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PREDGOVOR MULTIKONFERENCI  

INFORMACIJSKA DRUŽBA 2025 

28. mednarodna multikonferenca Informacijska družba se odvija v času izjemne rasti umetne inteligence, 

njenih aplikacij in vplivov na človeštvo. Vsako leto vstopamo v novo dobo, v kateri generativna umetna 

inteligenca ter drugi inovativni pristopi oblikujejo poti k superinteligenci in singularnosti, ki bosta krojili 

prihodnost človeške civilizacije. Naša konferenca je tako hkrati tradicionalna znanstvena in akademsko 

odprta, pa tudi inkubator novih, pogumnih idej in pogledov. 

Letošnja konferenca poleg umetne inteligence vključuje tudi razprave o perečih temah današnjega časa: 

ohranjanje okolja, demografski izzivi, zdravstvo in preobrazba družbenih struktur. Razvoj UI ponuja rešitve 

za številne sodobne izzive, kar poudarja pomen sodelovanja med raziskovalci, strokovnjaki in odločevalci 

pri oblikovanju trajnostnih strategij. Zavedamo se, da živimo v obdobju velikih sprememb, kjer je ključno, 

da z inovativnimi pristopi in poglobljenim znanjem ustvarimo informacijsko družbo, ki bo varna, 

vključujoča in trajnostna. 

V okviru multikonference smo letos združili dvanajst vsebinsko raznolikih srečanj, ki odražajo širino in 

globino informacijskih ved: od umetne inteligence v zdravstvu, demografskih in družinskih analiz, digitalne 

preobrazbe zdravstvene nege ter digitalne vključenosti v informacijski družbi, do raziskav na področju 

kognitivne znanosti, zdrave dolgoživosti ter vzgoje in izobraževanja v informacijski družbi. Pridružujejo 

se konference o legendah računalništva in informatike, prenosu tehnologij, mitih in resnicah o varovanju 

okolja, odkrivanju znanja in podatkovnih skladiščih ter seveda Slovenska konferenca o umetni inteligenci. 

Poleg referatov bodo okrogle mize in delavnice omogočile poglobljeno izmenjavo mnenj, ki bo pomembno 

prispevala k oblikovanju prihodnje informacijske družbe. »Legende računalništva in informatike« 

predstavljajo domači »Hall of Fame« za izjemne posameznike s tega področja. Še naprej bomo spodbujali 

raziskovanje in razvoj, odličnost in sodelovanje; razširjeni referati bodo objavljeni v reviji Informatica, s 

podporo dolgoletne tradicije in v sodelovanju z akademskimi institucijami ter strokovnimi združenji, kot 

so ACM Slovenija, SLAIS, Slovensko društvo Informatika in Inženirska akademija Slovenije. 

Vsako leto izberemo najbolj izstopajoče dosežke. Letos je nagrado Michie-Turing za izjemen življenjski 

prispevek k razvoju in promociji informacijske družbe prejel Niko Schlamberger, priznanje za 

raziskovalni dosežek leta pa Tome Eftimov. »Informacijsko limono« za najmanj primerno informacijsko 

tematiko je prejela odsotnost obveznega pouka računalništva v osnovnih šolah. »Informacijsko jagodo« za 

najboljši sistem ali storitev v letih 2024/2025 pa so prejeli Marko Robnik Šikonja, Damir Vreš in Simon 

Krek s skupino za slovenski veliki jezikovni model GAMS. Iskrene čestitke vsem nagrajencem! 

Naša vizija ostaja jasna: prepoznati, izkoristiti in oblikovati priložnosti, ki jih prinaša digitalna preobrazba, 

ter ustvariti informacijsko družbo, ki koristi vsem njenim članom. Vsem sodelujočim se zahvaljujemo za 

njihov prispevek — veseli nas, da bomo skupaj oblikovali prihodnje dosežke, ki jih bo soustvarjala ta 

konferenca. 

 

Mojca Ciglarič, predsednica programskega odbora 

Matjaž Gams, predsednik organizacijskega odbora 
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FOREWORD TO THE MULTICONFERENCE 

INFORMATION SOCIETY 2025 

The 28th International Multiconference on the Information Society takes place at a time of remarkable 

growth in artificial intelligence, its applications, and its impact on humanity. Each year we enter a new era 

in which generative AI and other innovative approaches shape the path toward superintelligence and 

singularity — phenomena that will shape the future of human civilization. The conference is both a 

traditional scientific forum and an academically open incubator for new, bold ideas and perspectives. 

In addition to artificial intelligence, this year’s conference addresses other pressing issues of our time: 

environmental preservation, demographic challenges, healthcare, and the transformation of social 

structures. The rapid development of AI offers potential solutions to many of today’s challenges and 

highlights the importance of collaboration among researchers, experts, and policymakers in designing 

sustainable strategies. We are acutely aware that we live in an era of profound change, where innovative 

approaches and deep knowledge are essential to creating an information society that is safe, inclusive, and 

sustainable. 

This year’s multiconference brings together twelve thematically diverse meetings reflecting the breadth and 

depth of the information sciences: from artificial intelligence in healthcare, demographic and family studies, 

and the digital transformation of nursing and digital inclusion, to research in cognitive science, healthy 

longevity, and education in the information society. Additional conferences include Legends of Computing 

and Informatics, Technology Transfer, Myths and Truths of Environmental Protection, Knowledge 

Discovery and Data Warehouses, and, of course, the Slovenian Conference on Artificial Intelligence. 

Alongside scientific papers, round tables and workshops will provide opportunities for in-depth exchanges 

of views, making an important contribution to shaping the future information society. Legends of 

Computing and Informatics serves as a national »Hall of Fame« honoring outstanding individuals in the 

field. We will continue to promote research and development, excellence, and collaboration. Extended 

papers will be published in the journal Informatica, supported by a long-standing tradition and in 

cooperation with academic institutions and professional associations such as ACM Slovenia, SLAIS, the 

Slovenian Society Informatika, and the Slovenian Academy of Engineering. 

Each year we recognize the most distinguished achievements. In 2025, the Michie-Turing Award for 

lifetime contribution to the development and promotion of the information society was awarded to Niko 

Schlamberger, while the Award for Research Achievement of the Year went to Tome Eftimov. The 

»Information Lemon« for the least appropriate information-related topic was awarded to the absence of 

compulsory computer science education in primary schools. The »Information Strawberry« for the best 

system or service in 2024/2025 was awarded to Marko Robnik Šikonja, Damir Vreš and Simon Krek 

together with their team, for developing the Slovenian large language model GAMS. We extend our 

warmest congratulations to all awardees. 

Our vision remains clear: to identify, seize, and shape the opportunities offered by digital transformation, 

and to create an information society that benefits all its members. We sincerely thank all participants for 

their contributions and look forward to jointly shaping the future achievements that this conference will 

help bring about. 

 

Mojca Ciglarič, Chair of the Program Committee 

Matjaž Gams, Chair of the Organizing Committee 
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PREDGOVOR SLOVENSKI KONFERENCI  

O OMETNI INTELIGENCI 

 

Slovenska konferenca o umetni inteligenci se letos odvija v času, ko umetna inteligenca še 

naprej intenzivno prodira v znanost, industrijo in vsakdanje življenje, še nikoli tako hitro in 

tako koristno. Še vedno so v ospredju veliki jezikovni modeli, ki so svoje zmožnosti 

razumevanja in generiranja že uspešno razširili na zvok, slike in video. Zanimivo raziskovalno 

področje so tudi temeljni (angl. foundation) modeli za druge vrste podatkov – npr. senzorskih 

in bioloških, pa tudi takih za robotske akcije, ki jih je takisto mogoče povezati z jezikom. Ti 

modeli so posebej dragoceni v medicinskih raziskavah, kjer so že privedli do razvoja novih 

zdravilnih učinkovin. Tovrstne raziskave bodo morda privedle do modelov, ki bodo znali 

celostno razumevati svet in nanj tudi vplivati, kar močno diši po umetni splošni inteligenci. 

