work.
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Abstract In this paper the non-parametric genetic algorithm is presented. It dbesad
any predefined operator control parameters value as populatiomsimber of
generations, probabilities of crossover and mutation are. Suitability diRd ef
ciency of the proposed algorithm were evaluated by the CEC 2006 bamnkhm
functions. The results show the lack of suitability of non-parametric geaktic
gorithm when dealing with optimization problems with many unfeasible zones.
Even though the non-parametric genetic algorithm is very fast, it still nemds
improvements.

Keywords:  Genetic algorithm, Non-parametric, Self adaptation

1. Introduction

The aim of many researchers and developers of heuristic optimization al-
gorithms is to make an algorithm that would be able to solve the given prob-
lem without any human intervention for setting the suitable control parameters
[1, 3, 4]. Among different optimization techniques genetic algorithm (GA) is
popular due to its simplicity, but there are very important parameters that need
to be set in advance to ensure effective optimization. In this paper the non-
parametric genetic algorithm (NPGA) is described [5]. This algorithm does
not need any control parameter, e.g., population size, number of gjensra
probabilities of crossover and mutation, to be set in advance, but it sets the
according to complexity of the problem and according to convergencesof th
solution.

The suitability and efficiency of the proposed algorithm were evaluated by
the CEC 2006 benchmark functions [2].

In the second section the NPGA and its operators are described in details; in
the third section the test functions are presented; while the fourth andtthe fif
section present the results of the evaluation and conclusion, respective

55
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Genetic Algorithm {
setting the initial populatiow’ of random individuals;
while stopping criterion not mef
evaluate each individual,
select two parents;
create two offspring by crossing the parents;
mutate the offspring

Figure 1. Outline of the genetic algorithm.

2. Non-Parametric GA

The main advantage of NPGA over the basic GA is the fact that NPGA can
set the variable control parameters like population size, number of diemes,a
probabilities of crossover and mutation by itself in the initialization phase and
during the optimization process. The values of those parameters depére on
complexity of the problem that needs to be solved and according to theibehav
and convergence of the found solutions. The pseudo code of thetligas
presented in Figure 1.

There is no difference between the general genetic algorithm andaran-p
metric genetic algorithm when comparing their pseudo codes. The main dif-
ference is in the way how those genetic operators (selection, crossoger
mutation) are executed, what are their control parameters values, aoinoae
parameters determined, and how do they vary.

In the following subsections the behavior of the genetic operators and the
way for determining the parameters that control these operators aenf@ds

2.1 Setup

The chromosome that represents the problem to be solved is construaited up
the number of the variables of the problem and their dependencies. For the
independent variables the chromosome would look like the stringwaflues
in the order as described in the input specification of the problem, while for
n dependent variables thepositions and the order in the chromosome would
represent dependencies as described in the input specification abtilem.

In the second case the interdependent variables would be placed togethe
closer in the chromosome.

The values in the initial chromosome are set to random value in the range
between the maximum and minimum value for each variable.
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Stopping criteria {

NoChg= number of generations without improvement;

CurGen= current generation number;

VarNum= number of variables;

if (NoChg< % CurGenA CurGen< 3 PopSizgVv

(NoChg< 1 CurGenA CurGen> 3 PopSiz¢ then

continue optimization;

else
stop optimization

Figure 2.  Number of generations — stopping criteria.

2.2 Initialization

If the chromosome that represents the problem and its complexity is large,
than also the population size is larger. This is needed to ensure highatilitgrs
among the chromosomes in the population. Therefore more solutions can be
searched in parallel in each iteration. The population size is proportional to
chromosome size, i.e., problem complexity.

In the NPGA the population siz€opSizedepends on the number of vari-
ables YarNum) and the ranges of all variables to be optimized. See Eqgn. (1)
for details.

PopSize= 3VarNum+ In(100VarNum + In(Range, 1)
where
VarNum
Range= ) ((variable;,,, — variable;,, )(VarRes; +1))  (2)
j=1

and VarResrepresents the resolution, i.e., number of decimal places, of the
given variable.

The number of generations depends on the convergence speed @fsthe b
solution found. Optimization is running while better solution is found every
few generations. But when there is no improvement of the best solutian for
couple of generations, the optimization process stops.

In the NPGA the optimization process stops when there is no improvement
of the best solution for one third of the past generations when the number
of generations is smaller than three-times of BepSize or if there is no
improvement for one fifth of the past generations after the number of giores
is larger than three-times of tiRopSize See Figure 2 for details.



58 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

Mutation — above average{
NoChg= number of generations without improvement;
CurGen= current generation number;
shift= NoChg/ CurGen
if s; > spest then {
randomly choose variablgof the solutioni;
if si; < Sbestj(%‘i‘ Shlft) V Si; > Sbestj(%_ Shlft) then
mutate the variablg }

}

Figure 3. Choosing the variable for mutation in above average chromosome.

2.3 Crossover

The crossover takes place in each generation. ThérBd@Size mates and
two crossover points on the chromosomes are randomly selected foraach p
After the exchange of values of the mated chromosomes on places between th
two crossover points two new offspring are created.

Among those four candidates (two parents and two offspring) only two are
passed to the next generation. The first one is one of the offspringhwh
randomly chosen, and the second one is one of the all four candidates.

This procedure ensures that more offspring are passed to the nexagens,
but also some parents have chances to proceed to the next generation.

2.4 Mutation

Every chromosome is the subject of mutation. If the fitngsd the chromo-
some is above the average in the current population (the subject of the @ptimiz
tion is minimization) then the randomly chosen positipnin the chromosome
is mutated if the value of the position is smaller than the shifted value of the
best solutions;.s; or if the value is larger than the shifted value of the best
solution. There is always only the small number of mutated positions in each
chromosome — this number depends on the number of generations when there
was no improvement of the best solution. The larger is the number of gener-
ations without improvements of the best solution, the larger is the number of
mutated positions. The code is presented in Figure 3.

Ifthe fitness of the chromosome is below the average in the current populatio
then the randomly chosen positien in the chromosome is mutated if the value
of the position is larger than the shifted value of the best solutigy and if
the value is smaller than the shifted value of the best solution. Again, only the
small number of positions is mutated in each chromosome. The code for below
average solutions is presented in Figure 4.
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Mutation — below average{
NoChg= number of generations without improvement;
CurGen= current generation number;
shift= NoChg/ CurGen
if S; < Spest then{
randomly choose variablgof the solutioni;
if Si; > Sbestj(% + % shift) A 8i; < Sbestj(% — % shift) then
mutate the variablg }

}

Figure 4. Choosing the variable for mutation in below average chromosome.

Mutation — moves {
NoChg= number of generations without improvement;
VarNum= number of variables;
resolution= smallest change ofariable;;
range= variable;  _— variable; . ;
if NoChg< VarNum then {
range= (0.05 range— resolution)/ VarNum
move= (VarNum— NoChg range}
else ifNoChg> VarNumA NoChg< 2 VarNum then
move= resolution
else ifNoChg> 2 VarNumA NoChg< 3 VarNum then {
range= (0.05 range— resolution/ VarNum
move= (NoChg—2 VarNum)- range}
else{
range= 0.05 range/ VarNum
move= (NoChg—3 VarNum)- range}
randomly chose thdirectionas 1 or -1;
variable; = variable;+ direction- move

}

Figure 5. Performing the moves in mutation operator.

In each case described above the volume of the change of the varihlde va
is calculated by the procedure described in Figure 5.

3. Test Functions

The experiments for the evaluation of the NPGA were performed by CEC
2006 benchmark functions defined for constrained real-parameter ogtiiomz
The set of test functions consists of 24 functions. These functiopsaieulary
useful for testing the algorithm that tries to solve problems in which the optimum
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lies in the boundary between the feasible and the infeasible regions oitiaen
feasible region is disjoint.

For the purpose of testing the NPGA algorithm, only the first six functions
were used. Among them there are polynomial, nonlinear, quadratic, & cu
functions. The details of the used test functions are presented in Table 1.

Table 1. CEC 2006 functions properties

NUMBER TYPE FEASIBLE OPTIMAL
FuNcTION OF VARIABLES OF FUNCTION REGION VALUE
g01 13 quadratic 0.0111% -15.00000000
g02 20 nonlinear 99.9971% -0.8036191
g03 10 polynomial 0.0000 % -1.0005001
g04 5 guadratic 52.1230% -30665.53867
g05 4 cubic 0.0000 % 5126.49671400
g06 2 cubic 0.0066 % -6961.8138755
4, Results

The NPGA run 30-times over each test function. The experiments weee don
on 2 GHz computer, and each run took approximately 1-2 minutes (depends o
function). However time complexity was not the subject of this evaluation.

The best, worst and average value of the found solutions after 3Carans
presented in Table 2. All values are optimized with the precision of 6 decimal
places.

Table 2. Results of NPGA testing with CEC 2006 functions

g01 g02 g03 g04 g05 g06
BEST -15.577020 -0.767520 - -32,018.405580  5,204.730340 57886500
AVERAGE -13.854983  -0.697037 - -31,855.884334  5,334.592292 17461654
WORST -11.842490  -0.584740 - -31,244.373170  5,454.589250 66328270
AvrG FES 225,436 307,088 - 34,020 3,546 1,199

Since the crossover and mutation are controlled by the algorithm itself, the so
called virtual settings for those operators are presented in Table 3 aliles\are
virtual, since they were calculated a posteriori upon the information obthined
the algorithm about how many chromosomes were actually mated for crossove
and how many positions in the chromosomes were actually mutated.

Figure 6 represents the fithess value convergence in case of tegifiuytd .

It is represented as average over all 30 runs.

The results presented in Table 2 show that NPGA is able to come close to

the optimal solution very quickly, even it the optimal solution is surrounded by
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Table 3. Virtual values of control parameters

g01 g02 g03 g04 g05 g06
POPULATION SIZE 53 74 40 27 27 18
NUMBER OF GENERATIONS 2848 4234 11256 767 97 25
PROBABILITY OF CROSSOVER 0.668 0.667 0.667 0.665 0.667 0.644
PROBABILITY OF MUTATION 0.161 0.146 0.031 0.029 0.380 0.168
fitness
15,000000
5,000000
-5,000000
-15,000000
0 500 1000 1500 2000 2500 3000

number of generations

Figure 6. Fitness convergence for functigol.

unfeasible regions. In most examples the algorithm was able to come out of the
unfeasible regions, except for functigh3, where the algorithm was unable to
come to the optimal solution. To improve the performance of the algorithm, few
more changes inside the algorithm, to calculate the control parameters, need to
be done.

However, regarding the numbers presented in Table 3 NPGA behaves simila
to some parameter-needed GAs, since the virtual values of control garame
(probabilities of crossover and mutation) are in the order of magnitude ss tho
reported in the literature for this kind of test functions.

5. Conclusion

In this paper the non-parametric genetic algorithm is presented. This al-
gorithm does not need any predefined operator control parametersvatu
population size, number of generations, probabilities of crossover ariomuta
are. Suitability and efficiency of the proposed algorithm were evaluated by
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the CEC 2006 benchmark functions. The results show the lack of suitability
of non-parametric genetic algorithm when dealing with optimization problems
with many unfeasible zones. Even though the non-parametric genetic atgorith

was much faster than the other algorithms, it still needs some improvements.
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Abstract The termtakeover timeregarding selection methods used in evolutionary al-
gorithms denotes the (expected) number of iterations of the selection anetho
until the entire population consists of copies of the best individual, prdvtioket
the initial population consists of a single copy of the best individual wisctea
remaining individuals are worse. Here, this notion is extended to panatipbp-
ulations that exchange individuals according to some migration pathsllesde
by a directed graph. We develop upper bounds for migrations on uhbidirec-
tional rings as well as arbitrary connected graphs where each vergscisable
from every other vertex.

Keywords:  Takeover time, Spatially structured population, Migration model

1. Introduction

The termtakeover timeegarding selection methods used in evolutionary
algorithms (EAs) was introduced by Goldberg and Deb [7]. Supposeathat
finite population of size: consists of a single best individual and- 1 worse
individuals. The takeover time of some selection method is the (expected)
number of iterations of the selection method until the entire population consists
of copies of the best individual.

The calculations in [7] for spatially unstructured (i.e., panmictic) populations
implicitly assume that at least one copy of the best individual is kept in the
population although some selection method may erase all best copies bgchanc
If a selection method islitist, i.e., the best individual survives selection with
probability 1, this kind of extinctionis precluded. Atafirstglanceitis sisipg
that most results on the takeover time are approximations (without bourjds) [7
or obtained numerically by an underlying Markov chain model [2, 11].

Apparently, selection in panmictic populations is the most difficult case for
deriving rigorous results on the takeover time. If only a single individual is
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generated in each generation (steady-state EA) the Markov model kmses

of its complexity as has been shown by Smith and Vavak [11]. Mathematically
rigorous results have been provided by Rudolph [9, 10] for some eéthen-
generational selection methods. In case of populations with a spatial séructu
(at the level of individuals) the notion of the takeover time must be extended
appropriately. This has been done by Rudolph [8] who developeddsoom

the takeover time for arbitrary connected population structures and even a
exact expression for a structure like a ring. These results have karded

by Giacobini et al. [4, 5, 6].

Recently, Alba and Luque [1] have considered spatially structuredigopu
tionsthatare structured atthe level of subpopulations (in contrast todndis).

In this population model the subpopulations are panmictic and from time to time
some individuals migrate between the subpopulations according to some con-
nectivity graph: The vertices of the graph are the subpopulations a$éne
directed edges are the migration paths. In [1] the authors develop a pdausib
approximation (without bounds) for some special cases.

This was the starting point of this work: We show how to derive rigorous
bounds for the takeover time for parallel populations with migration. For this
purpose some mathematical facts are introduced in Section 2 before thesinaly
is presented in Section 3.

2. Mathematical Preliminaries

In the course of the analysis given in Section 3 we need bounds on Hiarmon
numbers:

Definition 1
The symbolH,, denotes:th Harmonic numbefor somen € N where

"1
i=1

Likewise, thenth Harmonic number of 2nd orddi,?) is given by

n

H? :ZZ%

=1

~

forn > 1. O

Notice that

forn > 2 and
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forn > 1.

Definition 2
A random variablgZ is geometrically distributedvith supportN if P{ G =

k} =p(1—p)k!forsomep € (0,1) C R. 0

The expectation and variance Gfare

E[G] = ]1) resp.V[G]| = = (1)

Definition 3

Let X1, Xo,..., X, be independent and identically distributed (i.i.d.) random
variables. ThenXj.,, denotes the minimum and,,.,, the maximum of these
random variables. O

LetD[ X | = y/V[ X ] denote the standard deviation of some random variable
X. There exists a general result regarding bounds on the expectattba of
minimum and maximum:

Theorem 1 (David 1980, p. 59 and 63)

Let X7, Xo,..., X, be ani.i.d. sequence of random variables. The bounds
E[X1n] > E[Xi]- ——1 p[x]
n—1
E[X,..] < E[X —D|X
are valid regardless of the distribution of the. O

3. Analysis

LetG = (V, E') denote a directed graph where each vertexV represents
a subpopulation and each directed edge- (v,v') € E a migration path
from subpopulationy to subpopulation’. Random variabl@Xét) specifies
the number of individuals with best fithess at iteration 0 of subpopulation
v € Vwith X,EO) = 1forasingle subpopulatiohande,O) = 0forv # k. The
number of individuals; in each subpopulation is constant over time, identical
for all subpopulations, and finite. Moreover, we make the follongegeral
assumptions:

(Al) Selection in subpopulations is elitist.

(A2) Migration takes place evenmyth generation with finiten € N.
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(A3) Emmigration policy: a copy of the best individual travels along each
migration path.

(A4) Immigration policy: replace the worst individual of the subpopulation
with the immigrant (if it is better than the worst one).

Let7, = min{t > 0: Xf,t) = s} be the random takeover time of subpopulation
v € V and A, the random arrival time, i.e., the number of iterations until the
first individual with best fitness arrives at subpopulatiok V. In general,

the arrival times are not identically distributed. Their distributions depend on
the connectivity or migration graph and in which subpopulation the initial best
individual has emerged. If the migration path is vertex-symmetric (like Cayley
graphs) the latter dependency vanishes. Here, we shall assume thmtidhe
best individual emerges at vertex= 0 and we rename the other vertices
accordingly. Then

T:maX{To,Al+T1,A2+T2,...,An+Tn} (2)

is thetakeover timeof the migration model witln 4+ 1 subpopulations con-
sidered here. Notice that random variablgsare i.i.d. forv > 1 whereas
the distribution ofT} is different: Once a best copy has arrived at subpopula-
tionv > 1, everymth generation at least one another best copy immigrates to
this subpopulation regardless of the selection process within the subpopula
Therefore it takes at most s iterations until all individuals in some subpopu-
lationv > 1 are copies of the best individual regardless of the selection process.
Thus,

T, <ms (©))

with probability 1 (w.p. 1) forv > 1. If m is large the bound above becomes
useless since itis likely that the takeover event happens before tmeigration
interval is over. Therefore we define random varighjevhich is the takeover
time of subpopulatiom if no further migration takes place once a best copy has
arrived. As a consequence, we have

T,<T, (4)

w.p. 1 for allv > 0. Notice that7{, 77, ..., T, are i.i.d. random variables.

3.1 Uni-Directional Ring Topology

Suppose that the subpopulations are placed at the vertices of a uniedia¢c
ring. Then the takeover time in Eqn. (2) specializes to

T =max{Ty,m+T1,2m+Ts,...,nm+T,} (5)

for a finite migration intervaln € N. Once a best individual has emerged at
vertex( it takesm generations until this best individual migrates to vertex
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Now it takes againn iterations until a best copy migrates to verteand so
forth. As soon as a best copy has arrived at some verietakesT, iterations
at vertexv until all individuals are copies of the best individual. Evidenily,
can be bracketed as follows:

nm 4+ min{7Ty,..., T} <T <nm+ max{Tp,...,T,}. (6)

Using Egn. (4) in the right hand side (r.h.s.) of inequality (6) we obtain the
bound

T <nm+ max{T),...,T,}
for the takeover tim@" and hence the bound

E[T]<nm+E[T);1pm1] (7)

for the expected takeover time. Usage of Eqn. (3) in the r.h.s. of inequdity (
yieldsE[T'| < nm + m s which leads to the bound

E[T] < nm + min{m s, E[ T}, 1., 1]} (®)

in consideration of Egn. (7). Owing to Theorem 1 the bound in Egn. (Tpea
expressed in terms of the expectat®fi{ ] and standard deviatioD[ 7}, | of
T;. We obtain

nD[T] ©
V2n+1’

But as long as nothing is known about the selection operation within the sub-
populations the distribution and therefore the momentgaémain unknown.
Therefore we assume that each subpopulation runs a steady-state Efseith
lection method that does not erase any copy of the best individual cedtizin

the current population. In this case expectation and variance can lodatadt

as follows [9]: Ifi denotes the number of best copies of the current population
then the value of is a nondecreasing sequence. hgt,; be the probability

that the next population will contaiiy- 1 best copies ang; ; = 1 — p; ;41 the
probability that the number of best copies will not change, provided tireraiu
number of best copies is Then the random numbé#; of generations until
changes ta + 1 is geometrically distributed with expectation and variance

E[T] <nm+E[T}] +

1 ..
E[G;] = resp.V[G;] = —ttL
Dii+1 Diit1
fori=1,...,s— 1. SinceGy,...,Gs_1 are mutually independent we obtain
s—1 s—1 1
E[T)] = D E[G] =) — (10)
i=1 i=1 Pii+l

s—1

s—1
VT = YoviG) = 3 L (11)
=1

2
i=1 pi,i+1
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for the takeover tim&}). Next, we choose a specific selection method to ex-
emplify our approach developed so far. The method called 'Replacet'Wors
selection first draws two individuals at random with uniform probabilityb-Su
sequently the better one of the pair replaces the worst individual of tite en
population. Thereford,is incremented if at least one copy of the bestindividual
is drawn. We obtain

. 2 . .
1 1(2s—1
Piit1 = 1— <1—> = %

and finally owing to Eqn. (10)

E[T}] = %(SHQH _). (12)

The result for the expectation above can be found in [9] already., Meralso
need a result for the variance. According to Egn. (11) we obtain

o - i2 (25 —1i)2

2
i=1 pi,i-i—l i=1
s—1 s 9
< (f — 1) since - <1
- Z ) 2s—1

IA
»
[N}

and sinces/(2s — 1) > 1/2

V[T = HOA >
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revealing thaV/ [T} ] = ©(s?) or D[T}] = ©(s). Insertion in Eqgn. (9) yields
the bound

sHyo_1 —1 \/527r2
E[T] < nm+ + —2slog(s—1)+s—1
7] < RV sl

1 2 2.2
+78 o8 S)+\/§-\/S7r +1 (fors>2)
+slog2$ n /
12 32772
log(2
< nm+80g2<8>+5w\/g

= O(nm+ slogs+ sy/n)

IN

and taking into account the bound given in Eqgn. (8) we obtain

E[T]Snm—i—smin{m,bgfs)%—w Z} . (13)
A closer inspection of the upper bound (13) reveals that the bound teuld
strengthened with respect to the additive pam which stems from the
generality of Theorem 1. If the distribution of the random variables arentak
into account then the bound for the maximum will become more accurate. We
have made30 independent experiments for each combinatiorjroft 1) €
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}, s € {10, 20, 30, 40, 50, 60, 70, 80, 90,
100, 200, 300, 400, 500, 1000}, andm € {1, 2, 3,4, 5,10, 20, 30, 40, 50, 100}.
Here, we only present thié) worst results with regard to absolute (see Table 1)
and relative deviation (see Table 2) between the bound in Egn. (13) and th
observed mean.

Table 1. Results of experiments with the ten worst absolute deviations {glisetween bound
and observed mean.

n+1 s m MIN MAX MEAN BOUND ABS. A A%
1000 100 50 50,149 50,253 50,196.8 54,118.8 3,922.0 7.81
1000 100 100 100,107 100,236 100,166.6 104,068.8 3,902.2 90 3.
1000 100 40 40,149 40,282 40,207.3 43,960.0 3,752.7 9.33
1000 90 50 50,111 50,257 50,178.7 53,699.9 3,521.2 7.02
1000 90 100 100,078 100,243 100,157.2 103,649.9 3,492.7 9 34
1000 90 40 40,111 40,240 40,169.7 43,560.0 3,390.3 8.44
1000 80 50 50,103 50,198 50,140.1 53,281.2 3,141.1 6.26
1000 80 100 100,072 100,178 100,114.4 103,231.2 3,116.8 1 3.1
1000 80 40 40,095 40,189 40,143.5 43,160.0 3,016.5 7.51

1000 100 30 30,153 30,258 30,202.7 32,970.0 2,767.3 9.16
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Table 2. Results of experiments with the ten worst relative deviatiah84) between bound
and observed mean.

n+1 s m MIN MAX MEAN BOUND ABS. A A%
10 100 5 170 196 184.5 544.8 360.3 195.29
10 90 5 157 187 171.9 492.8 320.9 186.66
10 80 5 144 172 157.2 441.0 283.8 180.52
10 70 5 132 161 144.6 389.4 244.8 169.33
10 100 4 146 175 164.7 436.0 271.3 164.72
10 60 5 115 145 128.7 338.2 209.5 162.81
10 90 4 141 160 150.7 396.0 245.3 162.77
10 70 4 116 135 124.1 316.0 191.9 154.63
10 80 4 127 153 140.3 356.0 215.7 153.74
20 100 5 215 247 236.8 595.0 358.2 151.27

Finally, we sketch a potential avenue to strengthen the result; its elaboration
remains for future work. Recall from the discussion leading to Eqn. t{iad)
the G; are geometricly distributed random variables with paramgtgr; and
that 7} is just the sum of th&z; fori = 1,...,s — 1. Thus, the maximum
of n + 1 samples off{] is the maximum of: + 1 sums of geometric random
variables. Sincenax{a; + b1,as + by} < max{ai,as} + max{by, by} we
obtain an upper bound by the sum over the maxima-efi i.i.d. (!) geometric
random variables. Unfortunately, the expectation of the maximum of geometric
random variables cannot be determined exactly, in contrast to its minimum. But
we can use the asymptotic theory of extreme value distributions [3] for getting
some evidence that the maximum increases by drg€n) D[ T} | rather than
ordery/n D[ T} ]. Thus, weconjecturethat

E[T] = O(nm+ s min{m,logs +logn}).

3.2 Bi-directional Ring Topology

The modifications of the results required in case of subpopulations at the
vertices of a ring with bi-directional migration paths are straightforward: It
takes(n + 1) m/2 generations until an individual from each of the two possi-
ble migration paths arrive at the last vertexiis odd (i.e., if the number of
subpopulations is even). Therefore the upper bounds are

(n+1)m

E[T] < 5

+ max{Ty,T1,...,T0}

and
(n+1)m

2
In the following we can use the same arguments and bounds as those from the
preceding subsection.

E[T] < +ms.
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3.3 Almost Arbitrary Connected Topology

Let G = (V, E) denote the directed graph describing the migration paths
between subpopulations. Needless to say, we assume that the grapteistedn
and that each vertex can be reached from any other vertex of thie. gkathe
preceding two examples have shown, the takeover time can be boundesl by th
time to reach each vertex in the graph (which is bounded byigmeterof
the graph) plus the time required for takeovenis 1 parallel subpopulations.
Consequently, the expected takeover time of (almost) arbitrary grapHsecan
bounded by the two bounds

E[T] < diamG) m + max{T},T},...,T.}

and
E[T] <diamG)m+ms.

Of course, these bounds can be improved if more information about b grap
known. For example, if we havedregular bi-directional graph then at least
one best copy enters the population initiatljpest copies will leave at the next
migration event, and from now ahcopies of the best individual will enter the
subpopulation at each migration event.

4. Conclusions

It has been shown that the takeover time in parallel populations with mi-
gration is bounded by the diameter of the migration graph plus the time until
takeover in parallel population occurs. These takeover times are dapend
on the selection operation deployed in each subpopulation. Here, we have
developed bounds for a particular non-generational selection method. |
conjectured that the bounds can be improved considerably as soonuffis a s
ciently tight bound fofE[ max{T}, 17, ..., T} ] has been developed. In case
of non-generational selection methods an appropriate bound for the maximu
of geometrically distributed random variables is required. These taskhand
development of tight lower bounds will be part of future work.
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Abstract This paper describes the so-called Differential Ant-Stigmergy AlgoribASA),
which is an extension of the Ant-Colony Optimization for continuous domain. A
performance study of the DASA on a benchmark of real-parameteniaation
problems is presented. The DASA is compared with a number of evolution-
ary optimization algorithms including covariance matrix adaptation evolutyonar
strategy, differential evolution, real-coded memetic algorithm, and cootis
estimation of distribution algorithm. The DASA is also compared to some other
ant-based methods for continuous optimization. The result obtained tedica
promising performance of the new approach.

Keywords:  Ant stigmergy, Benchmark functions, Real-parameter optimization

1. Introduction

Real-parameter optimization is an important issue in many areas of hu-
man activities. The general problem is to find a set of parameter values,
X = (x1,x2,..., xp), that minimizes a functionf(x), of D real variables,
ie.,

Find: x* | f(X*) < f(x),vx € RP.

In the past two or three decades, different kinds of optimization algorithms
have been designed and applied to solve real-parameter function optimization
problems. Some of the popular approaches are real-parameter genetic alg
rithms [17], evolution strategies [3], differential evolution [14], particlasm
optimization [8], classical methods such as quasi-Newton method [12], other
non-evolutionary methods such as simulated annealing [9], tabu sefestd[6
lately ant-colony based algorithms.

Algorithms inspired by model of ant colony behavior are increasingly suc-
cessful among researches in computer science and operationathesda
particular successful metaheuristic—Ant-Colony Optimization (ACO)—as a

73
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common framework for the existing applications and algorithmic variants of
a variety of ant algorithms has been proposed by Dorigo and colleadles [
However, a direct application of the ACO for solving real-parameter optimiza
tion problem is difficult. The first algorithm designed for continuous funrctio
optimization was continuous ant colony optimization (CACO) [2] which com-
prises two levels: global and local. CACO uses the ant colony framework to
performlocal searches, whereas global search is handled bgtagggorithm.
Up to now, there are few other adaptations of ACO algorithm to continuous op
timization problems: continuous interacting ant colony (CIAC) [5], ACO for
continuous and mixed-variable (eACO) [13], and agregation pherosyatem
[16].

In this paper we will introduce a new approach to the real-parameter opti-
mization problem using an ACO-based algorithm that uses the pheromaohal tra
laying—a case o$tigmergy—as a means of communication between ants.

2. The Differential Ant-Stigmergy Algorithm
2.1 The Fine-Grained Discrete Form of Continuous Domain

In the following, a process of transformation from a continuous domain into
a fine-grained discrete form is presented.

Letz!(s) be the current value of theth parameter. During the searching for
the optimal parameter value, the new valugjs assigned to theth parameter
as follows:

Here,J; is the so-callegharameter differencand is chosen from the set
Ai= A7 U{0}UAT,

where
Af = {5z+k| R N 1727"->di}

and
AT = {6Zk| 5;]&* = _bk+Li_1ak = 1727' . adz} .

(]

Hered, = U; — L; + 1. Therefore, for each parametey, the parameter
differencey;, has arange fro: to bV, whereb is the so-callediscrete base
L; = |logy(g;)], andU; = |logy(max(z;) — min(z;))|. With the parameter
&;, the maximum precision of the parameigtris set. The precision is limited
by the computer’s floating-point arithmetics.

Let us consider a simple example for the parametevith max(x;) = 400,
min(z;) = —350,b = 10, ande; = 1073, ThenL; = —3, U; = 2, andd; = 6.
Finally, A; is constructed as follows:

{-10%,-10",-10°,~107",~107%,—-107%,0,107%,107%,10" ", 10°, 10", 10%} .
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Figure 1. Differential graph.

2.2 Differential Graph

From all the sets);, 1 < i < D, a so-calleddifferential graphG =
(V, E) with a set of vertices), and a set of edgedy, between the ver-
tices is constructed. Each sf is represented by the set of verticé§, =

{vi1,. . viad 11}, andV = J2 | Vi. Then we have that
A= {5l.jdi,...,6;(11__(],_1),...,0,...,5:].,...,5jdi}
e "
is equal to
V;' = {Ui71, . ,U@j, e 7@:’_‘37 . 7U’i7di+1‘|‘j7 .. '7vi,2di+1}7
0

wherel < j < d;. Each vertex of the séf is connected to all the vertices that
belong to the sélt; ., (see Figure 1). Therefore, this is a directed graph, where
each path from thetart vertex to any of the ending vertices is of equal length
and can be defined with as:

’U:’UlfUQ...fUD’

wherev; € V;, 1 < ¢ < D.
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The optimization consists of finding a pathsuch thatf (x) < f(x’), where
x" is currently the best solution, and= x’ + A(v) (using Eqn. (1)). Addi-
tionally, if the cost functionf(x) is smaller than thg (x’), thenx’ values are
replaced withx values.
To enable a more flexible movement over the search space, the weight
added to Eqn. (1):
T; = T, + wd;, (2)

wherew = random(0,b) andw = 1,2,...,b— 1.

2.3 Search Algorithm

The optimization consists of an iterative improvement of the currently best
solution X', by constructing an appropriate pathwhich with the use of Eqn. (2)
returns a new best solution, and is done as follows:

1 A solutionx’ is randomly chosen.

TVI \

Wiy

xiil: h @ - K“""Hﬂ N
TV:'\

)
)

¢
(3

N

Xp - @, \v,\,,;,

Figure 2. Initial pheromone distribution.

2 Aninitial amount of pheromone{}i, is deposited on all the vertices from
the setV; C V,1 < i < D, according to a Gaussian probability density

function
1 _(@—w?

T, ,0) = e 207
9(@, p,0) = ———
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wherey is the meang is the standard deviation, apd= 0, o0 = 1 (see
Figure 2).

U o

N

Vi

.

TVD

.
@ - O - @ - O - O

Figure 3. Pheromone distribution after a new best solution is found.

3 There aren ants in a colony, all of which begin simultaneously from
the start vertex. The probability with which they choose the next ver-
tex depends on the amount of pheromone on the vertices. Ants use a
probability rule to determine which vertex will be chosen next. More
specifically, antx in stepi moves from a vertex in sét;_; to vertex
v;j € {vi1,...,vi24+ } With a probability given by:

o B 7(vi;)
pi(e1) Zlgngdi+1T(vi,k)7 ®)

wherer (v; 1) is the amount of pheromone on vertgy,. The ants repeat

this action until they reach the ending vertex. For each ant, solutisn
constructed (see Eqn. (2)) with a calculationf¢x). The best solution,

x*, out of m solutions is compared to the currently best solutianlf

f(x*) is smaller thanf(x’), thenx’ values are replaced witk values.
Furthermore, in this case the pheromone amount is redistributed accord-
ing to the associated pathi = v} ---v} v --- ,v},. New probability
density functions have maxima on the vertiegsand the standard de-
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viations are inversely proportioned to the solution’s improvement (see
Figure 3).

4 The amount of pheromone is distributed by some predetermined percent-
age,p, on each probability density function as follows:

w— (1—pp and o« (1+ p)o.

Pheromone dispersion has a similar effect to pheromone evaporation in
the classical ACO algorithm.

5 The whole procedure is then repeated until some ending condition is met.

We named the search algorithm presented in this section &iffeesntial
Ant-Stigmergy Algorithn(DASA).

3. Performance Evaluation
3.1 The Experimental Environment

The platform used to perform the experiments was based on AMD Opte-
ron"™2.6-GHz processor, 2 GB of RAM, and the MicroggftVindowsRXP
operating system.

The DASA has only three parameters: the number of amtthe pheromone
disperse factop, and the maximum parameter precisionTheir settings are:

m =10, p = 0.1, ande = 10712,

3.2 The Benchmark Suite

The DASA was investigated on the four test functions for dimension 30.
The complete definition of the test-suit is available in [15]. Funcfip(Shifted
Rotated High Conditional Eliptic Functigiis unimodal and functiorfy (Shifted
Rastrigin’s Functiofis multi-modal. Functiong; s (Expanded Extended Grie-
wank’s plus Rosenbrock’s Functipand f15 (Hybrid Composition Function
result from the composition of several functions. To prevent exploitatidine
symmetry of the search space and of the typical zero value associatedevith th
global optimum, the local optimum is shifted to a value different from zero, and
the function the function values of the global optimum are non zero.

3.3 A Comparison of Algorithms

The DASA was compared to four well-known algorithms:

A restartCovariance Matrix Adaptation Evolution Strategyth increasing
population size (CMA-ES) [1]: The CMA-ES introduced by Hansen asd O
termeier [7] is an evolutionary strategy that adapts the full covariance noétrix
a normal search (mutation) distribution. By increasing the population size for
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each restart—as is suggested in [1]—the search characteristics became mo
global after each restart.

A Differential Evolution(DE) [11]: DE is a stochastic, population-based
optimization algorithm. It was introduced by Storn and Price [14] and was
developed to optimize the real (float) parameters of a real-valued fun&ien.
resembles the structure of an evolutionary algorithm, but differs froritivadl
evolutionary algorithms in its generation of new candidate solutions and by its
use of a ‘greedy’ selection scheme.

A real-codedMemetic Algorithn{MA) [10]: The MA is a genetic algorithm
(GA) that applies a separate local search (LS) process to refine dexdin
als. The GA applied to make the exploration (i.e., to maintain diversity in the
population), the LS applied to improve new solutions (i.e., to exploit the most
promising regions of the domain search). In [10] a steady-state GA is used

A continuousEstimation of Distribution Algorithn(EDA) [18]: The EDA is
based on probabilistic modeling instead of classical genetic operatorg&such
crossover or mutation. The EDA used in [18] employs a multivariate Gaussian
distribution and is therefore able to represent a correlation betweeblegia
the selected individuals via the full covariance matrix of the system.

3.4 The Evaluation

The function errorf(x) — f(x*) with x* being the optimum, is recorded at
four checkpoints (1,000, 10,000, 100,000, and 300,000 function ai@hs).
The error data is collected for 25 runs after which the trials are ordeoed f
best to worst. The trial mean and the standard deviation as well as the odsults
the best, median, and worst trail are presented for each of the fockpubiats.

The error values are presented in Tables 1 and 2.

The convergence rates of the DASA on functiofis f9, fi3, and fi5 are
plotted in Figure 4. The rates show the median performance of the 25 runs. |
the figure, the function error is plotted against the number of evaluations.

3.5 The Complexity of the Algorithm

To estimate the algorithm’s complexity we have calculafépﬁ, where
Tp is independent of the function dimension and is calculated by running the
program:

for i=11t01,000,000
X = (double) 5.55; x = x + x;
X =X * X; X = sqrt(x);
x = In(x); x = exp(x);
y = X/X
end
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T, is the computing time for 200,000 evaluations only for functf@nandfz
is the mean of five executions, but now considering the complete computing
time of the algorithm for the functioifis. The results are included in Table 3.

Table 1. Error values for the thirty-dimensiongk and fy9, measured after 1,000, 10,000,
100,000, and 300,000 function evaluations.

ALGORITHM
FuncTioNn
EVALUATIONS CMA-ES DE MA EDA DASA
f3
Best 3.84e+08 2.18e+08 9.63e+07 8.95e+08 6.11e+07
Median 1.00 e+-09 5.66 408 2.69e+4-08 1.23e+09 2.80e+08
1le3 Worst 2.07e+09 9.53 e+408 5.82e+408 1.92e+09 5.57e+08
Mean 1.07e+09 5.53e+08 2.94e+08 1.25e+09 3.10e+08
Std 4.43 e+08 1.78 e4+08 3.04e+07 2.67e+08 1.31e+08
Best 1.24e+06 3.58 e+07 1.81e+07 1.79e+08 4.55e+06
Median 4.90e+06 6.90 e+07 4.17e+07 2.71e+08 1.15e+07
led Worst 1.42e+407 1.66 e408 8.51e+07 3.84e+08 1.95e+07
Mean 6.11e+06 8.15e+07 4.14e+07 2.76 e+08 1.16 e+07
Std 3.79e+06 3.25e+07 2.95e+06 5.03e+07 4.44e+06
Best 4.07e—09 3.89e+05 1.76 e4+-06 2.41e+07 5.77e+05
Median 5.44e—09 1.33e+06 4.91e+06 3.55e+07 1.07 e+06
le5 Worst 8.66 e—09 3.38e+06 6.80 e+06 4.55e+07 1.94 e+06
Mean 5.55e—09 1.52e+406 5.51e+06 3.49e+07 1.23 e4+06
Std 1.09e—09 8.92e—05 6.05e+05 4.94e+06 3.97e+05
Best 4.07e—09 5.46 e+04 5.55e+05 2.27e+06 1.27e+405
Median 5.44e—09 2.43e+05 7.64e+05 3.66 e+06 4.32e+05
3eb Worst 8.66 e—09 9.00e+05 1.56 e4+-06 5.88e+06 8.15e+05
Mean 5.55e—09 2.89e+405 8.77e+05 3.75e+06 4.59e+05
Std 1.09e—09 1.93e+05 5.81e+04 9.09e+05 2.02e+405
fo
Best 2.19e+402 2.99e+02 1.82e+02 4.07e+02 4.60e+01
Median 2.50e+4-02 3.72e+02 3.00e+02 4.76 e+02 9.13e+01
le3 Worst 2.87e+02 4.25e+02 4.00e+02 5.44e+02 1.52e+02
Mean 2.53e+02 3.77e+02 2.99e+02 4.80e+02 9.29e+01
Std 1.65e+401 3.00e+01 1.00e+01 3.51e+01 2.75e+01
Best 2.39e+401 8.17e+01 6.28e+01 3.23e+02 9.95e—-01
Median 4.88e+01 9.74e+01 1.04e+02 3.66 e+02 2.99e+00
led Worst 7.96 e+01 1.13e+02 1.50 e4+02 3.87e+02 4.98e+00
Mean 4.78 e+01 9.85e+01 1.05e+02 3.62e+02 2.95e+00
Std 1.15e+401 8.42 e+00 3.17e+00 1.62e+01 1.17e+400
Best 2.98 e+00 1.90e—08 3.98e+00 2.18e+02 0.00e+00
Median 6.96 e+00 5.93e—08 7.96 e+00 2.50 e+02 0.00e+00
1e5 Worst 1.19e+01 1.39e—-07 1.19e+01 2.78e+02 0.00e+400
Mean 6.89e+00 6.68 e—08 7.55e+00 2.50e+02 0.00e+00
Std 2.22e+00 3.39e—08 5.36 e—01 1.34e+01 0.00e+00
Best 4.35e—06 0.00e+00 7.78e—09 2.10e+02 0.00e+00
Median 9.95e—01 0.00e+00 9.95e—01 2.30e+02 0.00e+00
3e5 Worst 4.97e+00 0.00 e+00 1.99 e4-00 2.48e+02 0.00e+00
Mean 9.38e—01 0.00e+00 6.81e—01 2.30e+02 0.00e+00
Std 1.18e+00 0.00 e+00 1.21e—-01 9.44 e+00 0.00e+00
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Table 2. Error values for the thirty-dimensiondl s and f15, measured after 1,000, 10,000,
100,000, and 300,000 function evaluations.

ALGORITHM
FuncTioN
EVALUATIONS CMA-ES DE MA EDA DASA
f13
Best 3.05e4-01 3.12e+04 4.09 e+02 4.66 e+05 1.33e+04
Median 7.36e+401 1.29e+05 3.86e+03 7.39e+05 1.38e+05
1le3 Worst 4.98 e+02 4.33e+05 1.06 e+04 1.13 e406 6.47 e+05
Mean 1.14e+02 1.62e+405 3.95e+03 7.50e+405 2.12e+05
Std 1.07e+02 8.66 e+04 4.62e+02 1.93e+05 1.81e+05
Best 2.46 e+00 3.20e+01 9.97e+00 1.35e+4+05 2.57e+00
Median 3.87e+00 8.02e+01 1.49e+01 2.97e+405 6.34e+00
led Worst 5.62e+00 2.47e+02 1.96e+01 5.24e+405 1.38e+01
Mean 3.80e+00 1.02e+02 1.51e+01 3.08e+05 7.02e+400
Std 7.27e—01 6.33e+01 4.49e—-01 1.14e4-05 3.33e+00
Best 2.43e+400 2.31e+400 2.76 e4+00 1.84e+03 1.20e+00
Median 2.83e+00 3.90e+00 9.07e+00 4.30e+03 2.02e+00
leb Worst 3.67e+00 1.39e+01 1.28 e+01 9.93e+03 2.73e+00
Mean 2.89e+00 4.55e+00 8.66 e+00 4.52e+03 2.04e+00
Std 3.59e—-01 2.25e4-00 4.42e—01 1.91e+03 4.17e—01
Best 1.10e+00 2.31e+00 1.33e+00 3.82e+01 9.62e—01
Median 2.61e+00 3.89e+00 2.54e+00 6.86 e+01 1.93e+00
3e5 Worst 3.20e+00 1.39e+01 1.03e+01 1.29e+4-02 2.56 e+00
Mean 2.49e+400 4.51e+00 3.96 e4+-00 7.36 e+01 1.88e+00
Std 5.13e—01 2.26 e+00 5.38e—01 2.36e+01 3.99e-01
fis
Best 4.93e+02 8.82e+02 5.46 e+02 1.03e+403 2.32e+02
Median 6.93e4-02 1.08 e+03 7.49e+02 1.14e+03 6.28 e402
1le3 Worst 8.51e+02 1.19e+403 1.05e+03 1.21e+403 7.84e+02
Mean 6.69 e+02 1.08e+03 7.62e+402 1.13e+403 5.89e+02
Std 1.15e+02 7.13e+01 2.64e+01 4.50e+4-01 1.50 e+02
Best 2.08e+02 6.17e+02 3.72e+02 5.90 e+02 4.17e—04
Median 4.00e+02 6.88e+02 4.30e+02 6.31e+02 3.05e+02
led Worst 5.53e+402 8.36 e4+02 5.42e+402 8.82e+02 5.00e+02
Mean 3.87e+02 7.04e+402 4.41e+402 6.88 e+02 2.40e+02
Std 8.48 e+01 6.30e+01 7.96 e+00 9.93e+01 1.59e+00
Best 2.00e+02 5.03 e+02 2.00e+02 4.85e+02 0.00e+00
Median 2.00e+02 5.18 e+02 3.00e+02 4.89e+02 3.00e+02
leb Worst 3.20e+02 6.33e+02 5.00e+02 6.71e+02 5.00e+02
Mean 2.25e+02 5.20e+02 3.56 e+02 5.38 e+02 2.33e+02
Std 4.10e+01 2.39e+401 1.51e+01 7.66 e+01 1.58 e+02
Best 2.00e+02 4.75e+02 2.00e+02 4.35e+02 0.00e+00
Median 2.00e+02 4.81e+02 3.00e+02 4.59e+02 3.00e+02
3e5 Worst 3.00e+02 5.86 €402 5.00e+02 5.63 402 5.00e+02
Mean 2.08e+4-02 4.84e+02 3.56 e+402 4.81e+02 2.33e+02
Std 2.75e+01 2.14e+01 1.51e+01 4.67e+01 1.58 e+02
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3.6 Comparison to Other Ant Methods

As we mentioned in the introduction, there are few other adaptations of the
ACO algorithm to real-parameter optimization. Here, the DASA is compared
to results presented by Socha in [13]. In order to have comparabliéstebe
same accuracy level was chosen.

The results presented in Table 4 are based on 25 independent rures of th
the DASA and show number of function evaluations to achieve the fixed ac-
curacy level. The experimental results show that the DASA has much higher
convergence speed than that of the CACO and comparable with the eACO.

1E+12

———f9
----- 13
—-—f15
1E+06 1,

function error
-

1E-06 | N

1E-12 — , , , ,
0 50,000 100,000 150,000 200,000 250,000 300,000

number of function evaluations

Figure 4. Convergence graph.