Najnaprednejše raziskave umetne inteligence danes zahtevajo infrastrukturo, ki je v Sloveniji 

nimamo in se je tudi ne moremo nadejati, vseeno pa se je v zadnjem letu tudi v domačih logih 

zgodilo marsikaj zanimivega. Največji dogodek je bil bržkone pridobitev financiranja za 

Slovensko tovarno umetne inteligence – superračunalnik za 150 milijonov EUR, prilagojen 

umetni inteligenci. Poleg tega je bil zgrajen velik jezikovni model za slovenščino GaMS, ki 

omogoča boljše izražanje v našem jeziku in prispeva k slovenski digitalni suverenosti. V 

Sloveniji nastaja tudi veliko aplikacij, ki uporabljajo velike jezikovne modele. Med njimi bi 

radi izpostavili zdravstvenega pomočnika HomeDOCtor, ki zna državljanom svetovati glede 

zdravstvenih težav bolje kot splošnonamenski modeli. 

Vrnimo se zdaj h konferenci: letos ima 21 prispevkov, kar je največ po rekordnem letu 2020. 

Od teh jih dve tretjini prihajata z Instituta Jožef Stefan, kar ne odstopa dosti od statistike zadnjih 

let. Tako širša zastopanost različnih slovenskih ustanov vključno z industrijo še vedno ostaja 

naša želja. Ponosni smo, da smo letošnjo konferenco obogatili s kar tremi posebnimi dogodki. 

Otvoritev sestavljata uvodni nagovor predstavnice Ministrstva za digitalno preobrazbo in 

vabljeno predavanje Eve Tube, ki je v Slovenijo prišla na prestižno mesto ERA Chair v okviru 

projekta AutoLearn-SI. Ker umetna inteligenca prodira v vse pore našega življenja, med katere 

sodi tudi umetnost, smo zato organizirali sekcijo Beyond Human Art prav na to temo. In 

nenazadnje smo Slovensko tovarno umetne inteligence obeležili s sekcijo, kjer smo se poučili 

o tovarni, njeni uporabi v znanstvenih raziskavah in vlogi pri obdelavi senzorskih podatkov. 

Konferenca ostaja enkraten slovenski in mednarodni prostor odličnosti, odprte akademske 

razprave in novih idej. Ponosni smo, da skupaj gradimo slovensko skupnost umetne 

inteligence, ki s svojim znanjem in inovacijami prispeva k reševanju ključnih izzivov 

sodobnega časa ter krepi vlogo Slovenije v evropskem in svetovnem prostoru. 

 

Mitja Luštrek 

Matjaž Gams 

Rok Piltaver 
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FOREWORD TO SLOVENIAN CONFERENCE  

ON ARTIFICIAL INTELLIGENCE 

 

Slovenian Conference on Artificial Intelligence is taking place this year at a time when AI 

continues to advance rapidly into science, industry, and everyday life, faster and more usefully 

than ever before. Large language models are still at the forefront, having already successfully 

expanded their capabilities to the understanding and generation of sound, images and video. 

An interesting research area includes foundation models for other types of data – for example, 

sensor and biological data, as well robotic actions, which can likewise be connected to 

language. These models are especially valuable in medical research, where they have already 

led to the development of new therapeutic compounds. Such research may eventually result in 

models capable of comprehensively understanding the world and interacting with it, which 

strongly suggests artificial general intelligence. 

The most advanced artificial intelligence research today requires infrastructure that Slovenia 

does not have and cannot realistically expect, yet the past year has nevertheless seen several 

significant and interesting advances in Slovenia as well. The most important milestone was 

probably securing the funding for the Slovenian Artificial Intelligence Factory – a 150 million 

EUR supercomputer tailored to artificial intelligence. In addition, a large language model for 

Slovenian, GaMS, was built, enabling better expression in our language and contributing to 

Slovenian digital sovereignty. Slovenia is also seeing the rise of many applications that make 

use of large language models. Among them we would like to highlight the healthcare assistant 

HomeDOCtor, which is able to advise citizens on health issues better than general-purpose 

models. 

Returning to the conference: this year, it features 21 papers, the highest number since the record 

year of 2020. Out of these, two thirds come from Jožef Stefan Institute, which does not differ 

much from the statistics of recent years. Thus, a broader representation of various Slovenian 

institutions, including industry, remains our goal. We are proud that this year’s conference was 

enriched with three special events. The opening included a welcome address by a representative 

of the Ministry of Digital Transformation and a keynote lecture by Eva Tuba, who came to 

Slovenia to take up the prestigious ERA Chair position within the AutoLearn-SI project. Since 

artificial intelligence is making its way into every aspect of our lives, including art, we 

organized a special section titled Beyond Human Art dedicated to this theme. Finally, we 

marked the Slovenian Artificial Intelligence Factory with a session where we learned about the 

factory itself, its use in scientific research, and its role in processing sensor data. 

The conference is a unique Slovenian and international venue for excellence, open academic 

debate and new ideas. We are proud that together we are building the Slovenian AI community, 

which, through its knowledge and innovations, contributes to addressing the key challenges of 

our time and strengthens Slovenia’s role in Europe and globally. 

 

Mitja Luštrek 

Matjaž Gams 

Rok Piltaver 
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Abstract
Passive sensing of pollinator activity is important for biodiversity

monitoring and conservation, yet conventional acoustic or visual

methods produce large amounts of data and face deployment

challenges. In this work, we present initial results on investigat-

ing stem vibration as an alternative signal for detecting pollinator

presence on flowers. Vibration recordings were collected with a

laser vibration instrument from various flower species at multiple

locations in Slovenia, totaling approximately 14 hours, of which 3

hours were expert-annotated as positive (insect activity present).

The task was formulated as a binary classification problem: deter-

mining whether a vibration segment corresponds to a pollinator

physically touching the flower. Using a neural network model,

performance was evaluated with five-fold cross-validation across

three experiments: (i) using a balanced subset, (ii) using the full

dataset, and (iii) using the full dataset with heuristic prediction

smoothing. On the balanced subset, the model achieved an av-

erage F1-score of 0.86 ± 0.06; on the full dataset, 0.62 ± 0.07;

and with heuristic smoothing, 0.69 ± 0.11, demonstrating both

the feasibility of vibration-based detection and the benefits of

post-processing. Beyond binary detection, future work will focus

on species- and activity-level classification. Ultimately, the goal

is to develop lightweight vibration detectors deployable directly

on plants, enabling scalable estimation of pollinator visitation

rates in natural and agricultural environments.

Keywords
stem vibrations, pollination, neural networks, buzz detection,

spectrograms

1 Introduction
Europe supports a rich diversity of wild pollinators among them

2,051 species of bees and 892 species of hoverflies. Collectively,

pollinators provide a wide range of benefits to society including

more than €15 billion per year contribution to the market value of

European crops, pollinating around 78 percent of wild flowering

plants. This pollination service ensures healthy ecosystem func-

tioning and maintains wider biodiversity as well as culturally

important flower-rich landscapes [1]. Many reviews highlight

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this

work must be honored. For all other uses, contact the owner/author(s).