4, Discussion and Conclusion

We proposed an extension of the ant-colony optimization metaphor for con-
tinuous domain. This new approach was named Differential Ant-Stigmergy
Algorithm and was studied on a set of benchmark functions of real-paeame
optimization problems.

The algorithm was compared with a number of evolutionary optimization
algorithms including covariance matrix adaptation evolutionary strategy, dif-
ferential evolution, real-coded memetic algorithm, and continuous estimation
of distribution algorithm.
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Table 3. Algorithm complexity (functionfs, D = 30).

ALGORITHM THE SYSTEM To T T TzT;OTl

Pentium 4 3GHz / 1GB

CMA-ES Red Hat Linux 2.4 0.40 41.00 *24.00 —
MATLAB 7.0.1
AMD Sempron 2800+ / 1GB

DE Mandrake Linux 10.1 0.29 7.64 8.49 2.94
C

Pentium 4 2.8GHz / 512MB
MA Linux kernel v. 2.6 0.42 8.63 13.45 11.48
C++ with GCC 3.3.2

Xeon 2.4GHz / 1GB

EDA Windows XP (SP2) *%6.93 1.45 5.22 0.54
MATLAB 6
AMD Opteron 2.6GHz / 2GB

DASA Windows XP (SP 2) 0.19 58.94 59.20 1.37
Delphi 2006

* The large number df; reflect the large number of objective function calls, whileTara complete, eventually large,
population is evaluated (serially) within a single function call.
** Due to poor loop implementation in MATLAB 6.

Table 4. Comparison of average number of function evaluations until the acgisaeached.

TEST FUNCTION* D ACCURACY CACO [2] CIAC [5] eACO [13] DASA

Sphere 6 104 22,050 50,000 695 832
Goldstein & Price 2 10—4 5,320 23,391 364 991
Rosenbrock 2 103 6,842 11,797 2,905 137
Zakharov 2 10— — — 401 182

* http:/firidia.ulb.ac.be/~ksocha/extaco04.html

The result obtained indicate a promising performance of the new approach
One can notice that our approach performs better then the rest of tftaapps
on three out of four test functions. Since selected test functions tedlelif-
ferent kinds of pseudo-real optimization problems, one can concluti¢htha
DASA is applicable to many real-parameter optimization problems.

Regarding the future, one important issue consists of pure continugus an
stigmergy algorithm. Here, so-called parameter differences will be in centinu
ous form instead of fine-grained discrete form.
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EVOLUTIONARY COMPUTATION
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Abstract We present an evolutionary computation method for optimal planning tfrgtie
menus, considering nutrient and non-nutrient requirements, atitkéiesstan-
dards. The method is based on the Elitist Non-Dominated Sorting Genetie Algo
rithm and implemented in a multi-level way. The main idea behind the method
is to optimize meals and daily menus independently guiding the optimization to
the overall Pareto optimal weekly menus. As a demonstration, we appbed th
method to a weekly-menu planning example: optimization of an existing weekly
menu for people without specific dietary requirements in a local hospital.

Keywords:  Dietary computer-based menu planning, Multi-level optimization, Multi-dbjec
and multi-constrained evolutionary optimization, Repair methods

1. Introduction

In 2001, a 30-year-old Slovene man of height 177 cm weighed ongwera
84 kg and a 30-year-old Slovene woman of height 165 cm weighed ocagere
68.4 kg [3]. These data show that 30-year-old Slovene has on a&vbraty
mass index (BMI, kg/rf) greater than 25, which means an elevated risk of
developing chronic diseases, such as cardiovascular diseasesedjatancer,
osteoporosis, etc.

There are several reasons for overweightness (BMI greater thiaarl
obesity (BMI greater than 30), and they have to be considered froereliff
viewpoints. Using a computer program to handle numerous nutrient informa-
tion and plan menus in a personalized way is one of them.

In this paper, we present an evolutionary computation approach to dietary
menu planning that has been applied within a nutrition software [9]. In Sec-
tion 2, we describe the problem of menu planning; in Section 3, we introduce
the evolutionary approach; and finally, in Section 4, we give an evaluatibe
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approach. We conclude the paper in Section 5, where we list our canmdus
and suggest possible future work.

2. Dietary Menu Planning

The problem of dietary menu planning is an intractable optimization problem,
because of many constraints and objectives dictated by nutrient armiioent
requirements, and aesthetic standards.

It can be formulated as a linear-programming problem because the objec-
tives are specified as linear functions and the constraints are spescifiadar
equalities or inequalities. A simplified version ofthe problem, considering basic
nutrient requirements and one objective of cost, was firstly solved usiag a
culatorin 1941 [6]. Since then the linear programming methods have improved
significantly, producing cost-optimized menus. However, difficulties haeab
encountered in using numerical representations for qualitative fastars,as
taste, consistency, color, temperature, shape, and method of preparatio

We applied thélitist Non-Dominated Sorting Genetic AlgoritiidSGA-I1)

[4]] in a multi-level way [7] to generate dietary menus, considedagstraints

on nutrient and non-nutrient requirements abjectivesof low cost, high sea-
sonal quality and functionality, and low deviations from uniformly distributed
aesthetic standards for taste, consistency, color, temperature, shdpsgthod

of preparation.

2.1 Mathematical Formulation of the Problem

Mathematically, dietary menu planning reduces to a multi-objective and
multi-constrained (multi-dimensional) knapsack problem (MDKP) that is easy
to formulate, yet its decision problem is NP-complete. It means that only by
using a heuristic optimization method a solution can be found quickly (in a
polynomial time).

We define the problem as follow§&iven food items of different values and
volumes, find the most valuable composition that fits in a knapsack of fixed
volumes. Values are defined subjectively with respect to food functionality,
seasonal availability, cost, taste, consistency, color, temperaturggesaad
method of preparation. Knapsack volumes are defined by the wealkdyated
diet-planning principles.

Food items are selected from a database that integrates nutritional data of
more than 7,000 (national and world-wide) foods. We consider the DHA-C
diet-planning principles established by the European nutrition societies [5].
Many other real-world problems can be formulated as a MDKP, for example,
the capital budgeting problem, allocating processors in a distributed computer
system, project selection, cutting stock problem, etc.
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2.2 Multi-Dimensional Knapsack Problem

We are given a knapsack af volumesCy,k = 1,2,...,m, andn food
items. Each itemi has nine values;;, € N*,v;, > 0,k = 1,2,....,9, andm
volumesw;, € Rt w;, > 0,k = 1,2,...,m, one for each capacity. We are
looking for a composition of items,t < n, such tha@le wirz; PCY (P can
be<or>,k=1,2,...,m,t <n), and for which the total values

t
Z VgL, k= 13 2
=1
are maximized, while
t
Z VikTi k=3
1=1

and

by Sihle) ) 5
(Z!Zhlj(:ri) - %D — Zh(mi),l =4,5,...,9
j=1 i=1 al i=1
are minimized, where,,; is the number of possible states of an aesthetic stan-
dardl. The functions used in the above objective function are defined as ®llow

0 .’L‘Z‘ZO
hlj(l‘i): ,i:1,2,...,n,l:4,5,...,97
1 2, >0Av;=7
and
0 xi:()
h(z;) = ,1=1,2,...,n

1 otherwise

The parametex; € [0.25P;,2F;] denotes the quantity of the selected itém
expressed in a unit (gram, milligram, microgram, milliliter, etc.). Its value is
limited by the fractions of the item’s portion siZ&.

2.3 Methods for Solving MDKPs

Exact algorithms that deliver optimum solutions to multi-dimensional knap-
sack problems in pseudo-polynomial time are based on the branch-and-bo
and the dynamic programming approaches. On the other hand, heuristic meth-
ods with time complexity bounded by a polynomial in the size parameters of
the problem have been known for many decades. A comprehensiegref/
the multi-constrained 0-1 knapsack problem and the associated heuristic alg
rithms is given by Chu and Beasley [2]. Some of the ideas are also applicable
to non-0-1 MDKPs.
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3. Evolutionary Approach to Dietary Menu planning

In our case, a knapsack denotes a weekly menu that is composed of seve
consecutive daily menus. By default, each daily menu includes five differe
meals, i.e., a breakfast, a morning snack, a lunch, an afternoon smack, a
dinner. However, this composition does not bias the method and can be modifie
to suit the specific menu-planning problem.

We have applied an evolutionary algorithm NSGA-II in a multi-level way.
Namely, the problem of weekly-menu planning is logically composed of severa
smaller sub-problems, one for each daily menu, which have differentreomnts
than the weekly menu. Then, optimization of daily menus is coordinated in
order to obtain the overall weekly menu. Further, each daily-menu planning
sub-problem is decomposed into several sub-problems of composingesou
into meals.

The main idea behind the multi-level method is to optimize each sub-problem
independently using a ‘local’ NSGA-II with the aim to find the overall Pareto-
optimal solutions of the problem (i.e., solutions that cannot be improved upon
without hurting at least one of the objectives) using the ‘global’ NSGA-II

3.1 Encoding

We encode candidate solutions of the weekly menu-planning problem and its
sub-problems by integer-valued coding. In our representation, ancsmme
at the highest level contains seven data, carrying the information ab®ut th
daily menus. At the next level, a chromosome contains five data carrying the
information about the meals. At the deepest level, a chromosome is formed of
a number of pairécode;, ;), wherecode; denotes the database code of a food
item s andz; its quantity expressed in grams. By default, the number of pairs
varies between 1 and 10, depending on the number of courses (di$tiee)
meal.

3.2 Populations

Inourimplementation, the ‘global’ NSGA-II starts an evolution from a global
population of either random candidate solutions or solutions known frque-ex
rience. The global population’s sizeMsand remains constant over all genera-
tions. Each sub-problem at the next two levels is solved by a ‘local’ NAGA-
and operates on its own population of the same 38izelnitially, the daily-
menu-level and the meal-level local populations are filled with the candidate
solutions from the global population and the second-level local poputgtion
respectively.

Beside the global population, we use an additional global pool of catledida
solutions that has a function of an archive of the union of solutions getby
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the sub-problems. At the daily-menu and the meal level, we use seven and fiv
local pools, respectively, whose function is equal to the global paatistfon.
Initially, the global and the local pools are empty.

3.3 Fitness Evaluation

In each generation, the fithess of the (global or local) population is eealua
using the following objective functions:

1

n b
Zi:1 VikZq

fe(%) = k=12,

n
f3(@) =) viswi,
=1

@) = (i | Zhlj($i)—m’)—2h($i),l <i<n, 4<1<0,

J=1 i=1 Nal i—1
(1)

0 xizo
hij(@i) = ,1<i<n, 4<1<09,
1 2, >0Av;; =13

0 €Tr; = 0
h(;v,): ,1§i§n.
1 otherwise

wherev;; denotes the functionality of the food iteinv;, its quality in the
seasony;s the cost,v;, the tastew;s the consistencyy,s the color,v;7 the
temperaturey;s the shapey;9 the method of preparation, amg;the number

of possibilities for the-th aestetic standard. The aim of the 'global’ and the
'local’ evolutionary algorithms is toninimizethe objective functions of (1).

34 Infeasible Solutions

A candidate solution may be highly fit but infeasible if it violates at least
one problem constraint. At the deepest level, the constraints for medésaate
restrictive:

= Each food item can be selected in a quantity that is limited by its original
portion size:
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= The energy provided by the meal has to be within the lower limit and the
upper limit:
Ne Ne
g3(%) =Y wipx; > 09E, gui(F) =) wipr; <11E, (3)
i=1 =1
wherew; g denotes the energy of 100 grams of the food item; the
quantity of the item expressed in grams, arid the meal requirement
for energy.

=  The macronutrients (i.e., proteins, lipids and carbohydrates) need to be
balanced:
Ne Ne
g95(F) =Y _wipdw; > 0.1E, g6(F) = Y wipdw; < 0.15E,
=1 =1
N, Ne
97(8) =Y wir9z; > 0.15E, gs(¥) =Y wir9z; < 0.3E, (4)
=1 =1
Ne Ne
9o(E) =Y wicdx; > 0.55E, gi0(Z) = Y wicdz; < 0.75E,
i=1 i=1
wherew; p, w;1,, w;c denote the quantity of proteins, lipids and carbohy-
drates, respectively, in 100 grams of the food iteemdNis the number
of courses in the meal. Because the quantities are expressed in grams,
conversion factors (4 for proteins and carbohydrates, and 9 fos)ipid
are required to attain to calories. We applied usual balancing factors for
adults (0.1 and 0.15 for proteins, 0.15 and 0.3 for lipids, and 0.55 and
0.75 for carbohydrates) but may be changed.

At the upper level, there are additional constraints that need to be satisfied
by a feasible chromosome presenting a daily menu:

= Simple sugars should account for only 10 percent or less of the dégfs to

energy intake:
N,

g11(E) =) wisdw; < 0.1E, (5)
=1
where FE; denotes the daily requirement of energy, ang the quantity
of simple sugars in 100 g of the food iteim

= The daily intake of saturated fatty acids should be limited to 10 percent
of the day’s total energy intake:

Ne

912(F) = wir9z; < 0.1E, (6)
i=1
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wherew;  denotes the quantity of saturated fatty acids in 100 grams of
the food item.

= The recommended daily intake of the dietary fiber is 10 grams per 1000-
calorie energy intake and should not exceed 40 grams:

Ne Ne

g13(F) =Y _wiva; > 0.01Ey, gua(F) =Y wiva; <40,  (7)
i=1 1=1

wherew;y denotes the quantity of dietary fiber in 100 grams of the food
item .

= The minimum and the maximum sodium requirements for adults in Slove-
nia are set at 550 and 2400 milligrams per day, respectively [5]:

Ne N

915(F) = Y _win,zi > 500, g16(F) = Y win,z; < 2400,  (8)
i=1 i=1

wherew; y, denotes the quantity of sodium in 100 grams of the food item
i.

At the highest level, beside the meal and the daily-menu constraints, a chro-
mosome presentingweekly mentnas to satisfy all the remaining constraints
for nutrients, such as cholesterol, monounsaturated fatty acids, omega-3
omega-6 polyunsaturated fatty acids, trans-fatty acids, water-solutle&agan
soluble vitamins, water, major minerals, and trace minerals, to become afeasible
solution. Formal definitions of these constraints are similar to that of Eqn. (3)
or Eqn. (8), but are beyond the scope of this paper.

Repair Method

We decided to repair a certain part of infeasible solutions in each generatio
to speed up the procedure of finding an optimal solution:

= At the deepest level, we apply a local optimization procedur@etr
programmingtrying to convert infeasible solutions into feasible ones.
The procedure, based on the simplex method [1], modifies the quantities
of randomly selected infeasible chromosome’s food items to satisfy the
problem constraints.

= At the upper levels, we try to repair infeasible solutions by 'replacing’
certain critical meals with more appropriate ones. We applyBihlel-
winian repair, where replacement is used only to evaluate the fitness
values of each solution [8]. Critical meals are those that do not satisfy
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the constraints on major food groups (i.e., breads, cereal, rice, ated pas
/ vegetables / fruits / milk, yogurt, and cheese / meat, poultry, fish, beans
eggs, and nuts / fats, oils, and sweets). Namely, a daily menu has to
be composed of a certaimumber of foodérom each major food group,
while a weekly menu has to includalaverse set of foodsom the major

food groups. There may be limitations on frequency of red meat, fish,
potato etc.

35 Selection

In order to form a new population, a binary tournament approach is applie
Solutions from both - the parent and the previous offspring - populat@mtake
partin the tournament if they are sorted by two attributes, imopadomination
rank and acrowding distanc@]. Initially, the offspring population is an empty
set.

First, solutions are sorted by the fast non-dominated sorting approaich of
NSGA-II [4]. In this approach, best non-dominated solutions becomeselite
of identical importance, forming Pareto-optimal fronts. Solutions are non-
dominated if none solution is better than the others with respect to all equally
important objectives.

Then, solutions are sorted according to their crowding distances. Aderow
ing distance is a measure of the search space around a chosen solhtan, w
is not occupied by any other solution in the population. Its computation re-
quires sorting of the populations according to each objective functior valu
their ascending order of magnitude. Thereafter, for each objectivatifun,
the boundary solutions (solutions with the smallest and the largest function va
ues) are assigned an infinite distance value. All other solutions are edsign
a distance value equal to the absolute difference in the function value® of tw
adjacent solutions. This calculation is continued with other objective fursction
The overall crowding distance value is calculated as the sum of indivitistal
tance values corresponding to each objective.

A solution¢ wins a tournament with another solutigiif both solutions are
feasible or infeasible and any of the following conditions are true:

= It has a better non-domination rank than solutjon

= Having the same non-domination rank, it has better crowding distance
than solutionj.

The first condition makes sure that solution i lies on a better Pareto front
than solutionj. The second condition resolves the tie of both solutions being
on the same non-dominated front by deciding on their crowded distanee. Th
one residing in less crowded area wins. If one solution is feasible andttee o
is not, the feasible one wins the tournament.
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Performing N tournaments, we obtain a new parent population of 8ize
OtherN solutions from the leastimportant Pareto fronts having a smaller crowd-
ing distance are discarded.

3.6 Crossover and Mutation

Solutions from the new parent population are mated pair-wise (using a two-
point crossover operator) and mutated to create a new offspring piooudd
size N. This completes one NSGA-II iteration.

Mutation is performed on randomly selected elements of the chromosome.
The mutationrate is setto be a small value that linearly decreases with iterations.
The selected elements are mutated in one of the following ways chosen with
respect to the type of the chromosome:

= by replacing a food item or a dish with a food from the same major food
group or a dish from the same course group, respectively, or

= by replacing a selected meal with a meal of the same type,
= by replacing a selected daily menu with a daily menu of the same type.

3.7 Termination Criteria

Once a sub-problem (meal planning or daily-menu planning) is solved by a
‘local’ NSGA-II (using a wanted-solution approach or a time-out apphndats
local population is unified with the local populations of the other sub-problems
at the same level and saved in their local pool.

To obtain chromosomes at the daily-menu level, meals from a local pool
are completed using the rest of the chromosome sequence from the papulatio
at this level. The completed solutions (daily menus) are sorted by the non-
dominated and the crowding-distance sorting methods to obtain locally optimal
solutions, forming a local population of daily menus.

At the weekly-menu level, completed solutions from the local populations
of daily menus are unified and saved into a global pool of weekly menus. A
selection of optimal solutions (non-dominated solutions with a large crowding
distance) from the global pool is transferred to the global population tatma
an iteration of the ‘global’ NSGA-II.

4, Evaluation of the Method

As a demonstration, we applied the multi-level NSGA-II to a problem of
planning optimal weekly menus for people without specific dietary require-
ments in a local hospital. We started the ‘global’ NSGA-II from an existing
non-optimal weekly menu.
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In Table 1, we list the parameters used to generate meals, daily menus and
weekly menus by the multi-level NSGA-II. We ran the algorithm for 25 times
to obtain the experimental results presented in Table 2. In Figure 1, & plaet o
feasible search space, whose shape is depicted for three objdutivastually
modified by nine objectives, is presented. A subset of the analysis résults
a weekly menu generated by the multi-level NSGA-II is presented in Table 3.
This weekly menu was generated with respect to the following requirements
for the major food group of meat and its substitutes: white meat, legumes, fish
and eggs once per week, and red meat three times per week.

Table 1. Parameters.

PARAMETER THE WEEKLY-MENU THE DAILY-MENU THE MEAL
LEVEL LEVEL LEVEL

Chromosomes length 7 5 10

Population size 100 100 100

Pool size 700 500 -

Crossover probability 0.7 0.7 0.7

Mutation probability 0.14-0.01 0.2-0.01 0.1-0.017

Selection type Two-point crossover

Crossover type Linear descending mutation

Number of iterations 24 18 35

Table 2. Experimental results.

Percentage of infeasible solutions in each new generation 9 8
Percentage of successfully repaired infeasible solutions 65
Cost (EUR) QUALITY IN SEASON FUNCTIONALITY
Best result 3.08 48 12
Median 9.7 28 6
Worst result 22.8 18 0
Mean value 9.7 28.3 5.8
Standard deviation 3.1 4.7 3.4
5. Conclusions

In this paper, we have presented the NSGA-II in a multi-level way to solve the
weekly-menu problem, which is logically decomposed of several sublgort)
namely, daily-menu planning and meal planning. The algorithm finds the
Pareto-optimal set of diverse optimal solutions that are trade-offs bathigh
seasonal quality and functionality, and low cost and deviations from the ae
thetic standards in a reasonable amount of time. We maintain the feasibility
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Fixed functionality (6):

Deviations from the standards

Figure 1.

Part of the problem’s search space.

Table 3. Analysis results of a computer-generated weekly menu.

Feasible solutions
@ Pareto-optimal solutions

MEAN DACH GoAL
DAILY RECOMMENDED ACHIEVED
VALUES DIETARY ALLOWANCES (%)
Energy (kcal) 2036 2000 102
Proteins (% of energy) 16 10-15 v
Lipids (% of energy) 28 15-30 v
Carbohydrates (% of energy) 56 55-75 v
Simple sugars (% of energy) 4.5 <10 v
Saturated fats (% of energy) 6.6 <10 v
Ratio of omega-6 to omega-3 fatty acids 3.9 5 v
Dietary fibre (g) 33.6 30-40 v
Cholesterol (mg) 160 300 v
Sodium (mg) 2,500 550-2,400 104
Breads, cereal, rice, and pasta (no. of units) 11.2 11 102
Vegetables (no. of units) 4.7 5 94
Fruits (no. of units) 3 3 100
Milk, yogurt, and cheese (no. of units) 2 2 100

97

of solutions by repairing infeasible solutions in two ways, namely, by the LP
simplex method (for meals) and the Baldwinian greedy repair method (for daily
menus and weekly menus). The experimental results showed that thaeippro

distinguishes with efficiency and effectiveness.
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As the problem of dietary menu-planning belongs to the multi-dimensional
knapsack problems, the method could be useful for other intractabléeprsb
from this group.

Parallel implementation of the multi-level NSGA-II for dietary menu plan-
ning deserves future attention.
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Abstract In this project, we are interested in using computational methods in ordev s
the control problem of an unmanned autonomous aerial vehicle. Tjbetve
is to have the vehicle navigating in the environment able to reach the desired
location through some planned waypoints; this is to be done with the vehicle’s
best effort, that is with the lowesbst As cost we shall consider miss distance
from target waypoint, i.e., a function of the state variables of the mattiestha
model which describes the dynamics of the vehicle. All this will be done by
calculating the optimal trajectory which satisfies all the constraints and centain
all the planned waypoints. The optimization part will be done by modifying
a micro-genetic algorithm software which was initially developed by David L.
Carroll from University of lllinois [3].

Keywords:  Aircraft dynamics, Genetic algorithm, Optimal design, Unmanned aelédtle

1. Introduction

Computationally efficient trajectory optimization is an enabling technology
for many new facets of engineering. Formation flying of satellites, [13], an
trajectory generation of unmanned aerial vehicles [11], are two exanvpke
the tools of real-time trajectory optimization would be extremely useful. The
capability and roles of Unmanned Aerial Vehicles (UAVS) are evolving,ran
quire new concepts for their control. A significantaspect of this coptaillem
is optimizing the trajectory from the UAV’s starting point to its goal. Online
trajectory generation for flight control application is important in unmanned
aerial vehicles to provide feasible guidance commands in highly aggeessiv
flight situations. In general, the solution of the optimal control problem with
high dimensional space is hard to compute. This problem is complicated by
the fact that the space of possible control action is extremely large. Tio we

99
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known methods that have been applied to this problem are Probabilistic Road
Maps [7] (PRMs) and Rapidly-exploring Random Trees [8] (RRTshesSe
methods reduce the dimensionality of the problem by sampling the possible
actions, but the resulting trajectories are generally not optimal. Another-diff
ent approach to the optimal trajectory problem consist on applying the IMode
Predictive Control (MPC). MPC refers to a class of algorithms that congute
sequence of manipulated variable adjustments in order to optimize the future
behaviour of a system [10]. The main idea of MPC is to choose the control
action by repeatedly solving, on-line, an optimal control problem. This aims at
minimizing a performance criterion over a future horizon, possibly subject to
constraints on the manipulated inputs and outputs, where the future behavior
is computed according to a model of the system. An important advantage of
MPC is its ability to handle input and state constraints for large scale multivari-
able plants [1, 2]. Murray [9] has been investigating techniques foergéing

state and input trajectories which satisfy the equations of motion and trade off
tracking performance for inertial stability, using differential flatness.

Stochastic search is an alternative strategy that can bypass some limitations
of the previous methods. The genetic algorithms belong to this last family
of solvers, as the random choice of the possible solution is combined with
criteria for the direction of search which derive from natural evolutfmpecies.

This technique is considered global and robust in terms of search awer th
space of solutions. The genetic algorithm [5] operates on the principleeof th
survival of the fittest. A constant-size population of individuals, eadinen

is represented by a fixed number of parameters which are coded in binary
form (chromosomes), encode possible solutions of a given problem.ithat in
population of individuals (possible solutions) is generated at random. The
allowable range of variation for each parameter is given. There are hina@
operators that constitute the genetic algorithm search mechanism: selection,
crossover and mutation. In every evolutionary step, known as a dgiemetthe
individuals of the current population (or family) are decoded and etedua
Each possible solution is analyzed by a fitness function which decidesavheth

it will contribute to the next generation of solutions. The selection progdur
depends on the value of the fithess function. Individuals with high-fithags

a better chance of reproducing, while low-fitness ones will disappeace O

the new population has been selected, chromosomes are ready faveross
and mutation. The crossover operator combines the features of twdgtoren
create new solutions. Crossover allows an improvement in the species in terms
of evolution of new solutions at random on each parent and then, compiame
fractions from the two parents are linked together to form a new chromosome
The mutation operator alters a copy of a chromosome reintroducing values tha
might have been lost or creating totally new features. One or more locat®ns a
selected on the chromosome and replaced with new randomly generates] value
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The three operators are implemented iteratively. Each iteration produegs an
population of solutions (generation). The genetic algorithm continues tg app
the operators and evolve generations of solutions until a near-optimutiosolu
is found or the maximum number of possible generations is produced. Higure
shows the algorithm flow chart.
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Figure 1. The genetic algorithm flow chart.

Note that, differently from classical search methods, the transition rules fr
one solution to a new solution in the search space are not given in a determinis
tic form but using probabilistic operators. Besides, differently from tuteiral
case, the size of the new population is kept constant and each nevatemes
expected to increase the average fitness. This method has been apylied by
authors to optimize the trajectory of a fixed wing UAV. In this paper, a control
design application for the MicroHawk micro aerial vehicle is discussed. The
MicroHawk [6] concept was designed within a European Union fundejpt
(Micro Aerial Vehicles for Multi Purpose Remote Monitoring and Sensing
Project), by a research group at Politecnico di Torino. It consistsfoded
wing, tailless integrated wingbody configuration, powered by a DC motor and
tractor propeller (see Figure 2). Three versions have been dededopdested,
characterized by different size and weight. The reference vehiamed Mi-
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Figure 2.  The micro aerial vehicle configuration (MicroHawk).

croHawk600 - is characterized by a 600 mm wingspan and the bare piatfor
weights 400 g. Its design has been mainly adjusted to the need for higher pay
load weight fraction and larger internal volumes. The MicroHawk608iver

can potentially achieve autonomous flight as it is possible to locate onboard a
commercial small size autopilot without exceeding wing loading limitations for
hand launch.

2. Mathematical Model
2.1 Point-Mass Model

Equations (1) are assumed as the system which describes the dynamics of
the vehicle:

V cosycosy
V cosysin x
V siny
g
v (n cos (b‘ cos) | 1)
g nsin¢
V cos~y
D

— — gsinvy

A NG B SN SH

e

System (1) is a point-mass model wergy, h denote the position of the
center of gravity (CG) of the aircraft in a ground-based referermaé and
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are usually referred to as down range (or longitude), cross ramdatifode)
and altitude, respectively. Angles are also defined with respect to the same
frame: ¢ is the bank angley is the heading angle ands the flight-path angle.
T, is the engine thrust) is the aerodynamic dragp the aircraft massy the
gravity acceleration. The ground-speed veloditys assumed to be equal to
the airspeed. The bank anglethe engine thrust, and the load factat = m%,
are the control variables for the aircraft; hence, we have that the wegtru
is:
u=[¢,Te,n|. (2)

System (1), complemented with constrains on applicable inputs, form the basis
of many aircraft trajectory optimization problems in the literature. Constrains
are usually written in terms of original state variables and controls.

The aircraft itself sets some constrains for the state and the controlfesriab
like n, T, ¢. As well as constrains on control variables, during the navigation
there are limitation on the flight-path angle in both climbing and descending
trajectories and on upper and lower bounds of airspéed In addition to these
constrains, the problem definition includes the initial and terminal conditions
for the state variables.

2.2 Cost Function

We want to minimize the following cost functioh which takes in account
the error between the nearest point of the trajectory from the desingubive
and the waypoint itself in terms of position and velocity. Before calculating the
cost function a preliminary simulation of the trajectory is done starting from
given initial condition. The simulation is performed at equispaced intervals of
time. Our interest is focused on finding which step of the simulation is nearest
to the objective waypoint. Among the trajectory points, the closest one to the
target is used to define the tinag, which is assumed as the required time to
reach the target pointin this preliminary trajectory evaluation. The costibm
is given in the following form:

J = (Xi — X0)*+(Y; = Vo)’ +gk (hi — he)*+9 (1 — k) (Vi — Vi,..,)7 (3)

where X3, Y;, h; are referred to as the target waypoirf,,,,.. indicates the
reference condition which corresponds to the minimum drag condition. The

functiong is defined as:
R
=(1- = 4
g ( Ro) , 4)

whereRy is the distance, in the horizontal plane, between the initial waypoint
and the target an® indicates, still in the horizonal plane, the distance of the
aircraft from the targetk is a weight factor varying from 0 to 1 according to
user setup.
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2.3 Problem

If we use time discretization and divide time horizgnover n finite time
instants, we obtain & x n vector:
th = [to,t1 = to + Aty = tg + 2A, ..., tg + nA]. (5)
Consequently, we have that it is possible to describe the trajectory of an air
vehicle as a set ot points at the: time instants, so that it is possible to define
a3 x n matrix:

Py P, P,
A=) (n].. . |7l (6)
no ni Nip

We now want to define a simple waypoint distribution and calculate the trajec-
tory including all waypoints which minimizes cost function (Eqgn. (3)) all over

time horizont},.

50

¥ [m]

50

X [m]

Figure 3. Example of waypoint distribution.

Starting from a3.D waypoint distribution as shown in Figure 3 where four
waypointsl, 2, 3, 4 have been defined in they horizontal plane, we will get

the { A},,+ matrix.
2.4 Optimization with Micro-Genetic Algorithm

Elements in matrix4, defined in Eqgn. (6), will be the chromosomes of pop-
ulation on which the algorithm will operate in order to minimize cost function
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(Egn. (3)). Figure 4 shows a map of the whole process in which, starting f
a genericA matrix, theA,,; matrix, satisfying all the constraints, is obtained.

(Al

A 4

Waypoint

Constraints Genetic Algorithm Distribution

Figure 4. The process map.

The genetic solver adopted for the trajectory optimization is a Fortran version
of the driver described by Carroll [3]. The code initializes a randomda of
individuals with different parameters to be optimized using the GA approach.
The selection scheme used is a tournament selection with a shuffling technique
for choosing random pairs for mating. The routine includes binary coding
for the individuals, jump mutation, creep mutation and the option for single-
point or uniform crossover. Niching, elitism and an option for the numiber o
children per pair of parents are available. Finally, the solution using a mi&ro G
is also possible. This last switch significantly reduced the number of function
evaluations and demonstrated faster convergence average to tiealoggion
[3, 4]. Note that average population fithess values are not meaningfubw
micro-GA because of the start-restart nature of the micro-GA evoluticregs
Many numerical experiments were performed by Carroll [3, 4] in ordéurte
the search algorithm adopted and, as a result, the suggested set-ugally/ par
extended for the present application. The code is set for maximum populatio
size of five individuals, 48 bits per individual and three parameters (iée., 1
binary bits per parameter a2’ possible solutions per parameter). Niching
operationis activated. Creep mutation is enabled and one chil per paieotpa
is considered. Tables 1 and 2 provide summary of the value of the parameter
set in the input file.
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Table 1. The input file parameters used in simulation.

PARAMETER VALUE PARAMETER VALUE
irestrt 0 icreep 1
microga 1 pcreep 0.04
npopsiz 10 iunifrm 1
nparam 3 iniche 1
pmutate 0.05 nchild 1
maxgen 1,000-- 100,000 iskip 0
idum -1,000 iend 0
pcross 0.5 nowrite 1
itourny 1 kountmx 1
ielite 1

Table 2. Other input file parameters.

PARAMETER (] Te n
parmin -45° ON -1g
parmax 45° 6N 29
nposbil 32,768 32,768 32,768
nichflg 1 1 1

3. Analysis of the Results

In this section, we simulate a scenario where the transition through four
known waypoints is assigned to the UAV platform. The search procedure is
initially extended to 1000 generations in order to find the best value of psgame
k (Egn. (3)). Figure 5 shows different trajectories generated by theor@éx
which satisfy, for different values df, the cost function. In the same figure
is represented the trajectory generated by a commercial autopilot seefor th
MicroHawk vehicle. The dotted circles represent cylinders with a radius o
30 m: we assume that the air vehicle, moving from a target to the other, eache
the destination target when it is inside the cylinder. Figures 6 and 7 show
respectively the altitude and the airspeed time-histories for the same previous
values ofk. Fork = 0.6 the UAV has the best behaviour: the targets are
reached nearest both in the horizontal plane and in altitude range. Iragigs ¢
when the target is reached the altitude difference is less than 5 meters. The
velocity time-history shows small velocity decreasing: as a matter of fact we
desire to turn as near as possibl&at,.. (< Vimaz). Moreover, the entire track
is concluded faster than in the real flight set-up. It is important to highligtit th
the micro-GA, differently from the autopilot, aims keeping the maximum speed
during first phases of waypoint navigation. Differently, when apphazg the



Optimal Mission Planning for an Autonomous Unmanned Aéfidlicle 107

waypoint turn, airspeed is reduced to minimum drag (maximum efficiency turn
for minimum altitude loss).

¥Im]

Figure 5. Trajectories for different values @&f

Altitude [m]

Time [s]

—-k=04 - k=05 ——k=05 -- -~ Autopilot

Figure 6. Altitude time-histories for different values &f

Fixed k = 0.6 some additional tests have been carried out increasing the
number of generations from 1000 to 100,000. Figures 8, 9, and 10 tteow
results. The increase of generations still produces an increment aftingje
performance. Unfortunately, the nature of the problem does not allow the



108 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

25

Airspeed [m/s]

Time [s]

—--k=04 -----k=05 ——k= 06 ----Autopilot

Figure 7.  Airspeed time-histories for different values/af

tracing of the fithess function on the overall flight circuits. Hence, cayemce
to optimal trajectory can only be decided after flight track inspection.

¥ m]

150 200

®[m]

-+ 1000 gen. ~-~--50000 gen. —— 100000 gen

Figure 8. Trajectories for different numbers of generations.

4. Concluding Remarks

The reference trajectory was obtained with a simulator of the real aircraft
including autopilot. The model of the controlled system was validated with
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Altitude [m]

Time [s]

1000 gen. —-- -~ 50000 gen. —— 100000 gen.

Figure 9.  Altitude time-histories for different numbers of generations.

Airspeed [m/s]

Time [s]

-~ --1000 gen. - ----50000 gen. —— 100000 gen

Figure 10. Airspeed time-histories for different numbers of generations.

flight experiments. Gains and setting for the autopilot were set in the simu-
lator in accordance with suggested factory defaults for the applicatioe. Th
purpose of the comparison with optimal trajectories is the upgrade of control
and navigation feedback of autonomous system in real flight conditiarierd~
activity will be devoted to implementation of the optimal search for autopilot
gain setting in order to obtain a flexible software tool for appropriate cbntro
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and navigation, removing the complex trial and error experimental progedu
usually suggested by autopilot producers.

References

[1] A.Bemporad. Reference Governor for Constrained Nonlingaté8nsIEEE Trans. Au-
tomatic Contro] 43(3):415-419, 1998.

[2] A.Bemporad, A. Casavola, and E. Mosca. Nonlinear ControlarisErained Linear Sys-
tem via Predictive Reference ManagemeBEE Trans. Automatic Contrp#2(3):340—
349, 1997.

[3] D.L. Carroll. Genetic Algorithms and Optimizing Chemical Oxygen-lodine Lad2es
velopments in Theoretical and Applied Mechanics, Volume 18, pages424] School
of Engineering, The University of Alabama, Tuscaloosa, 1996.

[4] D.L. Carroll. Chemical Laser Modeling With Genetic Algorithm8lAA Journa)
34(2):338-346, 1996.

[5] D.E. GoldbergAlgorithm in Search, Optimization and Machine LearniAgidison Wes-
ley, Reading, USA, 1989.

[6] G. Guglieri, B. Pralio, and F. Quagliotti. Design and Performancelysis of a Micro
Aerial Vehicle Concept. IfProc. 2nd AIAA Unmanned Unlimited Systems, Technologies
and Operations Conferenc8an Diego, USA, 2003.

[7] L.E. Kavraki, P. Svestka, J.C. Latombe, and M.H. Overmarsb&bilistic Roadmaps
for Path Planning in High-Dimensional Configuration SpateEE Trans. Robotics and
Automation 12(4):566-580, 1996.

[8] S.M. LaValle and J.J. Kuffner. Randomized Kinodynamic Planningroc. IEEE Inter-
national Conference on Robotics and Automatipages 473—-479, Detroit, USA, 1999.

[9] R. Murray, J. Doyle, J. Marsden, and G. Balas. Robust Nonti@zatrol Theory With
Application to Aerospace Vehicles. Proc. IFAC World CongressSan Francisco, USA,
1996.

[10] S.J. Qin and T.A. Badgwell. An Overview of Industrial Model &ictive Control Tech-
nology.Chemical Process Contra®3(316):232—-256, 1997.

[11] B. Sweetman. Fighters without PiloRopular ScienceNo. 11, pages 97-101, 1997.
[12] TechSat2lnhttp://www.vs.afrl.af.mil/vsd/techsat21/.

[13] M. Van Nieuwstadt, M. Rathinam, and R.M. Murray. Differential thkesss and Absolute
Equivalence of Nonlinear Control SystenisControl 61(6):1327-1361, 1995.



A GENETIC ALGORITHM WITH AN
ADAPTATION MECHANISM FOR DATABASE
INDEX OPTIMIZATION

Viktor Kovacevic
HERMES SoftLab, d. d.
Ljubljana, Slovenia
viktor.kovacevic@hermes.si

Bogdan Filipt

Department of Intelligent Systems

Jozef Stefan Institute, Ljubljana, Slovenia
bogdan filipic@ijs.si

Abstract Relational database tuning is a complex process which requires vanals le
of competence, from system and hardware engineering to knowlddgesio
ness logic. Optimizing application query workload with selection of proper se
of binary indexes that minimize query response time and consecutiveleth
source usage is known as the index selection problem (ISP). As a stiacha
biologically inspired search method suitable for finding near-optimal saisitio
in complex search spaces, a genetic algorithm is suitable for solving tiiepro
In this paper, we present an adaptation mechanism incorporated in tieticGe
ALgorithm for Index Optimization (GALIO), an expert tool for ISP. Opé&onal
testing of GALIO with the adaptation mechanism on real-world databasessho
a significant improvement of optimization results in comparison with thdtsesu
obtained without adaptation.

Keywords:  Database optimization, Genetic algorithm, Index selection problem, Qoesgs:
path evaluation

1. Introduction

The mainstream in modern database development is the production of rela-
tional database management systems with processes and tools basedion huma
knowledge needed for efficient exploitation of database systems. To imainta
their data, the users communicate with databases through queries. Database
tems need to provide optimal usage of system resources and supplgtesijue
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data with minimum response time. Binary indexes created on crucial database
entity keys and attributes of the most searchable table columns present a fun
damental approach to optimization of the query execution cost. Binary indexe
themselves are separate database objects that entirely depend on data-in the
bles. Therefore, they increase the execution cost for data mainteqagades.
Finding an optimal index configuration to get the minimal execution cost, bal-
anced between data search and data maintenance queries from thetiapplica
query workload, is known as the index selection problem (ISP). Inweald
relational database systems with hundreds of tables, thousands of fabhaso

and hundreds of different queries, the ISP is a complex combinatooiallgm.
Furthermore, it is proven that the problem is NP-complete [2].

The index selection problem has been studied since the early seventies and
the importance of the problem is widely acknowledged [6, 10]. Most itecen
releases of database systems, such as Oracle, DB2 and SQL Setude the
so-called index advisors capable of analyzing the workload in terms t§ cos
of previously performed queries, and deriving recommendations fexiack-
ation [3, 4, 9]. Various implemented tools as well as the work presented in
the literature show that the ISP draws considerable attention of the academic
and engineering communities [1, 9, 11]. In modern relational database de-
sign, numerous optimization methods and algorithms are being included into
application development interfaces and infrastructure.

In our previous work we presented the Genetic ALgorithm for Index Opti-
mization (GALIO) and in preliminary experiments it was shown suitable for
the ISP [7]. Furthermore, we have grounded our approach on exsgtingions
and tools, especially on direct usage of database query cost evalonatibads
and application of the optimization algorithm independently from the specific
relational database implementation. In this paper we extend the previous re-
search with incorporating an adaptation mechanism into the genetic algorithm.
Moreover, we test the algorithm on a real database system.

The paper is further organized as follows. We first describe the proble
and summarize the results of the original algorithm. Next, we present the new
adaptation module and its impact on the design of genetic operators. Finally,
we report the optimization results achieved with the GALIO expert tool on an
e-banking system database and conclude with the ideas for future work.

2. Problem Definition

LetT ={1,2,...,n} be a set of tables anll= {1,2,...,m} a set of all
combinations of secondary indexes on the taliléfom one indexed column
to the predefined number of columns for index&s, usually 3 or 4). Eachtable
contains different number of table colum@is= {1,2,...,k;},i =1,2,...,n,
wherei is the total number of tables in the database system. The probability of
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column constituent in new index candidates is defined for each column in each
table:
P NUM_DISTINCT;
Ci‘ = . 9
S5 NUM_DISTINCT,

wherek; is the number of columns in taldle, andNUM_DISTINCT; the number
of distinct values in columri. Furthermore, we define an index configuration
Q = T Q I, which denotes that for each table Thwe define a subset of
secondary indexeS| C I . For each index configuration we also define the
maximum number of indexes per talle,, usually up to 5. When allindexes of
a certain configuratio8lare built, the query workload cost on that configuration
is estimated. The estimation is based on two criteria. The first one is the cost
estimated for each query on the index configuration by the database optimizer
The second one is tH& maintenance time, which is estimated from the index
statistics. For building our prototype tool, only the number of indexed columns
is used for the index maintenance factor calculation. The estimation of the
total cost for a query workload represents the sum of cost estimatiges gi
by the database optimizer and is calculated through a query explanation plan
mechanism for each query in the query workload. The explanation ptan fo
the query workload also gives the information about the index access @sith
well as the index usage. Therefore, the final index configurationesaisated
by cost and by the index usage. At the end, we get a new index caatiigur
SI C Slthat contains only the usable indexes &l#l = SI— Sf with unusable
indexes.

We can use the list of unusable index#&slIto change table column statistics
for each first column of the unusable indexes so that the new numbetiotdis
values is calculated as

NUM,DISTINC'I;»0 = NUM_DISTINCT;, x 3

& (changedNUM_DISTINCT= ))
Ao = Ajo X 3.

Here represents the penalty factor with valuel 3 < 1. In our work we use
the value of the penalty factor between 0 and 0.2.

3. Previous Results with GALIO

Inthe initial tests of GALIO we achieved encouraging results, especially with
regards to efficiency and robustness of the algorithm on a sample piaduc
database [7]. Some differences were noted in comparison to humaedliefin
solutions. This particularly holds in case of large tables in terms of the number
of records, with some ‘usable’ columns with relatively small number of distinct
values compared to the total number of records in the table. Index carglisate
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such columns also contribute to a great extent to the total query costigeduc
The initial version of GALIO used static probabilities for column candidates
which are based on the number of distinct values from the table data statistics.
Therefore, these columns have relatively small probability to be index-cand
dates. This results in not including them in the resulting index configuration.
The initial version of GALIO does not change these static probabilities for
column candidates during the execution of the algorithm.

Each table in the entity-relationship model has the data statistics structure
which contains the parameters used in the process of creating a new @tdex s
The initial version of the algorithm uses a number of different values aach
the probability that a column will be used in the index. A column with a higher
number of distinct values has a higher probability to be chosen in the new inde
creation process. The new index creation process is assumed asrcodatio
new index with predefined number of columns or as addition of a new column
to the existing index in order to improve the index selection factor. The index
selection factor is defined as the number of matching columns in query filter
predicates that are covered by index columns. Previously used colaitines,
in new index creation or in adding a new column, are not used in the sulrgtequ
steps of searching for the next index column. Obviously, each table calamn
be used in a single index only once.

4. Adaptation Module Design

The improvement of GALIO by adding a new module for adaptation of
column index probabilities is based on the information on ‘usability’ of the
proposed index configurations in previously evaluated query ace#fss. 0T he
term ‘usability of an index’ is used to specify the usage of the index in the
guery explain plan access path produced by the database optimizerg hain
algorithm execution, probabilities for the columns that are members of ‘unus-
able’ indexes are reduced, while the probabilities of the other table columns a
increased. After a new index configuration is evaluated, that is, quankiead
access paths are estimated, the algorithm adapts table column probabilities for
the next generation. Each time an index is marked as ‘unusable’, theilityba
of the first index column is decreased. Probabilities of other columns are in-
creased in equal shares of the total probability reduction of unusakbiecs.