Information Society 2025, Ljubljana, Slovenia
© 2025 Copyright held by the owner/author(s).

https://doi.org/10.70314/is.2025.skui.5707

the global decline in insects [2], [3] and in particular wild bees

[4], [5]. Internationally, the UN Intergovernmental science-policy

Platform on Biodiversity and Ecosystem Services (IPBES) and the

Convention on Biological Diversity (CBD) highlighted the need

to collect long-term high-quality data on pollinators and pollina-

tion services in order to direct policy and practice responses to

address the decline. There were already some attempts to monitor

pollinators’ activity from sound/soundscapes recordings (e.g. [6]).

Here, we explore for the first time to monitor pollination activity

by using vibroscape recordings [7] from flowering plants which

are visited by different pollinators. We investigated the possibility

of neural networks for automatic detection of pollinator visits

on flowers.

2 Dataset
The dataset comprises vibration waveforms from flowers, which

were used for model training, and auxiliary audio and camera

recordings collected for labeling and species identification. All

recordings were obtained during July and August 2024 at various

locations in Slovenia. The vibrations were measured using a Vi-

broGo (Polytec, Germany) laser vibration instrument, which has

an operational range of up to 30 m and can detect movements

up to 6 m s
−1

at frequencies up to 320 kHz. For this study, mea-

surements were performed at close range, with a frequency span

of 0–24 kHz and a sampling rate of 48 kHz.

For the measurements, the flower stem was fixed to a pole

to minimize large movements, and a small piece of reflective

foil was attached slightly below the flower to enable the laser

vibrometer to capture fine vibrations caused by insect activity.

Our data acquisition setup is shown in Figure 1.

The dataset comprised vibration recordings of up to 10minutes

each, collected from flowers belonging to the genera Calystegia,
Cichorium (the majority of samples), Crepis, Epilobium, Knautia,
Leontodon, Lotus, Pastinaca, and Trifolium. In total, the record-

ings amounted to approximately 14 hours, of which 3 hours were

annotated for insect activity (as positive), while the rest did not

contain insect activity and was considered negative. Labeling

was performed in Raven Pro by expert annotators, who used

synchronized audio and video recordings to confirm insect pres-

ence and identify species. Each recording was annotated with

time intervals indicating insect activity, insect species, activity

type, and, when relevant, additional notes. For the purpose of this

study, where we are only interested in binary classification of

detecting pollinators, all intervals with any insect activity which

included physically touching the flower were labeled as 1, and 0

otherwise.
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Figure 1: Data acquisition setup for recording vibration
signals, audio, and visual recordings from flowers.

Labeled intervals were cut into clips of one second with 0.1-

second overlap (positive instances), whereas unlabeled portions

were similarly divided and treated as negative instances. To bal-

ance the dataset, the negative instances were randomly down-

sampled. Some negative instances contained environmental noise,

such as speech, machinery, or wind, and wind noise was occasion-

ally present in positive instances. Examples of vibration signals

from honey bee foraging and from wind are shown in Figures 2

and 3, respectively. The final balanced subset consisted of 7334

positive and 8664 negative instances. The positive data distribu-

tion by insects is given in Table 1.

Figure 2: Sample spectrogram of honey bee foraging (posi-
tive)

3 Methodology
The objective of this study was to assess whether stem vibrations

can be used to detect the presence of pollinators on flowers. From

Figure 3: Sample spectrogram of light wind blowing (nega-
tive)

Table 1: Number of labels and the corresponding number
of instances by insect.

Insect Number of labels Instances

fly 76 4146

honey bee 253 1688

wild bee 98 1307

hoverfly 82 155

bumble bee 14 24

wasp 3 9

moth 1 5

Total 527 7334

a machine learning perspective, the problem was framed as a

binary classification task: distinguishing between the presence

and absence of insects in physical contact with the flower. The

methodology consisted of initial recoding of waveforms and

labeling, preprocessing the data, selecting the appropriate neural

network architecture, and training and evaluating the model.

3.1 Data Preprocessing
First, the instances that were shorter than one second (in cases

where the expert-labeled interval was shorter than one second)

were padded. After that, all instances were then converted into

Mel spectrograms of size 64x64 using fast Fourier transform with

frequency range 0–3 kHz.

3.2 Model Architecture
For the model, a network of residual blocks in combination with

convolution was used. It is a smaller version of some ResNet

(e.g. ResNet 18) models. Residual blocks offer efficient reuse of

features across the layers. As shown in Figure 4, the input spectro-

gram goes through a 3x3 convolution, followed by three residual

blocks, before final pooling. The residual block, shown in Fig-

ure 5, consists of two 3x3 convolutions to identify features and

residual path only uses stride to match the shape before addition.

8
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Input

1×64×64

Conv 3×3

1→32 + BN + ReLU

Res Block

32→64

Res Block

64→128
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128→256

Global

AvgPool

Linear out

256 → 1

Figure 4: Model Architecture

Input

Conv 3×3

stride=2

BN ReLU

Conv 3×3

stride=1

BN

1×1 Conv

stride=2

BN Add

ReLUOutput

Figure 5: Residual Block (Res Block) in Figure 4

To prevent overfitting and to enable extended training, dropout

of 0.5 was used, which improved performance more than data

augmentation (and was also computationally more efficient).

3.3 Model Training Settings
The model was trained by using the binary cross-entropy loss.

Optimization was performed with Adam optimizer with learning

rate 10
−4

and weight decay 10
−5

. A batch size of 16 and an epoch

number of 30 were used.

4 Evaluation Metrics
We used standard performance evaluation metrics: accuracy, pre-

cision, recall and F1-score, which were computed from the num-

ber of true positives (TP), true negatives (TN), false positives (FP)

and false negatives (FN) as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

(1)

Precision =
TP

TP + FP

(2)

Recall =
TP

TP + FN

(3)

F1-score =
2 · Precision · Recall
Precision + Recall

(4)

In confusion matrices, we used relative numbers samples for

colors instead of absolute (which are only listed), because there

wasmuchmore negatives than positives in detection test. Relative

shares are based on true labels (e.g. fraction of FN among all

negatively labeled).

4.1 Experiments
The model was evaluated in three experimental settings, all us-

ing 5-fold cross-validation. Instances originating from the same

recording were always assigned to the same fold to better reflect

real-world variability. Training and testing were repeated five

times, each with a different fold held out for testing and the re-

maining folds used for training. Reported results are averages

across the five folds.

4.1.1 Balanced labeled subset. In the first experiment, called

"Subset", only the manually labeled subset of the dataset was

used. This consisted of the 7334 positive and 8664 negative in-

stances as described above. These were treated as balanced binary

classification data and evaluated directly.

4.1.2 Full dataset with raw labeling. In the second experiment,

called "Full data (raw)", the entire dataset was included by seg-

menting recordings into 1.0 s windows with a step size of 0.1 s.

Expert annotations were then used to assign labels to these win-

dows, yielding a much larger evaluation set. However, such raw

labeling frequently introduced short, isolated positive or negative

events that were likely erroneous. When the model predicted

such isolated events, performance metrics were underestimated,

as the evaluation framework treated them as genuine labels. This

motivated the introduction of a heuristic smoothing procedure.