This process is carried out after the evaluation of each new index coatign.

The adaptation module uses as its input two groups of parameters. The
first group is related to table statistics, while the second group is associated
with the index usability and obtained from the usage of previously indexed
columns (binary indexes) in the explained query access paths. The main tas
of the adaptation module is to obtain knowledge from the previously explained
gueries and to change the probabilities of columns to participate in new index
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creation. The first group of input parameters is mostly static whereasdhede
group depends on the algorithm behavior and results. The probabilitigisief
columns areinitialized from table data statistics. The adaptation system changes
these probabilities from temporary results of the algorithm in each execution
step. This process consecutively directs the search towards the opsuHl r
Figure 1 shows the integration and the data flow between the adaptation module
and the genetic algorithm implemented in the GALIO tool.

5. Modifications of Genetic Operators

In GALIO, each candidate solution (index configuration) is represeinted
the form of a matrix, where the matrix columns are table columns sorted in the
lexical order and grouped by tables in the configuration [7]. The maiien
of good genetic material (usable indexes) among index configurationstis pa
of the computer-simulated evolution process. It is performed by two genetic
operators: recombination and mutation [5].

Table data statistics

Database table model
(Entity-relationship
model)

Genetic Algorithm Query workdoed

New index
candidates

Figure 1. Adaptation module and the genetic algorithm data flow.

Column probabilities based on the number of distinct values are integral part
of the index configuration genome. The index configuration matrix includes a
row with the number of distinct values for each column in the tables, as shown
in Figure 2.

The mutation operator adds a new index to an existing index configuration.
After the evaluation of the query work load on the mutated index configura-
tion, the number of distinct values for each first column of unusable isdexe
recalculated. The applied mutation operator is illustrated in Figure 3.
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| TMCL T1Cy - TaCy o+ TiCy v+ T, C1 TpCy o+ TpCi v+ TCy
O A1 Az oo A oo Amoc At An2 0 Ani oo A
1 1 2 1
i 1 2 3 2 1
n 1 2

Figure 2. Representation of index configuration in the genetic algorithm.

‘ TnC1 ThCo --- ThC; --- T1Cy -+ T, C1 T, C2 -+ T, C; --- TpCy
0 ‘ A1 A1z o0 A 0 Atn o Apl An2 0 Ani 0 Anp
1 1 2 1
7 1 2 3 2 1
n 1 2
n+t1l - 2
n+2 1 — 3 —— 2
A=A x g Az = Anz X 8

Figure 3. The adapted mutation operator.

The recombination operator is more complex. First, the parents simply
add their index configurations, like in the original recombination operator in
GALIO. The default row is recalculated in a way that minimal values for the
number of distinct values from parents are inherited in the offspring guonafi

tion:

offspring _ )\first )\s'econ(a ‘z table index j column index
)

Vi, j i min(A;;”,

The numbers of distinct values calculated in this way represent a new row in
the offspring configuration matrix. After the query workload is evaluatadi a
the usability of indexes is known, the number of distinct values for eadh firs
column of unusable indexes is recalculated again. This process is illustrated
Figure 4.

6.

Test Environment and Results

The test database system contains a copy of the real production datarfro
e-banking application for the last four years. The query workloadsedban a
two-week application log and covers all implemented application query func-
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| TMC1 TiCy - TiCi o+ TiCy v+ T, C1 TpCy o TpCi o+ TCy
O A1 Az oo A oo Amoc At A2 0 Ani o Ana
1 1 2 1
i 1 2 3 2 1
n 1 2
X
| WC1 TCy -+ TiCy -+ TiCp v+ T, C1 TnCa -+ TpCy -+ TnCy
0] A1 Az o0 A o0 Ao Ant Anz ot A coc Anm
1 1 2 1
7 1 2 1 2
J 1
— Vi}j ’Y;J;fspnng — Inin<)\§rjsl7 A?3C0"$ ‘z table index j columnindex
| TvC1 TiCa TiCi -+ ThCq -+ Ty, C1 TnCo ThCi -+ ThCh
0 | X1 Az -0 A0 Mmoo Anr Anz o0 Ang cc Ann
1 —3— 2 1
i 1 2 3 2 1
n 1 2
n+1 1 2 1
n+i T a2
n+j 1

Y1 =711 %XB Y =m2XxB Yho = Yn2 X B8

Figure 4. The modified recombination operator.

tionalities. The query log contains 84 different types of queries fromlaeg
usage. The total number of query executions is 620,716. For indivighegies

the number of executions varies from 2 to 52,505. The query complexity in-
creases from the most simple (one table select queries or updates) to highly
complex queries with 10 tables, with sub-queries and unions. The pegeenta



118 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

of different query types in entire query workload is: 59 % of selectrigge

28 % of update queries, 11 % of insert queries, and 2 % of delete qué&hies
guery complexity is expressed as the number of elementary databastonsera
needed to obtain the query result records from the tables. The moséfriy
used operations are full scans, index scans, different joins arednlemps.

On average, each query in the workload has 8.46 different elememttaiyase
operations. The physical size of the database files is 13 GB. The totalenumb
of columns for tables in the model (882) is constrained to the number of 198
different table columns favorable for secondary indexes.

The imported query workload statistics influence the genetic algorithm set-
tings. The most important factor is the average number of columns in query
search criteria for table records. For the testing query workload, itthas
average number of 2 to 3 different column search criteria per table. GALI
was configured to search for optimum secondary indexes of up to 3 celumn
Another crucial factor is the number of indexes per table. This configuara
parameter is set to the maximum of 5 indexes on each table. An advantageous
property of GALIO is removing of indexes not used in a query explaingath
from the proposed index configuration. This allows setting up any vahtbdo
maximum number of indexes per table higher than the lower limit of the number
of the indexes used in query explain paths. Large value of this paranaeter ¢
cause unnecessary combinatorial complexity of the search and lowrparfoe
of the genetic algorithm.

Mutation and recombination probabilities were set to balance with equal
probability between the two genetic operators. As a result, on averagefhalf
individuals were mutated and recombined in each generation, without seclus
right to one or other operator for a specific individual. It is also possze
an unchanged individual passes to the next generation. The testaljmp
sizes were 10 to 30 individuals, and the population of 15 individuals wagifo
a compromise between time efficiency and resource requirements of thedapplie
algorithm. The average execution time was up to 30 minutes on a nowadays
standard Pentium hardware configuration where the database sedvérea
genetic algorithm ran on the same machine.

A typical resulting index configuration contains 38 different secondary
dexes. There are two tables with 4 indexes recommended (payments and ac-
counts tables with high employability in the e-banking application system).
We also have two tables with 3 indexes (payment packages and user gompan
relation table). The remaining indexed tables have one index (30 % of total
number of 44 tables) and two indexes (30 % of total number of tables).eThes
values demonstrate suitable algorithm behavior in deleting unusable indexes
from index configurations. There are 17 tables (38not indexed. , Thigyout
exception, belong to a group of tables with small number of records. On av-
erage, one-column indexes contribute with approximately 60 %, two column
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indexes with 30 %, and three column indexes with 10 % to the total number of
indexes in the resulting configuration.

The best result of the original GALIO algorithm was compared with the re-
sult of the modified algorithm and with the human-defined index configuration.
The resulting index configurations were evaluated with the absolute value of
cost function from the original algorithm [7]. The result of the modified al-
gorithm (cost value 3,409) is 34 % better than the query workload casit res
of the human-defined secondary index configuration (cost value b, 5t e-
over, in comparing the original and modified algorithm, the result is even more
significant. The index configuration cost for the modified algorithm regmss
only 40 % of the original GALIO result (cost value 8,509).

7. Conclusion

After the described phase of development, the genetic algorithm for the
database index selection achieves significant results in real-worldkian
database application, especially with respect to efficiency and robastdat
isfactory results are also achieved in comparison with human-defined sslutio
Future work will be concerned with improving the algorithm and comparing its
results with those of other algorithms for the index selection problem as well
as with the results of database index advisors included in commercial databas
management systems. We also plan to improve the evaluation method for in-
dex maintenance cost and extend it to include other index statistics information.
Furthermore, itis possible to incorporate index data file space configugpaio
rameters and other types of indexes, like bit-mapped or functional indexes
the existing genetic algorithm. It seems is possible to design a general biologi-
cally inspired algorithm for tuning database management systems with various
data structures, not only b-tree indexes, for query optimization.
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Abstract Computational Grids (CG) represent new computational framewoeksoffer
large computational power by connecting geographically distributediress.
Obtaining efficient and optimal assignments of jobs to the grid nodes is a main
issues in such distributed environments. In this paper, we presenta3sasor
Scheduling Jobs on Computational Grids and study two versions of itl lmase
the replacement operators: Steady-State Genetic Algorithm (SSGA)tamgd S
gle Genetic Algorithm (SGA). Considering the value of makespan, we aim to
compare their behaviorin areal CG. The interest of SSGA is its accedit@te
vergence of the population that rapidly reaches good solutions althoisgioiin
stagnated. The SGA is based on a struggle replacement policy thatvatiapti
maintains diversity over population. The experimental results show tBat S
outperforms SSGA for moderate size instances. On the other hanidrder
size instances, SGA is not able to improve the results obtained by the SSGA.

Keywords:  Computational grids, Genetic algorithms, Replacement operatorsjdaige

1. Introduction

The constant growth of communications, in terms of quality and availability,
is increasing the interest on grid computing paradigm [5] by which gebgrap
cally distributed computing resources can be logically coupled togetheimvgork
as a computational unit. An efficient use of distributed resources is highly d
pendent on the resource allocation by grid schedulers. Moreovertodiine
dynamics of a CG, grid schedulers must generate optimal schedules at a mini-
mal amount of time. Job Scheduling on Computational Grids is multiobjective:
makespan, flowtime and resource utilization are among most important criteria.
In this work, makespan and flowtime are both optimized, but only makespan is
reported and used for comparing purpose.
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Several heuristics are being addressed in the literature for Job Sicigedu
on Computational Grids [1, 4, 8, 11]. In particular, Genetic Algorithms (GA)
[7] have proved to be a good alternative for solving combinatorial optimizatio
problems. One important characteristic of GAs is the tendency of the populatio
to converge to a fixed point where all individuals share almost the sane¢éigen
characteristics. If this convergence is accelerated, by means of tloticaele
and replacement strategy, good solutions will be faster obtained butigiopu
will rapidly converge to worse solutions than those that could have bewlfo
if a slower convergence had been maintained. Thus, an appropriatedala
selection pressure must be used to increase the quality of solutions.

In this paper, we present a basic GA algorithm for the problem, and an
experimental study on two replacement operators: steady-state angletrug
replacement. First, we consider the steady-state replacement stratefichn w
only a portion of the population, the worst individuals, is replaced by thdyne
generated ones. Thus, the selection pressure is increased andsalt thee
population converges prematurely to a sub-optimal solution. By this manner,
the quality of solutions is rapidly increased although the algorithm is soon stag-
nated. Then, we consider an implementation of a Struggle Genetic Algorithm
(SGA), where a new individual replaces the individual that is most similar to
it rather than replacing the worst one. The SGA is similar to the Steady-State
Genetic Algorithm (SSGA) but it is able to adaptively maintain diversity among
individuals, thus aspiring to better solutions.

Several grid scenarios have been considered to study the behauloe of
replacementoperators. The experimental results show that SGAmstietter
than SSGA for moderate grid sizes, but as the grid size increases SGA is no
able to reach as good results as those of SSGA. More precisely, SGA/espro
makespan values obtained by SSGA maintaining a similar convergence for
small size instances presented in Braun et al. [3] that are currentlyassad
benchmark for the problem. However, for larger size instances, SGAairasn
atoo diversified population, which prevents it from improving makesphmesa
obtained by SSGA. This shows how good an intensive policy performs whe
the grid scenario gets larger, as compared to an explorative policiakpe
in a real time environment.

The rest of the paper is organized as follows. In Section 2 we give the
problem definition and in Section 3 the basic GA is detailed. The Steady-State
and Struggle replacement operators are explained in Section 4. In Seete®n
present the experimental results of the SGA and the SSGA and compare their
behavior. Finally, we conclude in Section 6 with some remarks and indicate
directions for future work.
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2. Problem Definition

Job Scheduling on Computational Grids consists of a dynamic set of inde-
pendent jobs to be scheduled on a dynamic set of resources. An imsifethe
problem, at a certain instant of time, is characterized by:

»  Asetof N independent jobs to be scheduled. Each job has associated its
workload (in million of instructions). Every job must be entirely executed
in unique machine.

= A set of M heterogeneous machines with ready time value for each ma-
chine indicating when this machine is available. Each machine has also
associated its corresponding computing capacityniips.

= An N x M matrix ET'C (Expected Time to Computef(I'C|[i][j] is the
expected execution time of jokin machine;.)

Regarding the optimization criteria, makespan and flowtime are both mini-
mized. The makespan of a schedule consists of the completion time of the last
processed job; the flowtime consists of the sum of the completion times of each
job in the schedule. By letting; the completion time job finishes processing,
the two objectives are formally defined as:

makespan min { max ¢;} andflowtime: min { E ¢t
Si;€Sched ~j€Jobs Si€Sched 7o
jeJobs

whereSched is the set of all possible schedules ahabs the set of all jobs to
be scheduled. Notice that both objectives are contradictory.

3. GAs for Scheduling on Computational Grids

The starting point for this work was the development of a basic GA im-
plementation for the problem using an adaptation of GA skeleton presented
in [2]. The genetic representation, the specific optimization criteria as well as
the genetic operators used are described next.

Genetic representation. Each individual encodes a solution by means of a
vector containing the schedule. Each position of the vector represettaado

its value indicates the machine it is assigned to. Vectors have sixeafd

their values are positive integergin M]. Thus, all possible representations are
feasible solutions. Incompatibilities between jobs and machines have not been
considered as infeasibility in this work, but they can be representedgddin
penalization in théZT'C' matrix for the corresponding job and machine (a value

of +00).
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Evaluation. Every individual has a fithess value used to measure the quality
of solution it represents. Values of makespan and flowtime are both mini-
mized although only makespan is reported here. The approach adopted he
is the simultaneous one by which fithess function considers both values si-
multaneously. We have to take into account that even though makespan and
flowtime are measured in the same unit (seconds), the values they cangake ar
in incomparable ranges, due to the fact that flowtime has a higher magnitude
order over makespan, and its difference increases as more jobs ahohesac
are considered. For this reason, the value of mean flowtjfheytime/N,

is used to evaluate flowtime. Additionally, both values are weighted in order
to balance their importance. Fitness value is thus calculategisess =

A - makespan 4+ (1 — X) - mean_flowtime, whereX will a priori be fixed.

Population initialization.  The individuals of the population are randomly
generatedto create the first generation. Additionally, one individuahisrgéed

using theLongest Job to Fastest Resource - Shortest Job to Fastest Resource
(LIFR-SJFR) heuristic givenin [1], which optimizes alternatively bothesif
makespan and flowtime. A third method used for initialization isMir@mum
Completion Timéeuristic (MCT), described in [3], which computes a possible
solution by allocating each job to the machine in which it will finish earlier.

Selection operator.  For each generation, an intermediate population is
formed by selecting pairs of individuals from the global population to pro-
duce the offspring. The selection strategy is a key factor to controltg®iec
pressure during the evolution. We have usediti®urnament for each indi-
vidual to be selected for the intermediate populationdividuals are randomly
chosen from the global population and the best fitted of them is copied @nto th
intermediate population.

Crossover operator. We have used thEitness Based Crossovey which
the crossing mask is built according to the fitness of the two solutions to be
crossed.

Mutation.  In this implementation we used the rebalance mutation operator,
which tries to reduce the workload of one of the most overloaded machimes (
terms of their completion times) by swapping if possible or moving jobs from
the overloaded machine. After the rebalancing is done, the solution is mutated
by applying the Move mutation that randomly moves jobs from one machine
to another one.
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4. Replacement Operators

The main focus of this work is on two replacements operators, namely steady-
state and struggle replacement. In both cases, the algorithm works with an
overlapping population where in each generation a portion of the population
replaced by the new individuals, maintaining the size of the population cdnstan
Inthis way, there is another inherent selection mechanism that rejectstiompo
of the population to be replaced through which the selection pressureecan b
easily regulated.

4.1 Steady-State Genetic Algorithm (SSGA)

The steady-state strategy was popularized by the GENITOR progrdmi10
consists of the replacement of the worstindividuals by the newly generass.
Consequently, the best individuals are considerably favored andpheagtion
often converges prematurely. However, although there is risk of siagna
SSGA performs very well if good solutions have to be rapidly found. This is
the case of Scheduling on Grids where resource allocation is constiaired
time limit.

4.2 Struggle Genetic Algorithm (SGA)

The Struggle GA developed in [6] is similar to SSGA. However, in the SGA,
a new individual replaces the individual that is most similar to it only in case the
new individual obtains a better fithess value than the one to be replacisds Th
done in order to adaptively maintain certain diversity among the population and
thus aspiring to better solutions. In order to compare the similarity between
solutions, a measure of similarity or distance function has to be defined. In
our case, we have used Hamming distance to evaluate similarity between two
solutions.

Another issue to be considered is that struggle replacement is strongly con
strained by its computational cost of quadratic order of population sizedbr
to obtain a linear cost, we have designed a hash table to find, given a newly
created individual, the individual most similar to it in a constant computational
cost.

5. Experimental Study

We conducted an experimental study, initially to tune the parameters of the
basic GA, obtain computational results for SSGA and SGA algorithms and
compare the behavior of the two replacement operators.

Instance description. The instances used for the experimenting consists of,
on the one hand, (a subset of) instances given in Braun et al. [@jrkfor its
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high level of difficulty. All these instances consist of 512 jobs and 16 rinash
We will refer to these instances benchmark Further, because the benchmark
instances are of rather small size, we have generated a set of instalarger
sizes following theE'T'C' matrix model of Braun et al. [3].

We have generated instances of four different sizes (Small, MediugeLar
and Very Large) according to the number of jobs and machines, as shown
Table 1. These instances consists of inconsigtant’ matrices with high task
heterogeneity and high machine heterogeneity.

Table 1. Sizes of static instances.

BENCHMARK SMALL MEDIUM LARGE VERY LARGE
No. JoBs 512 512 1024 2048 4,096
No. MACHINES 16 32 64 128 256

Fine tuning of parameters and operators. All the parameters of the GA
implementation have been set up in order to obtain the best behavior of SSGA
and SGA, the resulting configuration is then used for both them for thefriw
experimental study. Regarding optimization criteria, more priority is given to
makespan over mean flowtime & 0.75). Population size has been set accord-
ing to instance size; intermediate population size corresponds approximately to
60 % of population size (see Table 2 for specific values).

Table 2. Population sizes.

BENCHMARK SMALL MEDIUM LARGE VERY LARGE
Pop. Size 10 35 40 45 50
InT. Pop. SizE 6 20 24 26 30

The rest of the parameters are set as follomstate probability= 0.4 and
k-Tournament parameter 3. The search has been limited to 90 seconds,
which is commonly used as a reasonable amount of time for scheduling jobs in
a Computational Grid environment (see also [3]).

Computational results using benchmark instances. Instances from [3]
were very useful to get a first evaluation of our implementation. The exper
mental results for this set of instances (see Table 3) are obtained on Bn AM
K6™ 3D 450 MHz processor with 256 MB of RAM. Results are averaged over
10 runs. We give in Table 3 also the results obtained by the GA implemented
in [3] for the same instances. It is worth to note that the implementation of the
Braun et al. uses a population of 200 individuals and the heuristitimfMin
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to initialize it. Their executions were done on a Pentium 11 400 MHz processor
with 1 GB of RAM using, in average, an execution time of 90 seconds.

Table 3. Results obtained for benchmark instances (the notatiryyzz.0 means: u—uniform
distribution, x—inconsistency (c—consistent, i—inconsistent and s—smmsistent), yy—job het-
erogeneity (hi-high, lo—low), zz—machine heterogeneity (hi-high, lojlow

INSTANCE BRAUN ET AL. GA SSGA SGA
u_c_hihi.0 8,050,844.5 7,766,109.88 7,752,689.08
u_c_hilo.0 156,249.2 156,032.18 156,680.58
u_c_lohi.0 258,756.77 251,621.13 253,926.06
u-c_lolo.0 5,272.25 5,242.02 5,251.15
u_i_hihi.0 3,104,762.5 3,216,911.63 3161,104.92
u.i_hilo.0 75,816.13 76704.43 75,598.48
u_i_lohi.0 107,500.72 113,972.01 111,792.17
u.i_lolo.0 2,614.39 2,667.73 2,620,72
u_s_hihi.0 4,566,206.00 4,509,660.58 4,433,792.28
u_s_hilo.0 98,519.4 99,859.48 98,560.04
u_s_lohi.0 130,616.53 131,796.29 130,425.85
u_s.lolo.0 3,583.44 3,600.79 3,534.31
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Figurel. Makespanreduction by SSGA and SGA for the instantéahi.O using a population
of 10 individuals (left) and 30 individuals (right).

As can be seen from Table 3, the results obtained by SSGA and SGA reach
the same level of quality as those obtained by the implementation from [3] taken
as reference in our work. SSGA outperforms results of [3] for almalétifithe
instances having an average of deviation of 2.23 % from the best knalwa v
for the rest of instances (6.02 % in the worst case). SGA outperfornes timam
half of the results obtained by the reference GA having a deviation of 1.27 %
in average for the other instances (3.99 % in the worst case). This shatvs
good results can be obtained despite the selective policy followed by SSGA
and SGA, which force a fast convergence in order to reach a fdsttien of
makespan.
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On the other hand, the results also show that SGA outperforms SSGA for the
majority of instances, mainly for inconsistent and partially consistent matrices
(this means that SGA performs better when job-machine constraints have to be
managed). Figure 1 shows makespan reduction obtained by the SSG&And S
Both algorithms perform an accentuated reduction in time rapidly reachirty goo
values, however SGA maintains more diversity among population thus reducin
its tendency to converge and reaching better results than those of SSGA.
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1020000 1 525000
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Figure 2. Makespan reduction by SSGA and SGA for the small instance scendt)aafte
medium instance scenario (right).

The experiments show a certain constancy on the number of iterationgineede
by SGAtoreach SSGAresults. However, as the population size is indr¢hse
point where SGA improves SSGA is delayed (see Figure 1). This is exflaine
by the fact that now the computation time of each iteration is higher due to the
larger population.

Computational results using larger size instances. Larger size instances
have been generated in order to represent scheduling environmeniargér
magnitude. This time, the executions are done in an AMD AtHYoxXP 1600+
(1400 MHz) processor with 256 MB of RAM. Again, the search has liegted

to 90 seconds. We show in Table 4 the results (averaged over 10 ouribgf
makespan for different grid scenarios: small, medium, large and verg, larg
respectively.

From Table 4 we can clearly observe the diminution of the advantage that
SGA obtains over SSGA when the instance is larger (see also Figures32 and
SGA obtains a better balance between exploitation and exploration of search
space reaching better results than those of SSGA. However, for gnidal
where the number of jobs and machines is highly variable, SSGA giveserhigh
guarantee of a satisfactory performance.
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Table 4. Results obtained for larger static instances.