4.1.3 Full dataset with heuristic labeling. The third experiment,

called "Full data (heuristics)", used the same sliding-window seg-

mentation as raw labeling experiment, but applied a heuristic

smoothing procedure to adjust labels. The aim was to reduce

the influence of short, likely erroneous events while preserving

longer, fragmented signals as single detections. Two rules were

applied:

• If the model predicted at least 10 consecutive positive win-

dows (equivalent to 1.0 s), the entire interval was relabeled

as positive.

• If at least 82% of 50 consecutive windows (equivalent to

5.0 s) were predicted as positive, the entire interval was

relabeled as positive.

These empirically determined thresholds suppressed short

false positives while ensuring that extended pollinator events

with intermittent weak signals were still detected as continuous

segments. Finally, because the sliding window (1.0 s) exceeded

the step size (0.1 s), prediction timestamps were shifted backward

by 0.5 s to align the window centers with the expert annotations.

5 Results and Discussion
The results of all three experiments are shown in Table 2 along

with the confusion matrices in Figure 6.

Table 2: Results of all experiments. The numbers represent
the average ± standard deviation across five folds in the
cross-validation.

Subset Full data (raw) Full data (heur.)

Accuracy 0.87 ± 0.03 0.80 ± 0.02 0.86 ± 0.05

Precision 0.85 ± 0.09 0.54 ± 0.11 0.68 ± 0.15

Recall 0.87 ± 0.04 0.75 ± 0.11 0.73 ± 0.13

F1-score 0.86 ± 0.06 0.62 ± 0.07 0.69 ± 0.11

The results show that there was a significant reduction in

performance when we switched from using the balanced subset

to recordings from the full dataset. There are several possible

sources of error: labels are annotated on waveform and samples

are extracted in the way that the whole non-padded (therefore

non-silent) part is either positive either negative, furthermore,

prediction for a specific time 𝑡 is generated based on the win-

dow, beginning at 𝑡 and ending at 𝑡 + 1 s, which might lead to

inaccuracies at edges of labels although we shifted the time to

match it as good as possible. There are also no other insects

or activities in samples, which occur in full recordings and are
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Figure 6: Confusion matrices of all 3 experiments, de-
scribed in section 4.1

sometimes falsely positive. It is important to note that the "Full

data" is not a balanced set (while "Subset" is) and is meant as a

test for a real-world scenario, where conditions and frequency of

pollinators with them vary on short time scales (hours), which

makes loss balancing (which would reduce the gap between recall

and precision) in practice very difficult. For this reason, we did

not use it and we left the thresholds the same as in the "Subset"

experiment, so the results serve as a valid estimation of the per-

formance in reality. Figure 7 shows how heuristics helped the

model by smoothing out the short erroneous predictions, result-

ing in improved performance. To improve model performance

even further, additional heuristic filters may be added.

6 Conclusion
We presented initial results on the feasibility of detecting polli-

nator presence on flowers from stem vibration recordings using

machine learning methods. We evaluated models under three

experimental settings: a balanced labeled subset, the full dataset

with raw expert annotations, and the full dataset with heuristic

label smoothing. The results demonstrate that pollinator activity

can be reliably inferred from vibration signals, with heuristic

post-processing substantially reducing the impact of isolated er-

roneous predictions and improving the robustness of detection.

Figure 7: Output example: (blue) model prediction, (green)
heuristic filter, (yellow) expert labels.

Future work will focus on extending the models beyond bi-

nary detection towards classification of pollinator species and

potentially of behavioral activities. From an applied perspective,

the long-term goal is to develop lightweight vibration detectors

that can be mounted directly on plants to automatically register

pollinator visits. Deploying a small number of such sensors in a

field or meadow would enable scalable estimation of pollinator

abundance and activity, providing a valuable tool for biodiversity

monitoring and conservation studies.
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Abstract
Cognitive load (CL) monitoring is a growing area of interest

across various domains. Most traditional methods rely on ei-

ther subjective assessments or intrusive sensors, limiting their

practical applicability. In this study, we present a non-invasive

approach for estimating CL using thermal imaging. Thermal

videos were collected from 18 participants performing a battery

of tasks designed to induce varying levels of CL. Using a low-

cost thermal camera, we extracted features from facial regions of

interest and trained several machine learning models, including

Random Forest, Extreme Gradient Boosting, Stochastic Gradi-

ent Descent (SGD), k-Nearest Neighbors, and Light Gradient

Boosting Machine, on a binary classification task distinguishing

between rest and high CL conditions. The models were evaluated

using Leave-One-Subject-Out cross-validation. Our results show

that all models outperform the baseline majority classifier, with

SGD achieving the highest accuracy (0.64 ± 0.16), despite vari-

ability across individuals. These findings support the feasibility

of thermal imaging as an unobtrusive tool for CL estimation in

real-world applications.

Keywords
cognitive load estimation, thermal imaging, physiological com-

puting, machine learning for affective computing, non-invasive

user monitoring

1 Introduction
Monitoring cognitive load (CL) unobtrusively and accurately has

become an increasingly important goal across various domains.

Traditional methods such as the NASA-TLX questionnaire [7]

for assessing cognitive states often rely on intrusive sensors

or subjective self-reporting, limiting their practicality in real-

world applications. In recent years, the use of machine learning

techniques combined with physiological signals has opened new

possibilities for non-invasive and continuous monitoring [2].

The primary objective of our study was to predict CL using

data obtained with a thermal camera. Our aim was to develop a

method for unobtrusive measurement of physiological signals

that achieves high accuracy. Compared to other physiological

measurement tools, thermal cameras are relatively low-cost and

quick to deploy, which makes them a practical choice for real-

world cognitive monitoring applications.
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2 Related Work
Early approaches of contact-free thermal monitoring of psy-

chophysiological states based on infrared thermal imaging fo-

cused primarily on emotional and affective research [8]. Physio-

logical background was heavily explored, specifically how auto-

nomic nervous system activity yields descriptive thermal signa-

tures related to affect in facial regions. Such work laid the critical

groundwork for later expansion towards CL estimation.

One of the fundamental studies towards thermal-camera-based

CL estimation was published by Abdelrahman et al. in 2017. They

introduced an unobtrusive method that uses a commercial ther-

mal camera to monitor temperature changes on the forehead

and nose, which were chosen as regions of interest based on

physiological background established earlier. It demonstrated

that the difference between forehead and nose temperature cor-

relates robustly with task difficulty, showing effectiveness in

Stroop test and reading complexity experiments. Notably, the

system achieved near-real-time detection with an average la-

tency of 0.7 seconds, making it suitable for responsive, real-time

cognition-aware applications [1].

While such monitoring traditionally required relatively ex-

pensive hardware [6], recent work showed potential of more

affordable low-cost thermal cameras for monitoring of psycho-

logical states. Black et al. [4] compared state-of-the-art vision

transformers (ViT) against traditional convolutional neural net-

works (CNNs) on data recorded with low-resolution thermal

cameras. They found superior performance of ViT when classi-

fying emotions, achieving 0.96 F1 score for 5 emotions (anger,

happiness, neutral, sadness, surprise), confirming feasibility of

low-cost hardware.

Lastly, some work explores subtle connections between differ-

ent inner states that are difficult to discriminate, such as stress

and CL. Bonyad et al. [5] showed correlation of the two states

in airplane pilots, highlighting that elevated cognitive work-

load induced stress, manifesting in significant cooling across

the nose, forehead, and cheeks, with the nasal region exhibit-

ing the most rapid and pronounced temperature decline. These

thermal changes were synchronized with increases in heart rate

and subjective workload ratings. Overall thermal monitoring is

becoming more accessible and an established CL estimation al-

ternative to other modalities (e.g., wearables, RGB cameras, etc.),

especially in challenging conditions (e.g., darkness).