INSTANCE SSGA SGA
SMALL 1,029,592.60 1,027,901.58
MEDIUM 529,425.13 529,365.42
LARGE 282,460.00 286,614.78
VERY LARGE 160,993.02 168,804.68
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Figure 3. Makespan reduction by SSGA and SGA for the large instance scendtjaa(id
very large instance scenario (right).

6. Conclusions and Further Work

In order to exploit the potential of a Computational Grid, any grid scheduler
must provide good schedules in a reasonable amount of time. We havalstudie
two known versions of GA heuristic for the scheduling problem, namely $tead
State GA (SSGA) and Struggle GA (SGA). The results of this work show that,
even though SGA outperforms SSGA when considering a moderate number o
jobs and machines, for larger scenarios SGA maintains too high diversity an
it is not able to reach the results obtained by SSGA. Moreover, as more jobs
and machines are considered, the distance between the makespan neductio
obtained by SSGA and SGA is rapidly increased and thus making SSGA more
adequate for dynamic grid environments.

Although different grid scenarios have been used, our ultimate goal is to
study the performance of SGA and SSGA on dynamic environment. We are
currently testing a grid simulator based on HyperSim package [9] that we will
use to study the performance of SSGA and SGA.
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Abstract Since customers’ quality requirements in casting industry are constanthaiic
ing while ‘time to market’ must be reduced at the same time, utilizing numerical
simulation of the physical casting process and its subsequent optimization is
important topic in casting industry. Simulation-based optimization of casting
processes requires consideration of these characteristics: Handlimgirtier-
ical properties of the optimization problem and the demand for computétiona
resources due to excessive runtime of simulation. In this paper, a dietlibpti-
mization algorithm is presented, integrating features from ‘traditional’ ydere
istic optimization algorithms, their parallel extensions and Genetic Algorithms.
In order to answer the demand for computational resources, its imptation
within a Grid Computing infrastructure is briefly discussed. Similarities betwee
the aforementioned classes of algorithms allow their application within the same
Grid-based environment. Preliminary results from such an environmesn
grating optimization algorithm and a simulation code for metal casting are also
presented. The developed framework and the application show thagghidol-
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ogy can be an important tool to utilize a variety of optimization techniques and
the necessary resources for the optimization of industrial processes.

Keywords:  Distributed optimization, Grid computing, Metal casting processes, Nuaieric
simulation

1. Introduction

The design of an optimization algorithm appropriate to solve ‘real life’ prob-
lems in an engineering domain like metal casting has to take several aspects
into account simultaneously:

s Mathematical characteristics of the optimization problemProperties
of the search space such as multimodality, ruggedness, non-diffetentiab
objective and/or constraint functions imply the use of direct methods.
Since finding the (a priori unknown) global optimum in such a search
space is almost impossible to assure (e.g. by a mathematical proof) for
general problems, itis widely accepted to apply heuristics to approximate
the global optimum.

m  Characteristics of the solution procesdue to the fact that objective
and/or constraint functions are given implicitly by computationally ex-
pensive numerical simulation codes a ‘traditional’ sequential solution
process is inapplicable. In order to get a solution to a problem in reason-
able time non-sequential optimization algorithms are a mean to speed up
the solution process substantially.

m (Software-)Technical requirements on an adequate problem solv
ing environment High demand for computational resources necessary
to solve typical problems exhibiting the aforementioned characteristics
leads to non-traditional approaches to the design and implementation of
distributed problem solving environments.

Service-oriented Grid computing has gained tremendous interest in various
application domains. Many of those applications stem from an academic envi-
ronment and have traditionally been designed as monolithic solutions that are
hard to adapt, even to slight changes in the application requirements. &equir
adaptations must be implemented by programmers specialized both in Grid
middleware and the applications. The paradigm shift to service-orientation in
Grid middleware opens the possibility to use a far more flexible software devel-
opment approach, namely to compose applications from standard contgonen
promising easier development and modification of Grid applications. Even
though, Grid technology has only seen a slow adoption in commercial appli-
cation domains such as engineering. We see two main reasons for this slow
adoption: On the one hand, the inherent complexity of current servieated
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Grid middleware systems is still prohibitive for everyday use by an application
domain expert who has no background in middleware development, Grid com-
puting or even computer science. On the other hand, an engineeringsadutio

a concrete problem is often a team effort undertaken by a humber d¥é&uvo
engineers, and other non-IT personnel. Current support forbaobdive soft-
ware development is often limited to the use of CVS, email and conference
calls. Such offer only limited support to ease the entry of engineers mo¢tra

in formal software development processes into the Grid.

As application the optimization of the Bridgman casting process of gas tur-
bine blades was chosen. The highest gas turbine efficiency is achaslad
with single-crystal (SX) or directionally solidified (DS) blading material, com-
monly casted in a Bridgman furnace (Figure 5). The Bridgman process is
controlled by time dependent parameters (withdrawal speed, heater &emper
tures), which are ideal for the application of numerical optimization [6,.7r8]
addition, the blade casting is the most expensive process during the manufa
turing of a turbine. This reduction of production cost by optimization attracts
interest of commercial users in industry.

The paper is organized as follows: In the next section related work wh Gr
Computing and non-linear optimization is briefly discussed. Afterwards the
Distributed Polytope algorithm is introduced used to solve a problem from
metal casting. A Grid-based Problem Solving Environment designed for the
solution of this kind of problems is presented in Section 4. A prototypical imple-
mentation of a Grid-based PSE is used to solve a problem from metal casting
as described in Section 5. Preliminary results of this optimization problem
followed by a summary and some areas for future work conclude the.paper

2. Related Work

Development of direct optimization algorithms for simulation-based opti-
mization is under research for several decades. Simplex-based methils
successfully applied to engineering problems and demonstrated theitmessis
[15, 28]. Since the computation of objective and constraint function sadfie
the Simplex- (or Complex-) points are independent the development toaards
parallel strategy is obvious and resulted in approaches like the ParakaitDir
Search (PDS, [24]) and Multidirectional Search (MDS, [25]). A stlo$direct
methods can be subsumed under the class of Pattern Search algoritheng.(see
[14]) which are also easy to parallelize. The problem of handling inféasib
solutions within any optimization strategy can be solved by using e.g. penal-
ties (see e.g. [17]) or repair mechanisms as known from Genetic Algorithms,
which is the preferred approach in this case [21]. Repairing infeasihiéans
preserves implicit information on the search space and allows exploration of
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regions in the search space maybe not covered by the search strhtbgy o
optimization method.

Supporting workflows — especially concerning the complex procesges-of
and postprocessing of simulation models and simulation-based optimization —
with software systems and especially service-oriented architectureserkaliz
with web services have received considerable attention in both acadethia an
industry. Several other research projects try to cope with similar subjects in
related fields.

Supporting business processes with software systems and especiatlg-ser
oriented architectures realized with web services have received eoaisid
attention in both academia and industry. Several other research proyetcts tr
cope with similar subjects in related fields.

The Geodise project (see [23, 29]) focuses on optimization, desigituaad
dynamics, especially in aerodynamics. Its main goal is to provide a distributed
problem solving environment (PSE) for engineers working in the mentioned
fields by utilizing e.g. MATLAB and adding Grid functionality to it. Although
first Geodise implementations were based on the Globus Toolkit version 2,
the core Geodise Toolbox is now part of the managed program dD s
Middleware Infrastructure Institut€OMII) [19].

A Grid-enabled problem solving environment for engineering desigmravhe
distributed parties are able to collaborate has been introduced by Gaiadyer
[9]. The system makes use of the gViz Library [4] which allows collaboeeati
visualization on the Grid and provides the user to start Grid jobs on Globus
Toolkit based hosts. The main focus is put on collaborative applicatiorirgjee
and result visualization of given simulation problems.

The P-GRADE Portal (see [22]) aims to be a workflow-oriented compu-
tational Grid portal, where multiple clients can collaboratively participate in
design, development and execution of a workflow as well as multiple Grids
may be incorporated in the workflow execution. The P-GRADE Portal isas
on the Globus Toolkit version 2 for file transfer operations and job di@tu
the workflow execution is done by a proprietary implementation. P-GRADE
neither uses Grid service and business process standards sudflas8iRloes
the proposed collaborative editing approach support real time coll&nroen
a process in an on-line meeting style.

The mentioned software systems are examples for the large variety of prob-
lem solving environments, collaborative Grid application systems and collab-
orative workflow development systems. However, none of the mentigreed s
tems provides both a problem solving environment for engineering problems
as well as sophisticated support for the collaborative software dewelaip
process for Grid applications and their execution in a service-oriented Gr
environment. Collaboration support often relies on out-of-band colédioor
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and synchronization technigues such as exchanging e-mail or CVS tikar se
based communication.

3. The Distributed Polytope Algorithm

This following sections introduce the design of a distributed optimization al-
gorithmwhichis based on traditional, direct optimization methods, their parallel
extensions as well as aspects from the class of Genetic Algorithms. Beyond
the principle design of the algorithm presented here, a detailed perfoemanc
analysis regarding properties like parallel speedup and efficiencesepted
in[1, 2].

The proposed distributed direct optimization algorithm is based on the con-
cepts of both the simplex-based parallel direct search method [5] fardsou
constrained and the sequential Complex Box method ([3, 10]) for camstia
nonlinear optimization. Since constraint handling is of great importance, es-
pecially when taking into account the computational cost of each individual
evaluation of objective and constraint functions, the algorithm tries to vetrie
knowledge about the search space (feasible and infeasible regipmsieb
grating infeasible solutions into the search process. This is done byingpair
infeasible solutions using a parallel algorithm for moving them into a feasible
region of the search space. The aspect of repairing infeasible saligitaken
from Genetic Algorithms were this technique can be used to assure a feasible
population after recombination/mutation operations.

In contrast to earlier applications of the Distributed Polytope method to
simulation-based problems in engineering (see e.g. [11, 20]) this repaiamec
nism is also applied to solutions from the polytope which were ‘out of bdunds
after the reflection operations in exploration instead of setting the violatedibou
to the maximum/minimum allowed value. This way the approaches of using
penalty functions and repairing infeasible solutions as constraint haradimg
be integrated in a problem formulation and solved by the Distributed Polytope
algorithm.

Additionally, the problem of finding the global optimum is tackled by a
hybrid approach combining the more global simplex/complex methods with
(parallel) local search strategies to overcome the weakness of relativaly
local convergence of simplex/complex methods. The basic idea of the atgorith
is the adaptation of the search strategy according to problem size andoeso
To achieve this, different parameters of the algorithm are providedrditieig
the degree of parallelism, i.e., the number of parallel constraint and olgectiv
function evaluations per iteration and the multiplicity of search directions.

Both previously mentioned methods are based on geometrical operations
(reflection, contraction) performed on the vertices of an (at le@ast) 1)—
dimensional polyhedron in the-dimensional solution space of the optimiza-
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VCOG
Figure 1.  Repair of the infeasible solution Infeasible region O""'O
UInfeasible USING & parallel binary search along 7 - V| Repair 2
the direction towards the weighted center ¢ ISy Vi Repair 1

gravity vcog. The first attempt yields the in- Vi feasible
feasible solution, gepqir1, the second parallel
attempt the feasible solutian , repair2-

tion problem. The basic parameters are the sizen + 1 of the polytope (the
number of vertices), the number of verticeshich are modified using reflec-
tion and contraction, and the ‘look ahead’ factor which controls the nuwiber
new verticed generated by reflecting or contracting one vertex. Additionally,
the point on which the vertices are reflected can also be varied. Theegertic
can be reflected on the best solution or the weighted center of graviticéger
weighted with the value of the objective function of the vertex). In Figure 2,
various alternatives are illustrated. Different settings of the aforemestion
parameters yield different search strategies by introducing additioaattse
directions. It can be seen that reflection on the best vertex restricteahehs

to the direction of this vertex while reflection on the weighted center of gravity
allows searching in all directions given by the vertices of the polytope.
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Figure 2.  Reflected ¢;,r) and contractedu{,c) solutions when reflecting on a vertex; (
left) or on the center of gravitytog, right).

The strategy used throughout the algorithm to repair infeasible solutions is
depicted in Figure 1. The characteristics of the feasible region obvioesly d
termine the effort of repairing an infeasible vertex. In Figure 3, thersehef
a line search in a search space with discontiguous feasible regions ia.show
The number of repair steps depends on the topology of the searchahce
the process of the line search. Since the topology of the search spageiof
eral simulation-based problem is unpredictable, a precise number ofitnifea
solutions and repair steps is generally unavailable prior to the optimization.

The algorithm used for the solution of the subsequently presented optimiza-
tion problems comprises the following stepsdenotes the dimension of the
optimization problemp the number of available workstations in the network):
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gion #2

Figure 3. Scheme of arepair using a line search on a search space with unhinéeasible
regions.

Infeasible region

1 Initialization: The starting polytope consisting ef> n + 1 randomly
generated solutions is built and the constraints are evaluatgavonk-
stations in parallel. Infeasible solutions are repaired using a parallel
binary search directed towards the weighted center of gravity of feasible
solutions.

2 Exploration: Thee < s worst solutions are reflected on, respectively
moved towards the weighted center of gravity (reflection/contraction).
Each of these reflections is performetimes in parallel (see Figure 2)
yielding2-e-l new solutions. All solutions are evaluatedomorkstations
in parallel. Infeasible solutions are repaired using parallel binarysearc
The s solutions for the polytope of the next iteration are selected from
these solutions.

3 Local Search: When the exploration is terminated (e.g., after the max-
imum number of iterations) a parallel local search starts from the best
solution. It evaluates in parallelrandom solutions in an environment
with radiusr around the best solution. The radius is reduced if the local
search fails to find a better solution. Infeasible solutions are rejected in-
stead of being repaired as in the previous phases. The local segrsh sto
after a given number of iterations or when the improvement is less than
a givene.

This approach has been already successfully applied to severd¢mob
from engineering domains other than metal casting: in groundwater manage-
ment [11] and in the aircraft industry [20]. Analyzes concerning dppeand
efficiency have been performed to evaluate scalability [1].

This schematic overview of the Distributed Polytope algorithm exhibits some
principle similarities between simplex-, complex- and polytope-based meth-
ods and Genetic Algorithms: Algorithms of both classes are based on a set
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(‘population’ vs. ‘simplex/complex/polytope’) of solutions (‘individualssv
‘vertices”). In a single iteration a subset of elements is selected and same ne
elements are calculated with special operators (‘recombination/mutation’ vs.
‘reflection/contraction’). All the elements of this set can be evaluated ewlep
dently from each other and therefore they are particularly suitable fivitdited
computation. Nevertheless it must be remarked that large population (er poly
tope) sizes—as typically used in Genetic Algorithms—should be carefully used
in simulation-based optimization since any of the objective and constraint func
tion evaluations may take several hours. The number of simulations together
with the available degree of parallelism determines the overall runtime of the
optimization. Since the (heuristic) determination of a search direction by+eflec
tion/contraction as utilized in the Distributed Polytope algorithm seems to be a
good compromise between robustness and the necessary number of simaulatio
it is selected for further analysis and application to problems in engineering.
Simplex-based as well as Genetic Algorithms can be applied in distributed envi-
ronments such that they can utilize a larger number of computational resourc
in order to speed up the overall optimization time (see e.g. [7]). Hence, a Grid
based PSE like the one presented in the next section is useful for algorithms
from both classes.

4. A Grid-Based Environment for Simulation-Based
Optimization of Casting Problems

In this section, a simplified view on a sample application from an engineering
domain is presented to motivate the need for support in the distributed seftwar
development process of a Grid software system for engineering atiphisa
The concrete use case comes from casting, a sub-domain of metal forming.
Only those parts relevant to the Grid are briefly sketched; they do nettefl
the entire complex field of metal forming. For more information regarding
the complexity involved in collaborative engineering particularly in the field of
metal forming and casting, the reader is referred to e.g. [18, 27].

In the metal casting industry, customers’ quality requirements, e.g. al-
lowed tolerances in a casting product’s geometry compared to the specifica-
tion, are constantly increasing. Therefore, the use of numerical simulation
and simulation-based optimization is gaining importance, since the creation
of prototypes is in many cases too expensive and prohibitively time consum-
ing. The benefit of this ‘virtual prototyping’ based on numerical simulation is
constrained by the accuracy (i.e., the difference between simulated amdthe
physical behavior of a casting process) of the simulation environment.tBoth
creation and use of the simulation as well as optimization application require
great expertise in the metal casting domain. Furthermore, applying numerical
simulation for this purpose introduces an extremely high demand for compu-
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tational capacity since a single—sufficiently precise—simulation run typically
lasts several hours up to days. Since many small and medium sized engineer
ing enterprises are not capable of acquiring and maintaining high perficema
computing resources, outsourcing of computationally demanding tasks-is nec
essary. Grid computing promises to offer the infrastructural components to
realize this outsourcing activity as easy as plugging into the electrical power
Grid. However, currently the implementation of a Grid application still requires
these firms to involve Grid specialists to adapt and maintain their applications
in a Grid environment.

To summarize, the utilization of numerical simulation in the casting industry
demands a variety of competencies:

= knowledge about the physical properties of casting in industrial practice
(casting engineer)

= modeling a casting engineering process for simulation (casting engineers
together with IT specialists)

= adapting existing simulation software to the Grid (Grid specialists con-
sulting the casting engineers)

m setting up and maintaining a simulation and/or optimization environment
for the engineers’ customers (Grid specialists, casting engineers and the
customers)

= interpreting a simulation’s result (casting engineer and customer).

These requirements lead to a software platform which enables the integration
of the aforementioned competencies and resources during the softegige d
process. Since most of the possible users of simulation in the casting industry
are small to medium enterprises (SME), lacking at least one of the requitgme
the Grid software platform must be able to facilitate both renting computational
resources on demand as well as the collaborative involvement of Grigttexp
casting engineers and their customers.

As a concrete sample scenario, we introduce the engineering process of
collaborative development of a metal casting model. The following two sexvice
form the mostimportant building blocks for the overall problem solving essc
to be deployed on a Grid system.

The Distributed Polytope Service. This service is an implementation of
the distributed polytope optimization algorithm as introduced in 3. During its
runtime, it requires an a priori unknown number of evaluations of botlogate

tive function and corresponding constraint functions, in this case ledécliby

the metal casting simulation software CASTS [13]. The service has to save its
state each time an evaluation request occurs, and it passes the datsés wh
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to be evaluated to the process execution engine instead of directly invoking th
simulation service. Considering these conditions, the service was implemented
by utilizing the web service resource framework (WSRF), which allowstte ¢
ation of stateful web service resources. Beside a service operation altows

a client to set necessary parameters needed by the polytope algorithmlythe o
Grid service operationterate (IterateRequest) takes care of starting and
restarting the algorithm at the appropriate position — according to its internal
state and according to the input data insideltterateRequest data structure.
Aresulting data set is returned immediately after invoking the operation, telling
the process execution engine if further evaluations are needed or iblytep
algorithm reached a predefined stop condition.

Customer
Expert support I

~_ draft & refine
@ " Process
L Model -~
gridify

Grid Casting

i
Expert ¥/ Engineer
support
provide use
components
3

Grid

Numerical Simulation

Figure 4. Persons, competencies and their functions in the collaborative profgeieparing
the software environment, simulating and optimizing a process model.

The CASTS Service. The main purpose of this service is to wrap the metal
casting legacy software CASTS as a Grid service. HoweveC#sts Service
does not only provide a service-wrapped version of CASTS, butat talkes

care of the following operations: It is capable of modifying the input model
of the casting process according to a set of parameters passed tovibe.ser
This parameter set is the input received from the distributed polytop algorith
The service executes the CASTS legacy application on a number of differe
execution platforms. In this case, a 128-node cluster computer with twé 64-b
AMD Opteron CPUs and 2 GB main memory per node was utilized, leading
the execution subsystem to incorporate the local resource manageeT26j

and the scheduling system Maui [16]. The execution state of a cluster job
is monitored and exposed by the Casts Service. The execution subsystem is
highly modularized so that the service also works on single workstationswtitho
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local queuing/scheduling. The service also provides functionality to atealu
the simulation result (which is done by CritCASTS, a legacy software system
bundled with CASTS) and determining the objective function value as well as
the constraint function values.

An overall view of the collaborative and distributed development sceigrio
shown in Figure 4. The gray zones mark the network domains of the differe
experts, they are geographically distributed, and their collaboration péékes
via the shared and synchronized process model.

5. Case Study
51 Bridgman Casting Process: Model and Simulator

Turbine blades of modern aircraft and power plants are made of Ni-base
superalloy and are commonly produced by directional solidification (DS) or
single crystals (SX) in a Bridgman furnace (see Figure 5). A directioaat h
flow is created by withdrawing the shell mould of the turbine blade out of the
heating zone into a cooling zone. The strong temperature gradient at the in-
terface between heating and cooling zone leads to a directional solidification
Beside the simplicity of the Bridgman principle the optimization of all pro-
cess parameters is complex for real blade geometries [8]. Technicalpmele
casting parameters, such as heater's temperature and withdrawal vedoeity
currently determined by series of expensive experiments.
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Figure 5.  Schematic description of a Bridg
man furnace used for directional solidification
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The hybrid FE/CV programm CASTS (Computer Aided Solidification Tech-
nologieS) [13], is used to predict numerically the transient temperatyremss
during the Bridgman casting process. CASTS calculates transient tentperatu
distributions in mold, core and alloy, taking into account both latent heat re-
lease as a function of fraction solid, and heat transfer resistance atiahate
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interfaces. The main output is the temperature and heat flux field. Based on
this data, temperature gradients and defect maps can be calculatedfseeac

of input process parameters, which are the basis for the evaluationtof e
blade.

5.2 Optimization Variables and Target Function

Goal of the optimization was an improved withdrawal profile for the Bridg-
man process of a cluster of simplified turbine blades. The whole withdrawal
process is parameterized by eleven bounded design variables rdépg e
withdrawal velocities at different times.

The simulation results were evaluated applying four criteria given as fallows

= the probability of surface defects formation, so called freckles. The
freckle probability was estimated based on the temperature gradients
calculated by the FEM-simulator;

= the degree of curvature of the solidification front. The solidification front
should be as horizontal as possible in order to achieve a high quality
directional solidification.

» the ratio G/v (temperature gradient over solidification speed) must be
greater than a critical value. At this critical value the transition from
the desired columnar dendritic growth to an undesired equiaxed grain
structure takes place.

m the process time.

In order to achieve a better combination of the four criteria, a new formulation
has been developed for the first three optimization criteria, the frecklmpro
bility, the curvature of the solidification front and the G/v ratio. These criteria
are evaluated by counting the number of ‘bad’ nodes, i.e., nodes of itee fin
element mesh with freckle probability above zero, a curvature of the solidifi-
cation front above 20or a G/v ratio below 600 Ks/ctn The criteria can be
tuned by changing the limits (0,20600 Ks/cm). A great advantage of this
new criteria formulation is that these three criteria can now be easily combined
due to there similar definition by the number of bad nodes.