3 Data
3.1 Data Collection
For the purpose of our experiment, we gathered data from 18

participants using various sensors. In this work, we will focus

only on relevant data obtained by an affordable FLIR Lepton 3.5
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camera, with resolution of 160x120 running at 8.7 frames per

second.

Our participants underwent a battery of tests for inducing

CL. Data collection was carried out in a controlled laboratory

environment to ensure consistency across all participants. Af-

ter filling out some initial questionnaires regarding individual’s

tiredness and focus levels, the calibration of various sensors used

in the study was performed. The experiment itself was structured

into three sequential blocks, each designed to induce CL through

two different tasks offered at two difficulty levels. The first block

featured standardized CL tasks – specifically, the N-back and

Stroop tasks, which are widely used in cognitive research to

engage working memory and executive attention [10, 12].

The second block introduced more ecologically valid memory

tasks. The memory recall task involved displaying a list of words

on a screen, after which participants had 30 seconds to recall and

verbally report as many as possible. In the visual memory task,

participants observed an image and were later asked to recall

specific details.

The third and final block focused on ecological visual attention

tasks. These included a visual discrepancy detection task and a

line tracking task. In the discrepancy detection task, participants

compared two images and identified visual differences. In the

line tracking task, participants followed numbered lines from

one side of the screen to the other and identified them.

Between these cognitive tasks, participants engaged in relax-

ation activities such as resting, passively viewing images, or lis-

tening to music, which served as baseline conditions and helped

to balance their CL throughout the experiment. After each task

and each relaxation period, participants completed the NASA

Task Load Index (NASA-TLX) [7] and the Instantaneous Self-

Assessment (ISA) [9] questionnaires to provide subjective evalu-

ations of their cognitive and affective states.

The session concluded with the removal of all sensors, a de-

briefing session, and participant compensation. The entire pro-

cedure lasted approximately 60 minutes per participant, with

around 40 minutes spent for active data collection and the rest

used for setup, instructions, and debriefing.

3.2 Data Preprocessing
The raw data used in our analysis is illustrated in Figure 1. The

first step in our preprocessing pipeline was windowing. Specifi-

cally, we divided each thermal video into consecutive 3-second

windows with a 25% overlap. From each window, only the middle

frame was selected for further analysis. This approach was based

on the assumption that facial temperature changes driven by

physiological responses such as blood flow occur gradually over

several seconds rather than instantaneously. As such, a single

representative frame from each interval was considered sufficient

to capture meaningful thermal variation in 2.25-second steps.

The second step in preparing the data for subsequent machine

learning experiments involved the extraction of features from

thermal camera recordings. Prior research in this domain fre-

quently utilizes average temperatures from distinct facial regions

as input features, demonstrating that these regions can exhibit

significant temperature differences associated with various affec-

tive states experienced by participants [3]. Motivated by these

findings, we adopted a similar methodology to that proposed by

Aristizabal-Tique et al. [3], and based our feature set on the aver-

age temperatures of four predefined regions of interest (ROIs):

nose, forehead, left eye, and right eye.

The first step in obtaining the average temperatures for the

selected ROIs involved applying a facial keypoint detector to

extract the coordinates corresponding to each region in the ther-

mal images. This process was carried out for the middle frame

of every window of the thermal videos by passing it through

a pretrained keypoint detection model [11]. The model, based

on the widely adopted YOLOv5 architecture, was specifically

trained on thermal images to enhance its performance for this

modality. Following keypoint detection, we transitioned from

working with raw thermal images to working with numerical

temperature features, specifically the average temperatures com-

puted for each region of interest. A more detailed explanation of

this feature extraction process is provided in Section 4.1.

(a) Subject A. (b) Subject B.

Figure 1: Examples of raw thermal images.

At this stage, our dataset – where each row corresponded to a

single video frame – contained a substantial number of missing

values. These missing values were primarily due to limitations

in keypoint detection, which stemmed from several factors. First,

participants wore smart glasses during the experiment, which

often obstructed the eye region and impaired the accuracy of

the keypoint detector. Second, natural head movements, such

as turning to the left or right, occasionally caused parts of the

face to be occluded, preventing the detector from accurately

identifying key facial landmarks. Given the impact of these issues

on data quality, we chose to remove all rows containing missing

values from further analysis. We excluded 31% of the data in this

step. Use of smart glasses was not problematic only for keypoint

detection, but also for feature calculation. The eye regions were

partially obstructed by the glasses, thus preventing the thermal

camera from capturing accurate temperature measurements in

this area. Since we were unable to control for this effect, it is

possible that it also posed an issue in classification.

Next, we performed label transformations to prepare the data

for subsequent analysis. Initially, the dataset included multiple la-

bels, each corresponding to one of the tasks described in Section

3.1. However, approximately 50% of the instances were labeled as

“questionnaire”, reflecting the periods during which participants

completed self-report instruments such as NASA-TLX and ISA.

These instances posed a challenge: filling out a questionnaire is

neither a clear resting state nor a cognitively demanding task,

making it difficult to accurately determine the level of CL in-

volved. Since our primary interest lay in distinguishing between

load and rest conditions, we opted to exclude all rows labeled as

“questionnaire” from further analysis. In addition, we grouped

the remaining labels into three broader categories: rest, low CL

(corresponding to the easy versions of the tasks), and high CL

(corresponding to the difficult versions).

Following some initial experiments, we chose to retain only

the most “extreme” instances in terms of CL. Specifically, we

excluded all data labeled as low CL, as this class exhibited sub-

stantial overlap with both the rest and high load conditions. In
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particular, some tasks intended to induce low CL turned out to be

unexpectedly difficult, effectively eliciting high CL, while others

were so easy that it is questionable whether they imposed any

cognitive demand at all.

To further emphasize the most distinct cognitive states, we

also filtered the remaining data within each label interval. For

intervals of instances labeled as rest, we retained only the final

two-thirds of each interval, based on the assumption that partici-

pants would be most physiologically relaxed toward the end of

each interval labeled rest. Immediately after completing a cogni-

tively demanding task, the body may require some time to “cool

down”, during which residual physiological activity – such as

elevated facial temperature – could still be present. By focusing

on the latter portion of the interval, we aimed to capture a more

accurate representation of the true resting state. Similarly, for

instances labeled as high CL, we also retained only the final two-

thirds of each interval, based on the assumption that CL tends to

accumulate toward the end of a demanding task. This selection

strategy was intended to maximize the contrast between rest

and high load conditions by focusing on the time points most

representative of those states.

4 Methodology
4.1 Calculating Features
As previously mentioned, we extracted features directly from the

raw thermal images. Using the pretrained keypoint detector [11],

we obtained coordinates for five facial keypoints, using which we

then defined ROIs corresponding to specific facial areas for each

3-second window. ROIs were shaped as rectangles, positioned

based on keypoint coordinates. Their size and placement were

dynamically defined according to the distance between the eyes,

reducing issues such as capturing inconsistent facial areas due to

variations in distance from the camera or head movements. This

approach was considered appropriate, because the study was

conducted in a controlled laboratory environment with minimal

variation in posture and setup. Additionally, a visual inspection

of the extracted ROIs confirmed that they were well aligned.

Next, we computed the average pixel temperature for each

ROI, as each pixel in a thermal image directly reflects a tempera-

ture value. This process yielded four primary features – one for

each of the predefined ROIs (nose, forehead, left eye, and right

eye). To capture relative temperature differences between these

regions, we then computed the pairwise differences between all

four average temperatures. This resulted in an additional six fea-

tures, representing the thermal contrasts between different facial

areas. Finally, to capture potential temporal trends in tempera-

ture changes, we introduced two additional temporal features.

Specifically, for each 3-second window, we computed the tem-

perature difference between the first and last frame for two key

regions of interest: the nose and the forehead. These temporal

features aimed to reflect short-term thermal dynamics that may

be indicative of CL fluctuations. In total, this process resulted in

12 features per instance: 4 average ROI temperatures, 6 pairwise

temperature differences, and 2 temporal difference features.

Finally, we applied personalized normalization to account for

individual differences in baseline physiological responses. While

there is considerable variability across participants, the varia-

tions within each individual are more informative for detecting

changes in CL. To address this, we standardized all feature values

using z-score normalization per participant, transforming each

instance based on that individual’s mean and standard deviation.

Table 1: Class distribution

Label Count

Rest 1626

High Load 1548

This normalization helped reduce inter-subject variability while

preserving intra-subject dynamics, enabling a more robust learn-

ing of patterns related to CL. Following this step, we proceeded

with the machine learning experiments using the described set

of features.

4.2 Experiments
After completing the data preparation steps outlined in Sections

3.2 and 4.1, we proceeded with the machine learning experiments.

At this stage, the dataset consisted of two balanced classes: rest

and high CL, as shown in Table 1. The models were trained on a

total of 3174 instances, derived from 18 participants.

In our experiments, we employed a diverse set of machine

learningmodels, including Random Forest (RF), ExtremeGradient

Boosting (XGB), Stochastic Gradient Descent (SGD), k-Nearest

Neighbors (KNN), and Light Gradient Boosting Machine (GBM).

As a baseline, we included a majority classifier, which always

predicted the most frequent class in the training data of each

fold. Each model was trained and evaluated using its optimized

hyperparameters, which were determined through a grid search

strategy applied on training data on each Leave-One-Subject-Out

(LOSO) iteration aimed at maximizing classification accuracy.

To ensure the robustness and generalizability of the results,

we adopted a LOSO cross-validation approach, in which each par-

ticipant served as a test subject exactly once while the remaining

participants were used for training. This evaluation strategy is

well-suited for personalized and physiological data, where inter-

subject variability is high. To ensure a comprehensive evaluation

of model performance, we did not rely solely on a single metric.

Instead, we incorporated a range of evaluation metrics, including

accuracy and F1-score. This multi-metric approach allowed us

to better capture different aspects of model performance. The

results of these experiments are presented in the subsequent

section.

5 Results
Asmentioned in the previous sections, we trained and evaluated a

variety of models, and evaluated them using the LOSO. Summary

of the results can be seen in Table 2, where both accuracy and F1-

score are reported as averages across all subject folds, providing

an overall measure of model performance and generalization

performance.

The results indicate that the best-performing algorithm was

SGD, achieving an accuracy of 0.64± 0.16, which represents a 0.13

improvement over the baseline majority classifier accuracy of

0.51 ± 0.00. In addition to its accuracy, SGD also achieved a high

F1-score, suggesting that the model performs well in predicting

both classes in a balanced manner. However, SGD also has the

highest variance (± 0.16), which indicates less stability across

subjects. Overall, all evaluated models outperformed the majority

class baseline. Moreover, the accuracy scores across all tested

models were relatively similar, indicating consistent performance

regardless of the specific algorithm used. Performance of GBM,
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Table 2: Accuracy and F1-score of trained models compared to the majority class classifier

Classifier Model Accuracy Model F1 Majority Class Accuracy Majority Class F1

RF 0.62 ± 0.13 0.62 ± 0.13 0.51 ± 0.00 0.34 ± 0.04

XGB 0.62 ± 0.14 0.62 ± 0.14 0.51 ± 0.00 0.34 ± 0.04

SGD 0.64 ± 0.16 0.63 ± 0.16 0.51 ± 0.00 0.34 ± 0.04
KNN 0.60 ± 0.10 0.60 ± 0.10 0.51 ± 0.00 0.34 ± 0.04

GBM 0.63 ± 0.10 0.60 ± 0.11 0.51 ± 0.00 0.34 ± 0.04

Figure 2: SGD vs. baseline majority classifier by subject.

RF and XGB was very similar, although somewhat behind the

performance of the SGD.

Looking at per-subject results in more detail in Figure 2, we

see that for most subjects, the SGD classifier outperformed the

majority baseline classifier. SGD achieved its best performance

on subjects 13, 11, and 15, with accuracies exceeding 0.80. There

is also considerable variation across individuals, which aligns

with the high variance reported in Table 2. This variability may

indicate the presence of subject-specific patterns, label noise, or

data that is inherently more challenging to learn.

6 Conclusion
This study demonstrates the potential of low-cost consumer ther-

mal imaging as a viable, non-invasive method for estimating

CL. By leveraging features extracted from key facial regions

and applying various machine learning algorithms, we achieved

promising results in distinguishing between rest and high load

cognitive states. Among the tested models, SGD achieved the

best average performance, though with notable inter-subject vari-

ability. These findings highlight both the strengths and current

limitations of thermal-based CL estimation. While the results

support the feasibility of using affordable thermal cameras in

real-world applications, future work should explore strategies

such as more sophisticated personalization to enhance generaliza-

tion across individuals, deep learning, etc. This line of research

points toward usefulness of cognitive monitoring in practical

settings such as education, workplace safety, and adaptive user

interfaces.
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Abstract
Missing Not at Random (MNAR) data remains one of the most

difficult challenges in statistical analysis and machine learning.

Despite the widespread availability of advanced imputation meth-

ods, most research continues to focus on Missing Completely

at Random (MCAR) and partially on Missing at Random (MAR)

scenarios. This paper provides a critical overview of existing ap-

proaches for MNAR imputation, methods for simulating MNAR

data, and the limitations of current evaluation practices. We

highlight the lack of standardized benchmarks, unrealistic miss-

ingness rates, and insufficient coverage of MNAR conditions in

empirical studies. Finally, we propose a suitable framework for

comprehensive testing of design principles, enabling robust and

reproducible evaluation of imputation methods across mecha-

nisms and missingness rates.

Keywords
Missing data, MNAR, data imputation, missingness mechanisms,

data generation, machine learning, evaluation framework.

1 Introduction
Missing data is a pervasive challenge across various domains,

from clinical diagnostics and bioinformatics to finance, sensor

networks, and social sciences. Missing, damaged, or unrecorded

data entries can negatively affect the accuracy of statistical anal-

ysis and machine learning models. They reduce predictive power,

introduce bias, and often create incompatibilities with algorithms

requiring complete inputs [8]. The impact is especially important

in critical areas like healthcare decision support, where unreli-

able data or incorrect interpretation can lead to harmful conclu-

sions.[14, 2].

A primary difficulty in handling missing data is understanding

the underlying missingness mechanism. According to the taxon-

omy of Little and Rubin [10], We have three types of missing-

ness: Missing Completely at Random (MCAR), Missing at Random
(MAR), and Missing Not at Random (MNAR).

To formally describe the MCAR, MAR, and MNAR mecha-

nisms, we first define the following notation, as per [9, 19]:

𝑋 : the complete data matrix, which consists of two parts,

with 𝑋𝑜𝑏𝑠 being the observed and 𝑋𝑚𝑖𝑠 the missing part

of the data.