As an objective function the overall process time has to be minimized. The
constraints are integrated into the objective function by using a two-stage ob
jective function: Aslong as one constraint is not fulfilled the objectivefiam
is the sum of the number of bad nodes and the process time in seconds. If the
latter is below 5,000 s a constant value of 5,000 is used to focus the optimiza-
tion to the fulfilment of the other constraints. If all constraints are fulfilled, the
simulation time in seconds becomes the objective function and the optimization
searches for a further reduction of the process time.
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This handling of constraints is similar to the use of penalty functions. In
contrast to the usual approach (adding a penalty term to the objectivtdfiun
and solving an unconstrained problem) in this context the objective furiotion
tegrates a kind of penalty terms and infeasible solutions (i.e., solutions violating
bounds on the design variables) are although repaired.

53 Results

As a first step towards a complete Grid-based environment for simulation-
based optimization of casting processes, the Distributed Polytope algorithm
was applied in a parallel testbed (up to 300 CPUs available in a cluster system)
to the 11-dimensional test problem. The essential parameters wereeset to
10,1 = 3 yielding 2el = 60 newly computed solutions per iteration, using a
polytope sizes = 2n = 22. e andl were set to the respective values to assure
a simultaneous search in many directioas=( 10 directions per exploratory
step) but with limited { = 3) ‘look ahead’ and hence a limited extent of the
polytope.

In Figure 6 the results of the Distributed Polytope algorithm running on 20
CPUs are compared to those from Metamodel Assisted Derandomized Evolu-
tion Strategy (MADES) utilizing 4 CPUs. The MADES was optimized over
several years for the optimization of such engineering processes tafede
description can be found in [6] and latest results were published in [&2].
can be seen that the results (7,447 from the Distributed Polytope vs. 7,513
from MADES) as well as the trajectories of the objective function values du
ing the optimization runs are comparable. Both algorithms are not able to
improve beyond a certain quality of the objective function which is reacled b
MADES substantially earliert(= 15,000 s) than by the Distributed Polytope
(t = 21,000s). It must be analyzed whether the switching between explo-
ration and termination phase can be adjusted in order to avoid this behavior.
It must be noted that there was no tuning concerning the parameter set of th
Distributed Polytope and the shown results were computed in a single run. In
order to validate the solution quality additional runs must be performed. Fur-
thermore, parameter studies for the main parametamg! as well as the degree
of parallelism must be performed to evaluate the behavior of the algorithm in
detail.

6. Conclusions

In this paper, a grid infrastructure is introduced, which simplifies the use
of distributed, parallel numerical optimization by bioinspired and related op-
timization strategies. As showcase the optimization of an industrial casting
process was chosen. Based on the Grid Computing toolkit GLOBUS, Grid
Services for the Distributed Polytope optimization algorithm and the casting
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Figure6. Comparison ofthe Distributed Polytope algorithm (using 20 CPUs) with the H3.D
algorithm (running on 4 CPUs) when solving a problem based on the CABTi8ation system.

simulation package CASTS were developed and tested. This Grid Service-
based environment was applied to solve a test problem from metal casting.

A Distributed Polytope Algorithm was used as optimization strategy. The
algorithm integrates aspects from traditional deterministic sequential simplex-
based methods, parallel search strategies and non-deterministic bialnspire
methods like Genetic Algorithms. This combination of approaches was used
for the design of the algorithm in order to satisfy requirements concernitig ma
ematical properties and runtime behavior specific for solution proces#as in
simulation-based optimization of problems from engineering, in this case from
metal casting.

As first application the optimization of process parameter of casting a ge-
ometrically simplified gas turbine blade in a Bridgman process was selected.
The results were compared to the distributed evolutionary strategy MADES an
demonstrate the applicability of a scalable distributed optimization algorithm
integrated into a distributed, Grid-based infrastructure for numerical og@timiz
tion of industrial processes.

As a next step different degrees of parallelism as well as differatihge
for other parameters of the Distributed Polytope algorithm will be evaluated
concerning quality of result and runtime of the optimization. This will be the
basis for a detailed comparison to other optimization strategies. From the soft-
ware engineering point of view the integration of the complete workflow from
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modeling, calibration of the model to optimization is planned to be integrated
within the Grid-based environment.
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Abstract The paper presents new ideas of maintaining population diversity in adhybr
evolutionary algorithm used for spectrum parameter optimization whaacha
terizing the complexity of biological systems. Recent modification of th&uevo
tionary algorithm (EA) by introducing the ‘shaking’ operator enabled towain
solution diversity and speed-up calculations by factor of 5-7.

Keywords:  Diversity, Hybrid evolutionary algorithm, Optimization, Shaking

1. Introduction

Preserving the genetic diversity throughout evolutionary algorithmrgene
tionsis a key point to make the algorithm capable of revealing multiple solutions
in a complex multi-dimensional search space [10].

We apply an evolutionary optimization algorithm to study the complexity,
one of the basic properties of natural biological systems [6, 15]. Queditati
the complexity can be described by the number of (biochemical or biophysica
patterns/solutions that coexist in a system. A pure system can be character
ized only by one solution, whereas in complex systems several distribufions o
solutions may exist.

Electron paramagnetic resonance (EPR) spectroscopy in combination with
nitroxide spin labeling (SL) has proven to be a powerful technique for the
exploration of heterogeneity and motion in biological systems [3]. However,
to determine the picture of the actual complexity of the biological system,
a special methodology that includes advanced spectrum analysis amskinve
problem solving techniques has to be applied [16]. Such an analysisid bas
mathematical modeling, spectrum fitting, and spectral parameter optimization.
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To present multiple results, a special method of solutions condensation called
GHOST was developed [15]. GHOST incorporates solution density filtering
2 goodness filtering, solution-space slicing, and domains determination.

This advanced approach named Hybrid Evolutionary Optimization (HEO)
was shown to be powerful enough to study complex heterogeneousnsyste
although the computational demand appeared to be an obstacle for wiger usa
of the method. To obtain areliable result, the HEO procedure has to beegecu
200 times. Each particular run implies 100 generations with population size of
300 candidate solutions. Since an average operator performs up tectLsp
calculations, HEO on average spends 60 million spectrum calculations. As a
single spectrum calculation takes around 10 ms on a 1 GFLOPS prodessor,
results in 200 hours of computer time spent for a single characterizatian. Ou
aim was to improve the solution diversity of a single HEO run by maintaining
genetic diversity throughout the HEO routine.

2. Theory and Methodology
2.1 EPR Spectrum Analysis

The scheme of the spectrum analysis and inverse-problem solving is pre-
sented in Figure 1. Since EPR spectrum modeling has been already discuss
[16], we only present spectral parameters that are involved in calawsatio
Taking into account the superposition of motional/polarity patterns, the set of
parameters, ¢, 7., W, pa, Protis expanded for the number of spectral compo-
nentsN.. In addition, there ar&/,. — 1 weightsd of these spectral components.
Altogether, there ar&@ N, — 1 spectral parameters, which have to be resolved
by the optimization routine. The resolution limit of SL-EPR assumes up to 30
parameters and this allows at most 4 spectral components.

GHOST
presentation

Experimental data \ Multiple HEO
Spectrum fitting Density filtering

/ J 7> filtering

Simulated data | Solutions population |—%

1 Solutions grouping

To-oo— [ e—|lSimulation & Modeling RGB coloring

Figure 1. EPR spectrum analysis scheme.
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The goodness of fit (objective function) is the redugédtriterion:

N exp _ . sim)2
VIR U ) i b @

N—p = o2

wherey®®? andy*™ are the experimental and simulated data, respectivesy,
the standard deviation of the experimental poifss the number of spectral
points, andg is the number of model parameters.

2.2 Hybrid Evolutionary Optimization

HEO is a combination of the Genetic Algorithm (GA) and the Local Search
Downhill-Simplex algorithm. The optimization routine starts with a random
initialization of solutions population and continues with the tournament se-
lection and application of genetic operators for 100 generations. Tlwen8-p
crossover with probability of 0.7 and uniform mutation with probability of 0.01
are applied together with certain knowledge-based operators and localienp
ments (performed with Downhill-Simplex [5] with probability of 0.002). The
elite set (2 % of the population size) is used to preserve the best founelindi
uals. One HEO run assumes 100 generations of GA. GA population size is 30
individuals. In 200 HEO runs a group of 200 best parameter sets ftoest
each run) is accumulated and then filtered, grouped, and graphicasmnbeel
with the GHOST condensation algorithm.

Parameter Search Space. The optimization process searches forthe minima

in the landscape of the parameter search space, which may contain bdth loca
and global minima. Our particular requirement is that the optimization routine
should be able to find global minimum(a), which can be of different types, i.e.,
well-defined minima of type B or a flat valley minima of type A (see Figure 2).
The convergence to the minima of type B (discrete problems) has to be ptovide
as well as population diversity has to be maintained to enable the optimization
procedure to fully reveal the minimum valleys (in case of continuous prolems
already in a single run.

s+ Rough O Local
* solutions minimum

Figure 2.  Schematic presentation of on“};
dimension of the parameters search space §
the effect of the local mutation procedure reg

sponsible for fine-tuning. A B >

Search space
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Maintaining the Population Diversity.  Simple genetic algorithm (SGA)

[7] is suitable for finding the optimum of a unimodal function in a bounded
search space. However, both experiments and analysis show that e SG
cannot find the multiple global maxima of a multimodal function [7, 12, 13]
or a function with a flat global minimum, which is an extreme limit of the
multimodal function. This limitation can be overcome by mechanisms that
create and maintain several subpopulations within the search spacesdéde

as ‘niching methods’: sequential niching methods [1]; parallel niching naistho
(sharing [8], crowding [12], clearing [13] etc.); speciation methods [i4],
clustering [17]; multi-population methods [2]). Another way to find multiple
optima is to make several runs of an ordinary GA. In each run the GA cgese

to different optima. Thus, several optima are found [4]. This strategy wa
initially implemented in HEO-based approach. Since the methods that assume
creating subpopulations do not match with our specific problem, we chose the
sharing parallel niching method for maintaining diversity within a single run.

Sharing.  Sharing [8, 12] requires that fitness is shared as a single resource
among similar individuals in the solutions population. The fitness sharing
method modifies the search landscape by changing the fitness functionei.e., th
value ofy?, in densely-populated regions. As a result, the population becomes
better distributed in the search space. The fitness fungtimmmodified as
follows:

fG)

2 iey sh(dli, i)’

where the sharing functiosh is a function of distance][i, j] between two
population elements. It returns ‘1’ if the elements are identical and ‘0’ if they
cross some threshold of dissimilarity, specified by constant..:

f1G) = )

Oshare

0 otherwise.

= 3

1— (=)~ if
sh(x) . { ( ) I T < Oshare;

Herex is a constant, which regulates the shape of the sharing function. Fithess
sharing is demonstrated in Figure 3(a).

Shaking. The second proposed approach forimproving the solution diversity
is ‘shaking’ operator. The shaking operator provides small Gaudikiadevia-
tions to the spectral parameters before the crossover operator is dppbdeg-

ure 3(b)). The error bars indicate the width of Gaussian probability disioity

of these deviations. The standard relative uncertainties of the spe&iteathp
eters{v, o, 1., W, pa, prot,d} are{0.02,0.02, 0.04, 0.035, 0.035, 0.04, 0.02},
respectively, which follow average uncertainties that are found emibyrica
these parameters within the simulation model.
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[

\ a) sharing _ b) shaking

lhs &

I Search spac'c

fitness /°

[
L

fitness

L
Search space

Figure 3. Schematic presentation of population diversity improving approachefitness
sharing function; b) Gaussian shaking operator.

2.3 Projection Principle and GHOST Condensation

Large amount of solutions that come out from the multiple HEO runs is
condensed and grouped together to construct a discrete or quéisiioms de-
scription of the system. After solution filtering according to the local solution
density and goodness of fit, the GHOST condensed results are pcegente
2D cross-section$S-7., S-W, S-p4} (see Figure 4). The color of any point
(solution) in GHOST diagram is defined by RGB specification (where the in-
tensity of each color component (red, green, blue) represents thigeelalue
of the spectral parameters, W, p4 in their definition intervals{0-3 ng,
{0-4 G}, and{0.8-1.2, respectively). This technique enhances the possibility
to distinguish groups of solutions, and to explore optimized values of model
parameters.
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Figure 4. An example of the GHOST presentation (Spectra of spin labeled hors®plils
membranes were fitted with EPRSIM BBW software and characterized GHOST conden-
sation procedure. RGB (red, green, and blue) color of any solution gades the relative values
of parameters., W, andp 4 in their definition intervals.

The most important property of the GHOST algorithm is that there is no
need to define the complexity (the number of different motional patterns) in
advance — it comes as the result from the GHOST condensation andogiaph
presentation.
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2.4 Evaluation Criteria

To judge the success of the modification of the HEO algorithm, the follow-
ing criteria were selected: GHOST diagram quality (domains determination,
parameters distribution); minimal fitness achiewéd,,, and fitness deviation
O'(XQ), that is 40 % of all selecteg values; HEO runs contribution histograms;
and maximal detected solution density,,. To check the universality of the
new algorithm we analyzed several types of EPR spectra: experiménotal (
membranes and membrane proteins) and synthetic (discrete and continuous)

3. Results and Discussion

Multiple Runs. The poverty of the final solution diversity becomes obvious if
we reduce the number of HEO runs from 200 to 20 increasing the contributio
of single run from 1 to 10 on average. The results for a typical expetahen
spectrum are shown in Figure 5, where the GHOST diagram (Figurg 5(b)
and runs contribution histogram (Figure 5(c)) are compared with the initial
GHOST diagram based on 200 runs (Figure 5(a)). The GHOST didgaaed

on 20 runs (Figure 5(b)) incorrectly describes the experimental sysday.a

few HEO runs (first, seventh, ninth and seventeenth) contribute to theS3HO
presentation (Figure 5(c)), whereas some other runs (third, fourtth, tetc.)

do not contribute at all. Highey?,;,, value (see Table 1) and uneven HEO runs
contribution histogram corresponds to low solution diversity and to incbrre
solutions domains determination (Figure 5(b)). Higher solution density (see
Pmaz N Table 1) indicates solution crowding in the parameter search space.

@ (b)

05 075 1
S s

Figure 5. Characterization of spin labeled biological membrasies, GHOST cross-section:
a) 200 HEO runs, one best solution is taken from a single run; b) 20 HIBS) on average 10
solutions are taken from each run; ¢) HEO runs contribution histogramhéocase of 20 runs
(number of runs is shown along the x-axis and runs contribution numbéng the y-axis).

Unsatisfactory result was also achieved for a synthetic 15-compopett s
trum that simulates a quasi-continuous distribution of spectral paramegers (s
Table 2 and Figure 6(b)). Poorly populated GHOST arises from thaneyen
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Table 1. Optimization parameters after 200 and 20 runs for the membrane gpectru

CRITERIA 200 RUNS 20 RUNS
sz' 3.4 4.09
o(x?) 2.04 1.87
Pmazx 64.2 715

HEO runs contribution caused by solution crowding.

(@ (b) © @

BEsBS

o B

13 R
runs runs

0

30 100 B0 200
rns

Figure 6. Comparing the results of different multi-run HEO by GHOST diagramsHE®
runs contribution histograms: a) 200 runs of original HEO; b) 20 rdrikeoriginal HEO; c)
20 runs of the modified HEO with the fitness sharing; d) 20 runs of the neddifEO with the
shaking operator.

Table 2. Optimization parameters after running various variants of multi-run HE® &so
caption to the Figure 6).

CRITERIA 200 RUNS 20 RUNS 20 SHARING 20 SHAKING
Xfmn 1.17 1.22 1.65 1.24
O'(XQ) 0.9 0.4 1.29 0.9
Pmaxzx 69.5 75.7 69 66.1

Sharing. The sharing approach was tested on a 15-component spectrum. The
corresponding GHOST diagram better resembles the initial GHOST (compare
Figures 6(c) and 6(a)). HEO runs contribution histogram (Figuré &ahore

even in comparison with the previous results. However, the distributigs of
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is worse than the initial (comparg’,;,, and distribution widthr(x?) in ‘200’

and ‘20 sharing’ columns of Table 2). Additional testing [9] showed tltat 2
HEO runs with fitness sharing are not enough to achieve the initial quality of
systems characterization.

Grid Problem and Shaking. The cause of the solution crowding problem was
found as the shortcoming of the three-point crossover GA operatemet
material’, related to the promising parameters, copies and spreads in the pop-
ulation among individuals. After 20-30 generations, the population forms a
‘grid’ in the search space (see Figure 7) causing the loss of populatiersidy.

fau )

ofs]  os 078 1 ofs  [os
33} ISt

Figure 7. Demonstration of the ‘grid’ problem for three cross-sections of theckespace.
Implementation of the shaking operator enabled the HEO algorithm to over-

come the solutions crowding and to increase the population diversity in a single
run (Figure 8).
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Figure 8. Single HEO run GHOSTSs (population size 600): a) initial version of the dtgar
with crowding problem — several solutions are crowded in differenibresgy b) version with
shaking that maintains diversity — those solutions that were crowdeddusdav spread over the
flat minima region.
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Modified with the shaking operator, HEO needs only 20 runs instead ¢f 200
achieving the same quality of the systems characterization. This can b&prove
by comparing the quality of the GHOST diagrams (Figures 6(a) and 6d)), b
HEO runs contribution histogram (Figure 6(d)), and by good distributfogy?o
(Table 2).

New algorithm enhanced with the shaking operator was further tested on
several experimental and synthetic spectra in order to cover a wide ng
possible systems related to discrete and continuous problems. The results of
the characterization of four different examples [9] proved the capabilitie
modified HEO algorithm of resolving wide range of EPR spectroscopic data.

4. Conclusion

Maintaining solutions population diversity in EA by introducing a novel
shaking operator reduced the computational demand of the original multiple
HEO approach. Extensive testing of the modified multi-run HEO on various
spectra that represent a wide range of possible applications provéghitesffi-
ciency. New modification of the optimization algorithm succeeded to keep high
quality of system characterization, thereby considerably reducing thputa-
tional time by a factor of 5—7. With this successful modification, the application
of advanced EPR spectrum analysis to complex biosystems, such as l@blogic
membranes and membrane proteins, became much more feasible.
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DGPF — AN ADAPTABLE FRAMEWORK FOR
DISTRIBUTED MULTI-OBJECTIVE SEARCH
ALGORITHMS APPLIED TO THE GENETIC
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Abstract We present DGPF, a framework providing multi-objective, auto-adagarch

algorithms with a focus on Genetic Programming. We first introduce a Gomm
Search API, suitable to explore arbitrary problem spaces with diffeseatch
algorithms. Using our implementation of Genetic Algorithms as an example,
we elaborate on the distribution utilities of the framework which enable local,
Master/Slave, Peer-To-Peer, and P2P/MS hybrid distributed seaeclt®n.
We also discuss how heterogeneous searches consisting of multipderatiee
search algorithms can be constructed. Sensor networks are distslyaterhs of
nodes with scarce resources. We demonstrate how Genetic Prograivasid
on our framework can be applied to create algorithms for sensor rbaesgse
these resources very efficiently.

Keywords:  Auto-adaptation, Distributed genetic algorithms, Genetic programmingjsieu
tic, Randomized, Search algorithms, Sensor networks, Sensor nodes

1. Introduction

Find an election algorithm for a given sensor network with minimum in-
struction count which minimizes energy consumption due to transmissions.
Construct the best aerodynamic shape of an airplane wing while maximizing
its stability using the minimal amount of material. Many search algorithms
can be applied to solve such complex problems [16]. There exist artifizial a
proaches like Tabu Search or randomized Hill Climbing, physically inspired
ones like Simulated Annealing as well as methods of biological origin like
Genetic Algorithms.

For most problems it is not a priori possible to decide which algorithm and
parameter configuration will perform best. Practical experiences afipty

157



158 BIOINSPIRED OPTIMIZATION METHODS AND THEIR APPLICATIONS

to a certain problem only and cannot be generalized. To implement differen
search algorithms or to customize multiple search libraries however is normally
costly and time-consuming.

The performance of search algorithms can often be improved by distribut-
ing the computational load to a network of computers. If parameters like the
mutation-rate in Genetic Algorithms or the length of the Tabu-List in Tabu
Search are adapted dynamically, the performance may increase f@ither [

When performing Genetic Programming of real algorithms with its usually
very rugged fitness landscapes, a search framework taking adeaftbthese
improvement options is needed.

In this paper we introduce a Common Search API of our DGPF framework
[7, 17], allowing the evaluation of arbitrary problem spaces to be paddr
with different or even multiple cooperating, distributed, auto-adaptivebed:
gorithms. We will furthermore show the utility of our framework for automated
algorithm creation for sensor networks by evaluating an experiment.

2. Related Work

In the past there have been successful applications of other seattohdme
ologies as back-ends of GA [9, 10, 14]. Meta-Heuristics like the onedntred
by Bachelet and Talbi [1] already confirmed that the cooperation céreifft,
hierarchical coupled search algorithms provides remarkable advantage
has melted GA and Simulated Annealing together to create a new, improved
version, the Genetic Annealing [20]. Our framework extends such ibgas
integrating arbitrary search algorithms to cooperatively work togethemnen o
problem.

O’Reilly and Oppacher have suggested replacing GA as foundationfor G
[13] with other heuristics like Simulated Annealing and Stochastic Iterated Hill
Climbing. Applying such methods is simplified by our framework alot. The GP
layer or any other given Problem Space Implementation can rest on the Gommo
Search API, which internally might run any search algorithm implemented.

Most of the research stated above does not concern multi-objective agtimiz
tion [16]. Our search API on the other hand provides building blocks hwvhic
ease the construction of such algorithms.

Alot of work has been done on the self-adaptation of search algorithr8f [2
If a search heuristic is implemented using our framework, it will automatically
be equipped with this ability too. It may use different strategies that can even
be exchanged at runtime.

3. Framework Structure

The core of our framework is formed by a Common Search API, which de-
fines some classes and prototypes to be used. This API can be adtessed
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two sides (see Figure 1): On the one side different search algorithneéam
plemented, providing the functionality needed to perform randomized tieuris
searches. The user, on the other side, has to implement the functionatigdnee

to explore the problem space and, if needed, to simulate possible solutions. |
the style of multi-objective Genetic Algorithms, she may use different fitness
functions to evaluate the simulated solution candidates. The user-defied co
canthen be used in conjunction with any search algorithm made available by the
framework. Hence, a direct comparison and selection of the optimal agipro

for a given problem has become straightforward.

user provided

Genetic Algorithms
Search API Local
Client/Server

P2P
Hybrid

different Fitness Functions
Problem Space Impl

Figure 1. The structure of the DGP Framework’s search abilities.

update state
generate events
check halt criteria

adapt parameters
Figure 2.  The control loop FSM.