𝑅: an indicator matrix of the same dimensions as 𝑋 , where

𝑅𝑖 𝑗 = 1 if the value 𝑋𝑖 𝑗 is missing, and 𝑅𝑖 𝑗 = 0 if it is

observed.

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this

work must be honored. For all other uses, contact the owner/author(s).

Information Society 2025, Ljubljana, Slovenia
© 2025 Copyright held by the owner/author(s).

https://doi.org/10.70314/is.2025.skui.0957

𝜓 : a parameter or set of parameters that govern the missing-

ness process.

• Data is MCAR if the probability of a value being missing

is completely independent of both the observed and the

unobserved data. The missingness is unrelated to the data

itself — it is a purely random (Eq. 1) as the missingness

pattern (𝑅) depends neither on the observed data (𝑋𝑜𝑏𝑠 )

nor on the missing data (𝑋𝑚𝑖𝑠 ).

𝑃 (𝑅 |𝑋𝑜𝑏𝑠 , 𝑋𝑚𝑖𝑠 ,𝜓 ) = 𝑃 (𝑅 |𝜓 ) (1)

• Data isMAR if the probability of a value being missing de-

pends only on the observed data, not on the missing data

itself (Eq. 2). This means that the missingness could be pre-

dicted from available (non-missing) data. The probability

of the missingness pattern (𝑅) is conditionally indepen-

dent of the actual missing values (𝑋𝑚𝑖𝑠 ) once the observed

values (𝑋𝑜𝑏𝑠 ) are taken into account.

𝑃 (𝑅 |𝑋𝑜𝑏𝑠 , 𝑋𝑚𝑖𝑠 ,𝜓 ) = 𝑃 (𝑅 |𝑋𝑜𝑏𝑠 ,𝜓 ) (2)

• Data is MNAR if the probability of a value being missing

depends on some unobserved (missing) value itself, even

after accounting for all the observed data (Eq. 3). In this

case (𝑋𝑚𝑖𝑠 ) can also include latent features, unobserved

for all instances. This is the most complex scenario, as the

missingness pattern itself is informative. The probability of

the missingness pattern (𝑅) is therefore dependent on the

missing values (𝑋𝑚𝑖𝑠 ) in a way that cannot be explained

by the observed values (𝑋𝑜𝑏𝑠 ).

𝑃 (𝑅 |𝑋𝑜𝑏𝑠 , 𝑋𝑚𝑖𝑠 ,𝜓 ) (3)

While MCAR and MAR have been extensively studied, MNAR

remains the most difficult and least explored scenario, precisely

because the missingness itself carries information about the data.

For example, high-income individuals may systematically with-

hold reporting their wealth, or patients with severe conditions

may drop out of longitudinal studies. In both cases, the very act

of non-response encodes meaningful but hidden signals.

The prevalent imputation (replacing missing values) research

has focused on MCAR and MAR settings, where assumptions

about independence or conditional dependence simplify method-

ological development and evaluation [14, 23, 13]. In contrast,

MNAR scenarios pose a dual challenge: not only is the miss-

ing information inherently dependent on unobserved values,

but there are also very few benchmark datasets that explicitly

model or annotate MNAR mechanisms. Consequently, evalua-

tion standards remain incomplete. Reported missingness rates

often underestimate or ignore MNAR effects, and even sophis-

ticated models, such as generative adversarial networks [7, 24],

graph neural approaches [25], or transformer-based imputers

[3], rarely demonstrate systematic robustness in MNAR condi-

tions. Recent works [11, 4] have shown the potential of ensemble

or meta-imputation strategies, which combine diverse imputers
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into robust pipelines. However, these frameworks are also mostly

validated under MCAR or MAR assumptions.

In this paper, we take a critical perspective on the current

state of missing data research, specifically focusing on MNAR.

We argue that three gaps must be addressed: (i) the lack of effec-

tive imputation techniques designed specifically for MNAR, as

current methods are limited in scope and seldom used in practice;

(ii) the deficiency of datasets and generators that can faithfully

represent MNAR patterns; and (iii) the insufficiency of reported

missingness rates. To bridge these gaps, we outline the vision

and design principles of a comprehensive framework for MNAR

research that integrates data generation, imputation, and evalu-

ation under standardized conditions. Such a framework would

enable more robust comparisons of existing methods and guide

the development of novel techniques tailored to the inherent

challenges of MNAR.

The remainder of this paper is organized as follows. Section 2

reviews existing imputation approaches and discusses their ap-

plicability to MNAR. Section 3 examines methodologies for simu-

lating and generating MNAR data, highlighting their limitations.

Section 4 critiques how missingness is reported and motivates

the need for standardized benchmarks. Finally, Section 5 presents

our vision for a unified MNAR research framework and outlines

open challenges for the community.

2 Imputation Methods for MNAR Data
A wide range of imputation techniques has been proposed in the

literature, from simple statistical to advanced deep generative

models. While these methods have demonstrated effectiveness

under Missing Completely at Random (MCAR) or Missing at

Random (MAR) assumptions, their suitability for Missing Not at

Random (MNAR) scenarios remains highly questionable. This

section reviews the main categories of imputation techniques

and highlights their limitations when faced with MNAR data.

While it is often stated that there are almost no methods tai-

lored for MNAR, several strands of work do exist . . . However,

these remain underutilized and rarely integrated into mainstream

imputation pipelines.

2.1 Statistical Imputation Methods
Statistical techniques such as mean, median, mode, or regression-

based imputations are simple and computationally efficient but

they mostly rely on strong assumptions about the independence

or conditional dependence of missingness [8, 27]. These assump-

tions rarely hold under MNAR, where the missingness mecha-

nism is informative itself. For example, imputing systematically

underreported values (e.g., income, clinical severity) with central-

tendency statistics introduces bias and distorts the true distribu-

tion. Maximum likelihood and Bayesian approaches attempt to

capture uncertainty, but they typically assume that the missing-

ness process can be ignored or is fully modeled by observed data

[10], which is not the case for MNAR.

2.2 Machine Learning-Based Approaches
Machine learning methods, such as 𝑘-nearest neighbors (KNN)

[14], matrix factorization [20], decision trees [21], and support

vector machines (SVMs) [6], utilize feature dependencies to ad-

dress missing data entries. While more flexible than statistical

methods, they fail when the missingness depends on unobserved

or latent variables. For instance, if severely ill patients system-

atically omit follow-up surveys, no observed features can ex-

plain this absence, and machine learning based imputers cannot

recover the missing structure without explicitly modeling the

mechanism.

2.3 Deep Learning Approaches
Deep generative models have significantly advanced imputation

research. Variational Autoencoders (VAEs) [2] and Generative

Adversarial Networks (GANs) [23, 7, 24] are capable of learn-

ing complex distributions and have shown robustness to high

missingness rates. However, their performance in the context

of MNAR conditions is not assured. While some frameworks,

such as MisGAN, explicitly attempt to learn the missingness

mask distribution alongside the data [7], they often rely on ap-

proximations that do not generalize across domains. Similarly,

diffusion-based models [22, 26] and graph-based imputers [25]

extend coverage to structured data but rarely test systematically

against MNAR conditions. Transformers, such as ReMasker [3],

provide context-aware imputations, but again, their evaluations

are mostly limited to MCAR and MAR scenarios.