3.1 The Common Search API

The search API introduces four essential tools and abstractions: a finite
state machine which governs the control loop shared by the search aty®rith
means for the user to plug in fithess functions and problem domain specific
functionality, basic auto-adaptation support, and distribution utilities.
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Search algorithmsin general, if bio-inspired, randomized, or otherwigiéshe
tic, can be performed using the finite state machine presented in Figure 2 as
control loop. They can be divided into single search steps represdnting
example a generation in Genetic Algorithms, or a state transition in Simulated
Annealing. After each step the state information, for instance containing the
best individual found in the search and its fithess values, will be upd&ted
tus events will now be generated to inform the application using the search
algorithm. To limit the runtime of the search, the user may provide certain
thresholds, like a maximum search time, a maximum update count, optimum
fitness values, and so on, in order to define when the search shouadtbd h
automatically. If these criteria are not met, the search parameters cardamio-a
to the new situation and the next step will be initiated. To investigate a custom
problem space, the user has to plug in the "Problem Space Implementation”
(see Figure 1) which consists of three parts:

1 The type of individuals to be examined, which can be anything from
simple numbers if optimizing a mathematical problem to complex con-
struction plans for airplane wings.

2 The methods needed to randomly create initial individuals and to derive
new individuals from either one or two already existing ones.

3 Means to simulate these individuals in order to check their fitness.

Based on this implementation the user can now define multiple fithess func-
tions, regarding different functional and non-functional aspecthefndivid-
uals evaluated.

Apart from Genetic Programming for sensor networks, we exemplarity cre
ated a Problem Space Implementation for Semantic Web Service composition,
able to solve problems like the WSC Challenge [19], as a proof of concept.

The Common Search API includes facilities for both parallelization and
distribution which will be discussed in the next section.

3.2 Genetic Algorithms and the Distribution Schemes of the
DGPF

The most popular biologically inspired search and optimization methods by
far are Genetic Algorithms. Genetic Algorithms follow a well known schema
which closely matches the search control loop FSM introduced in the pgeviou
section. Starting with an initial population, the individuals are evaluated, sta-
tistical information is updated and individuals are selected for reproduiction
the next iteration.

Distributed Genetic Algorithms outclass their locally running counterparts
in many applications [6]. Let us thus discuss the distribution utilities of the
Common Search API exemplarily for the DGPF implementation of GA.
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Figure 3.  Different distribution schemes for GA provided by the DGPF.

Four different distribution forms of Genetic Algorithms are provided, as il-
lustrated in Figure 3. The default method is to run a search locally (A). lemor
than one machine is available in a network, the tasks of creating and evalu-
ating individuals can be distributed. This technique is called Client/Server or
Master/Slave (B) approach [4, 11]. Thisis useful if the evaluation irestime-
consuming simulations. If network bandwidth is limited or large populations
are needed, a Peer-To-Peer approach should be chosen (Q).[®ifferent
machines running Genetic Algorithms are now able to cooperate using the Is-
land Hopping paradigm. Last but no least, a hybrid distribution schemef(D) o
mixing the Peer-To-Peer and Client/Server techniques allows differembries
or clusters to cooperate on the same search.

The Client/Server- and the P2P-components are unified in the Common
Search API. Therefore, they can be used by all search algorithms impieene
in the DGPF, allowing even totally different algorithms like GA, Simulated
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Annealing, Tabu Search and Hill Climbing to be incorporated into one hetero-
geneous search.

The distribution methods discussed here are built using self-healingrand er
tolerant techniques. Thus, a Client/Server system will continue its work eve
if all but one server are switched off by a hardware-reset. A saastliy the
P2P-distribution will keep running even if all other P2P-nodes are shwihd
If some of the other machines happen to be restarted, they will seamlessly be
integrated into the search again by both technologies.

Other unified base structures of the DGPF are comparators, sortingand s
lection schemes. A comparator is used to determine which individuals are
dominated by which other ones. The sorting schemes allow individuals to be
sorted according to these comparators or by using additional statistical mea-
sures. Combined with the non-dominated individual list maintained by the
API, multi-objective search algorithms can easily be constructed. As a com-
bination of these four features, the NPG-Algorithm [8] has exemplarilybee
implemented.

4. Genetic Programming of Sensor Networks

Today we experience a growing demand for distributed systems of sensor
[5]. Inthis chapter, we describe how the DGPF framework is used tdigatg
create algorithms for such sensor networks.

Sensor nodes are small devices that gather sensor information abiout the
environment and transmit it wirelessly. They are restricted in resouraes lik
memory size, processing speed, and, most important, battery poweroifhe c
munication among them is not reliable and the topology of their network is
volatile. The program code created for sensor nodes should thubis end
as efficient as possible.

Our goal is the automated creation of algorithms for sensor nodes. We apply
multi-objective Genetic Programming since it allows optimizing the algorithms
created not only for functionality but also for the economical use ofiess,
especially for minimizing expensive communication.

To evaluate the fitness of such algorithms we simulate whole sensor networks.
In our model, sensor nodes are represented as virtual machines wit-aibed
memory architecture, asynchronous 1O, and a Turing-complete instriggton
[15, 18].

Many nodes (the virtual machines) run asynchronously in the simulation at
approximately the same speed which, however, might differ from noded® no
and cannot be regarded as constant. The nodes are connectedshjratel
thus cannot a priori guarantee reliable communication. Itis not possil@atb s
directed transmissions. Like radio broadcasts they will be receivedyayate
in range.
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With such simulations we can transform global behavior of a network into
local behavior of single nodes using GP.

4.1 Testing the Features of the DGPF for GP

To validate the utility of our framework for genetically programming sensor
networks we chose an example problem well known in the area of distributed
systems: the election. Election means to select one node out of a group of
nodes, to act as communication relay, for instance. All nodes shouliyeece
knowledge of the id of this special node. One way to perform such atiglec
would be to determine the maximum id of all nodes.

In order to solve this problem, we initialize all automata with their own
id in the first memory cell. If an algorithm makes progress at all, the nodes
should have stored greater (valid) ids there after some time. A fully fundtiona
algorithm would accomplish that the first memory cells of all nodes contain the
maximum id. If the algorithm is also resource-friendly, it should reach thig go
needing as few transmissions as possible.

Therefore we apply three fitness functions: the firstfunction is the cuivella
of all valid ids stored in the first memaory cells of the nodes in all time stgps (
see Figure 4. Itis therefore an indicator both for the functionality as wela
convergence speed of the algorithms. The second fitness function risatywe
proportional to the count of messages sent by all nddes(d the third function
is inversely proportional to the instruction count of the algorithms fouind (

As experimental setting we use six normal PCs in a network to perform a) ho-
mogeneously distributed, non-adaptive GA using the P2P-scheme aebkicrib
Section 3.2 as well & randomly configured adaptive heterogeneous searches
(also P2P distributed). For the experiments of tgpefour different popu-
lation sizes are tested: 2048, 4096, 6144 and 8192. When performing the
experiments of the second type, each node picks a search algorithnmH{IGA,
Climbing, Simulated Annealing). If using GA it chooses a selection scheme
(e.g., Tournament Selection), picks a population siz8192), determines mu-
tation/crossover rates, configures the caches and such and suahdaliny.

For each experiment, a fixed runtime of two hours is granted. The two-exper
iments are repeated eight times each. In Figure 4 we have plotted the fithess
values of the non-dominated algorithms found by both approaches duiring a
runs, leaving away those algorithms having minimal code size or minimal trans-
missions while having no functional effect at all.

It now becomes clear that the auto-adaptive, randomly configurediexpe
mental setting, which takes (by chance) full advantage of all featurédseof
DGPF, is able to find more algorithms with good functionality than a standard
approach would yield. Both methods whatsoever were able to find working
solutions for the election problem.
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4+

Functionality (i)

Transmissiom (ii)

+ Experiment auhormal GA
Experiment Hrandom. adapt. heterogen. Search
<= Algorithms with best functionality

Figure 4.  Utility of the DGPF-Features for GP.

Atrivial (and thus more understandable) one of these solutions is dislilaye
Figure 5. The algorithm consists of two parts: a procedure called wheotiee
starts up (procedur@) and an asynchronously called, interrupt-like routine
which receives incoming messages (procedi)rdn this simple algorithm, the
nodes constantly broadcast the greatest id they encountered in addoping
network traffic only by performing dummy work. In Figure 4 this program is
represented by a gray dot in the left of the black ellipsis.

called on startup procedure_0

store 1st variable into 0: push mem[0]
output buffer 1: some useless operations used
2: to stall and, as a consequence,
3: reduce transmissions in the
4: simulated/evaluated time span
send output buffer 5: send
go back to start 6: goto 0

called asynchronously when
a message comes in

compare the known and . ,¢ —
the received value :

if no improvement then exit 1: if zf then goto 3/ exit
exchange values 2: xchg mem[-1], mem[O0]

procedure_1

(mem[-1] < mem[O0])

Figure 5.  One of the non-dominated solutions found.

5. Future Work and Conclusion

There are three tasks in our research which are currently in progness
soon to be completed. The first one is the integration of additional bio-irspire
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search algorithms into the DGPF and the evaluation of their utility for Genetic
Programming.

We will soon be able to provide an easy-to-use control and monitoring in-
terface for the DGPF. It will graphically present the rich statistical infdroma
collected from the events created by the control FSMs. The user will lee ab
to control a distributed search, to modify all parameters of the differet¢so
manually and to access the search results at any given time.

The focus of our development effort is put on Genetic Programming and its
applicationto sensor networks. We are now able to perform reseaditfierent
technologies in this area since we have laid a solid foundation of efficiardtse
algorithms suitable for this purpose. With this foundation and the results of our
future research, we hope to increase the performance of Geneti@aRnogng
and the quality of its results in that sector significantly.

In this paper we have presented a framework for heuristic randomized multi-
objective search algorithms that incorporates the results of many of the bes
contributions to the area of randomized heuristic search. Although ourewn
search interests concentrate on Genetic Programming, our new sedrcéinAP
easily be customized to any given problem space. The resulting auttivaedap
applications can be distributed over a network, performing heterogeneou
operative searches. Furthermore, we provide the framework angsalts to
the research community under the LGPL. More information on our resaarch
well as the fully documented Java source code of the DGPF can be found a
http://dgpf.sourceforge.net [7].
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Abstract Numerical experiments in optimizing secondary coolant flows on a saséhg
machine with respect to multiple objectives were performed using thatigce
proposed Differential Evolution for Multiobjective Optimization (DEMO).ICa
culations were done for a selected steel grade under the assumptiestyf-state
caster operation. Their aim was to find suitable sets of coolant flow settings u
der conflicting requirements for minimum temperature deviations anefinedl
core length in the caster. In contrast to solutions produced in singletivigjep-
timization, approximation sets of Pareto optimal fronts provide more irdition
to a plant engineer and allow for better insight into the casting processibeha

Keywords:  Continuous casting of steel, Coolant flows, DEMO, Differential evolutidual-
tiobjective optimization, Process parameters

1. Introduction

Like the majority of modern production processes, material production and
processing nowadays strongly rely on numerical analysis and compuger s
port. Numerical simulators enable insight into process development, allow for
execution of numerical experiments and facilitate manual process optimiza-
tion. Moreover, reliable process simulators and efficient optimization proce
dures make it possible to automate process parameter optimization and improve
material properties. A way of achieving these goals is to couple the process
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simulator with an optimization algorithm via a cost function which allows for
automatic assessment of the simulation results.

Continuous casting of steel is an example of a process to which novel eompu
tational approaches have been applied intensively over the last yeatstoce
product characteristics and minimize production costs. In this complex metal-
lurgical process molten steel is cooled and shaped into semi-manufadtares.
cast high quality steel, it is important to properly control the metal flow antl hea
transfer during the process. They depend on numerous parametéudjng
the casting temperature, casting speed and coolant flows. Finding optimal va
ues of process parameters is hard since various, often conflictingecritad
to be applied, the number of possible parameter settings is high, and parame-
ter tuning through real-world experimentation is not feasible becausdety sa
risk and high costs. Techniques applied to overcome these difficulties enclud
knowledge-based heuristic search [2] and evolutionary algorithms g, 9.
However, the predominant optimization approach taken in the applied studies
so far was to aggregate multiple criteria into a single cost value and solve the
optimization problem empirically using the simulator-optimizer coupling.

In this paper we report on preliminary numerical experiments in optimizing
secondary coolant flows on a steel casting machine with respect to multiple
objectives using a multiobjective optimization evolutionary algorithm. Calcu-
lations were done for a selected steel grade under the assumption gf stated
caster operation. Their purpose was to get better insight into prockasibe
and find optimized sets of coolant flow settings under conflicting objectives.
The paper describes the optimization task and the multiobjective optimization
approach, and reports on the performed numerical experiments arideabta
results.

2. The Optimization Task

In continuous casting, liquid steel is poured into a bottomless mold which is
cooled with internal water flow. The cooling in the mold extracts heat from the
molten steel and initiates the formation of a solid shell. The shell formation is
crucial for the support of the slab behind the mold exit. The slab then enters
the secondary cooling area in which it is cooled by water sprays. Thedacy
cooling region is divided into cooling zones where the amount of the cooling
water can be controlled separately.

In this study we consider a casting machine with the secondary cooling area
divided into nine zones. In each zone, cooling water is dispersed to thatsla
the center and corner positions. Target temperatures are specifibe flab
center and corner in every zone. Water flows should be tuned in suai that
the resulting slab surface temperatures match the target temperaturegbs clos
as possible. From metallurgical practice this is known to reduce cracks and
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inhomogeneities in the structure of the cast steel. Formally, cost fungtien
introduced to measure deviations of actual temperatures from the tagget on

Nz Nz
e = Z u—vicenter o Tvicenter*‘ + Z |Tvicorner o Tvicorner*|’ (1)
=1 i=1

whereN, denotes the number of zon@& ™" and7c°™* the slab center and
corner temperatures in zomgand 7 "™ and 7o the respective target
temperatures in zone

There is also a requirement for core length®, which is the distance be-
tween the mold exit and the point of complete solidification of the slab. The
target value for the core lengtti®***, is prespecified, and the actual core length
should be as close to it as possible. Shorter core length may result integwvan
deformations of the slab as it solidifies to early, while longer core length may
threaten the process safety. We formally treat this requirement as onotibfu
Co.

cy = |lcore _ lcore*" (2)

The optimization task is to minimize both andc; over possible cooling
patterns (water flow settings). Itis known that the two objectives areictng,
hence it is reasonable to handle this optimization problem as a multiobjective
one. Water flows cannot be set arbitrarily, but according to the techicalo
constraints. For each zone, minimum and maximum values are prescribed for
the center and corner water flows.

A prerequisite for optimization of this process is an accurate numerical sim-
ulator, capable of calculating the temperature field in the slab as a function of
process parameters and evaluating it with respect to cost functiong(Bqgn.
and Egn. (2). For this purpose we used the mathematical model of thesproce
with Finite Element Method (FEM) discretization of the temperature field and
the corresponding nonlinear equations solved with relaxation iterative dwtho
already applied in previous single-objective optimization study of the casting
process [7].

3. Multiobjective Optimization

3.1 Pareto Optimality

Consider the multiobjective optimization problem (MOP) of finding the min-
imum of the cost functior:

c: X -7
c:(1,...,xn) — (c1(1, -y Tn), - s em(T1, - ),

whereX is ann-dimensional decision space, alidC R™ is anm-dimensional
objective spacet > 2). The objective vectors frorf can be partially ordered
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using the concept d?areto dominancez' dominate? (z! < z2) iff z! is not
worse thanz? in all objectives and better in at least one objective. When the
objectives are conflicting, there exists a set of optimal objective vecatiedic
Pareto optimal front Each vector from the Pareto optimal front represents a
different trade-off between the objectives and without additional médion

no vector can be preferred to another.

With a multiobjective optimizer we search for approximation sethat
approximates the Pareto optimal front as well as possible. When solvingMOP
in practice itis often important to provide the user with a diverse choiceaétra
offs. Therefore, beside including vectors close to the Pareto optinral tie
approximation set should also contain near-optimal vectors that are agtistin
as possible.

3.2 DEMO

Finding a good approximation set in a single run requires a population-
based method. Consequently, evolutionary algorithms have been ftgguen
used as multiobjective optimizers [3]. Among them, the recently proposed
Differential Evolution for Multiobjective Optimization (DEMO) [11] is applied
in optimizing the described metallurgical process.

DEMO is based on Differential Evolution (DE) [10], an evolutionary algo-
rithm for single-objective optimization that has proved to be very sucgkissf
solving numerical optimization problems. In DE, each solution is encoded as
ann-dimensional vector. New solutions, also called candidates, are caestruc
using operations such as vector addition and scalar multiplication. After the
creation of a candidate, the candidate is compared with its parent and the bes
of them remains in the population, while the other one is discarded.

Because the objective space in MOPs is multidimensional, DE needs to be
modified to deal with multiple objectives. DEMO is a modification of DE
with a particular mechanism for deciding which solution should remain in the
population. For each parent in the population, DEMO constructs the tedid
solution using DE. If the candidate dominates the parent, it replaces tha pare
in the current population. If the parent dominates the candidate, the eamdid
is discarded. Otherwise, if the candidate and its parent are incompatable,
candidate is added to the population. After constructing candidates for eac
parent individual in the population, the population has possibly incredsed
this case, it is truncated to the original size using nondominated sorting and
crowding distance metric (as in NSGA-II [4]). This steps are repeatétiaun
stopping criterion is met.

DEMO is a simple but powerful algorithm, fully presented in [11] in three
variants. Throughout this paper, the elementary variant, called DEM&npar
is used.
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4. Experiments and Results
4.1 Experimental Setup

Numerical experiments in multiobjective optimization of the casting process
were performed for a selected steel grade with the slab cross-sectiorOoh
x 0.21m. Candidate solutions were encoded as 18-dimensional real-valued
vectors, representing water flow values at the center and corner pgsiti®
zones of the secondary cooling area. Search intervals for cooling fhaies
at both center and corner positions in zones 1, 2 and 3 were betweah 0 an
50 n?/h, while in the zones 4-9 between 0 and ¥m Table 1 shows the
prescribed target slab surface temperatures. The target value tmrthiength
[°°r¢* was 27 m.

Table 1. Target surface temperatures’i@.

Zone number 1 2 3 4 5 6 7 8 9

Center position 1,050 1,040 980 970 960 950 940 930 920
Corner position 880 870 810 800 790 780 770 760 750

DEMO was integrated with the numerical simulator of the casting process
into an automated optimization environment. DEMO evolved sets of candidate
solutions in search for a good approximation set, and the simulator seraed as
solution evaluator. Steady-state operation of the casting machine was dssume
and optimization performed in the off-line manner.

The most limiting factor for experimental analysis is the computational com-
plexity of the casting process simulation. A single simulator run takes about
40 seconds on a 1.8-GHz Pentium IV computer. In initial experimentation we
found DEMO runs with 5,000 solution evaluations (and therefore takingtabo
55 hours) well compromising between the execution time and solution quality.
Further algorithm settings were also adopted according to the initial parameter
tuning experiments [5] and were as follows: population size 50, number of
generations 100, scaling factor 0.5 and crossover probability 0.05.

4.2 Results and Discussion

The primary result of this study were approximation sets of Pareto optimal
fronts. Figure 1 shows the approximation sets found by DEMO for five cas
ing speeds, ranging from 1.0 m/min to 1.8 m/min. Each set of nondominated
solutions is the final result of a single DEMO run at a constant castinglspee

We can observe that the two objectives are really conflicting in the sense
that finding a minimum for one of them the optimization procedure fails to do
so for the other and vice versa. It is also obvious that the casting sjseal h
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Figure1l. Nondominated solutions found with DEMO for different casting speete.dashed
horizontal line denotes the maximum allowed deviation of the core lengthtfrerrarget value
(7 m).

decisive impact on the result. Moreover, the higher the casting speeadptiee

the two objectives can be met simultaneously. This corresponds with pfactica
experience on the considered casting machine, where the procesgeig@as
control at the usual casting speed (1.6-1.8 m/min). Lower casting speed is
clearly shown as disadvantageous and in practice it is only set excdgtiona
for example, when a new batch of steel is awaited.

A detailed analysis of the solution properties also reveals that, in view of
the objectivec;, the majority of actual surface temperatures are higher than
the target temperatures, while regarding the actual core length is almost
always shorter than the target value. Unexpectedly, the deviation is soraetime
even greater than 7 m, meaning that the actual core length is less than 20 m,
which is unacceptable. This threshold value is shown in Figure 1 and should
be considered as an additional constraint in future studies.

Looking into decision space, one can also observe certain rules. én cas
of applying trade-off solutions from the middle of the approximation sets, the
amount of coolant spent increases with the casting speed (see theldfitia
diagrams in Figures 2—6). This is an expected result as higher castied spe
implies more intense cooling. On the other hand, the distributions of tempera-
ture differences across the secondary cooling zones (right-haadisigrams
in Figures 2-6) exhibit two characteristics. First, the target temperattees a
much more difficult to achieve at the center than in the corner slab positions.
Second, the differences at the center are rather non-uniform. Wiile ace
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close to zero, others reach up to 2@at lower casting speeds. Such a situation
is not wanted in practice calls for reformulation of objectiye
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Figure 2. A trade-off solution from the middle of the approximation set for the castpeged
speed of 1.0 m/ming; = 740°C, ¢ = 8.5m.
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Figure 3. A trade-off solution from the middle of the approximation set for the castpeged
speed of 1.2 m/minz; =915°C, c2 =4.5m.

Finally, it is worth checking the extreme solutions from an approximation
set at a given casting speed. Figures 7 and 8 clearly show how oratiadbje
is met at the expense of the other. None of these would normally be used
in practice. Instead, a plant engineer would rather select a tradettifigs
balancing between the two objectives.

5. Conclusion

Optimization of process parameter settings in continuous casting of steel
is a key to higher product quality. Nowadays it is often performed through
virtual experimentation involving numerical process simulators and adgdance
optimization techniques. In this preliminary study of optimizing 18 cooling
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Figure 4. A trade-off solution from the middle of the approximation set for the castpeged
speed of 1.4 m/min¢; =537°C,c2 =2.9m.
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Figure 5. A trade-off solution from the middle of the approximation set for the castpeged
speed of 1.6 m/ming; =247°C,co =1.5m.
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Figure 6. A trade-off solution from the middle of the approximation set for the castpeged
speed of 1.8 m/minz; =80°C,c2 =0.2m.

water flows for an industrial casting machine the multiobjective optimization
was brought into play.
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Figure 7. The leftmost solution from the approximation set for the casting speetisgd. .4
m/min: ¢; = 85°C, co =5.6m.
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Figure 8.  The rightmost solution from the approximation set for the casting spesetiapf
1.4 m/min:c; =1,419°C,c2 =0.0m.

The analysis assumes steady-state process conditions, hence thearesults
not primarily intended for control purposes but rather for better wstdeding
of the process and evaluation of the casting machine performance. stiiag
approximation sets of Pareto optimal fronts indeed offer a more genenab¥ie
the process properties. The results support some facts already knoraatice
and, at the same time, show critical points, such as the need to reformulate the
temperature deviation criterion to ensure uniform distribution of temperature
differences over the zones, and extend the optimization problem definition w
an additional constraint. From the practical point of view, further studiés
also explore how much the optimization results are affected by the factors that
were kept constant so far, such as steel grade, slab geometrystind caachine
characteristics.
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