2.4 Ensemble Approaches
Recent efforts highlight the potential of combining multiple im-

puters in ensemble or meta-learning frameworks [11, 4]. Such

methods leverage complementary strengths of diverse imputers

and often achieve more stable performance across heterogeneous

datasets. However, existing ensemble frameworks have been

validated primarily under MCAR assumptions, and their abil-

ity to handle MNAR remains largely unexplored. Recent work

has also explored meta-imputation strategies, such as the Meta-

Imputation Balanced (MIB) framework, which combines multiple

base imputers in a supervised setting [1].

To synthesize the discussion above, Table 1 summarizes the

main categories of imputation approaches, their representative

methods, applicability to missingness mechanisms, and key ref-

erences.

3 Generation of MNAR Data
A persistent challenge in missing data research is the lack of reli-

able and reproducible benchmarks for handling MNAR scenarios.

While MCAR and MAR can be easily simulated by random mask-

ing or conditioning on observed features, MNAR requires mask-

ing rules that depend on unobserved or latent variables, which

makes the generation process more challenging. Consequently,

most experimental studies rely on oversimplified masking strate-

gies that do not capture the complexity of real-world MNAR

mechanisms [18, 5].

3.1 The Role of Data Amputation
Deliberately injecting missing values into fully complete datasets,

referred to as data amputation, plays a crucial role in evaluating

imputation techniques. However, until recently, implementations

of amputation were highly heterogeneous and often insufficiently

documented, preventing fair comparisons across studies [18].

This problem is particularly acute for MNAR, where even slight

differences in implementation can lead to very different conclu-

sions.
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Table 1: Comparison of Imputation Approaches from Literature

Approach Representative Methods Missingness Types Addressed Representative References

Traditional Statistical
Mean, Median, Mode, Regression-

based, Maximum Likelihood,

Bayesian Approaches

MCAR only (rarely MAR)
Schafer & Graham [27], Little & Ru-

bin [10], Lin & Tsai [8]

Machine Learning KNN, Matrix Factorization, Deci-

sion Trees, SVM

MCAR, partially MAR
Murti et al. [14], Lee et al. [20], Song

& Lu [21], Feng et al. [6]

Deep Learning VAEs, GANs, Diffusion Models,

Graph-based Models, Transformers

MCAR, MAR (limited MNAR)

Collier et al. [2], Yoon et al. [23, 24],

Li et al. [7], Du et al. [3], Tashiro et

al. [22], Zheng & Charoenphakdee

[26], You et al. [25]

Meta-Learning / Ensembles Meta Learning, Meta-Regressio,

MIB Frameworkn

MCAR, partially MAR; potential for

MNAR

Liu et al. [11], Ellington et al. [4],

Azad et al. [1]

3.2 Artificial MNAR Generation Strategies
The most common way to simulate MNAR is by masking val-

ues as a function of their own magnitude or distribution. For

instance, removing a feature’s highest or lowest values mim-

ics non-disclosure of extreme outcomes (e.g., very high glucose

levels) [18]. Stochastic variants extend this idea by assigning

missingness probabilities proportional to the unobserved value

itself, enabling flexible control over the intensity of missing-

ness [16]. While intuitive, such strategies remain oversimplified,

often restricted to univariate rules that fail to capture the multi-

dimensional dependencies of real domains [5].

Recent work has proposed standardized libraries for data am-

putation to address reproducibility concerns. The mdatagen pack-
age provides a broad set of implementations forMCAR,MAR, and

MNAR, supporting univariate and multivariate scenarios [12]. In

particular, it incorporates advanced MNAR mechanisms such as

Missingness Based on Own Values (MBOV), Missingness Based

on Own and Unobserved Values (MBOUV), and Missingness

Based on Intra-Relations (MBIR) [15]. These implementations

move beyond ad hoc thresholding by systematically encoding

missingness processes and offering reproducible pipelines. In ad-

dition, mdatagen includes visualization and evaluation modules,

allowing researchers to inspect missingness patterns and assess

their impact on imputation performance.

Together, these synthetic and standardized approaches form

the current toolkit for MNAR data generation. However, despite

their usefulness, they remain abstractions of real-world processes

and should ideally be complemented by domain-informed simu-

lations.

3.3 Domain-Inspired Simulation
Beyond standardized libraries, domain knowledge remains crit-

ical for realistic MNAR generation. In healthcare, dropout is

often linked to disease severity, side effects, or socioeconomic

constraints. In socioeconomic surveys, non-response may be

strongly correlated with privacy-sensitive attributes such as in-

come or debt. Encoding these mechanisms requires integrating

causal assumptions with probabilistic masking rules [17]. How-

ever, such domain-specific approaches are difficult to generalize,

limiting their utility as benchmarks.

4 Toward a Unified Framework for MNAR
Research

Two key insights emerge from the previous sections: (i) current

imputation methods are not explicitly designed for MNAR, and

(ii) the lack of realistic MNAR generators inhibits effective evalu-

ation. To address these gaps, we anticipate a unified framework

integrating generation, imputation, and evaluation of MNAR data

under standardized and reproducible conditions.

4.1 Design Principles
A comprehensive MNAR framework should have the following

principles:

• Synthetic realism:Data generators should simulateMNAR

scenarios that mirror real-world domains (e.g., systematic

dropout in healthcare, self-censoring in socio-economic

data), either by extending existing functionality (e.g., mdata-

gen [12]) or by incorporating custom plug-in modules. To

balance interpretability with scalability, both threshold-

based rules and learned mechanisms should be supported.

• Comprehensive evaluation:Benchmarksmust test across

all three missingness mechanisms (MCAR, MAR, MNAR)

and a full spectrum of missingness rates.

• Cross-domain applicability:The framework should sup-

port diverse data types (tabular, sequential, multimodal)

and allow integration of domain knowledge for context-

specific MNAR simulation.

4.2 Proposed Framework Components
We propose that a unified MNAR framework should consist of

three interdependent modules:

(1) MNAR Data Generators: Domain-informed and prob-

abilistic tools for simulating missingness patterns that

depend on latent or unobserved values, using existing

libraries ([12] or incorporating custom plug-in functions.

(2) Imputation Engines: A modular interface with plug-

in adapters for existing methods that support statistical,

machine learning, deep learning, and ensemble methods

[14, 23, 1]. By isolating imputers within a common frame-

work, researchers can test their robustness under con-

trolled MNAR scenarios.

(3) Evaluation Suite: Standardized protocols that combine di-

rect metrics (e.g., Mean Absolute Error (MAE), Root Mean

Squared Error (RMSE)) with indirect metrics (downstream

predictive performance, such as accurracy, RMSE/MAE, or

domain relevant metrics such as interpretability, reliability,

fairness, . . . ) [1].

4.3 Benefits and Impact
Developing such a framework would enable several advances:
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• Reproducibility: Common benchmarks and generators en-

sure that different imputation methods can be fairly com-

pared.

• Realism: Domain-specific MNAR mechanisms bring eval-

uations closer to real-world conditions, reducing the gap

between research and practice.

• Innovation: By exposing the weaknesses of existing meth-

ods under MNAR, the framework incentivizes the devel-

opment of mechanism-aware imputers.

• Generalization: Unified treatment of MCAR, MAR, and

MNAR encourages methods that adapt to unknown or

mixed missingness mechanisms without prior assump-

tions.

5 Conclusion
Missing data remains one of the most persistent challenges in

machine learning and statistical analysis. While decades of re-

search have produced numerous imputation techniques, ranging

from simple statistical estimators to deep generative models,

most methods have been designed and evaluated under the more

tractable MCAR and MAR mechanisms. In contrast, the most

realistic and challenging setting, MNAR, remains critically un-

derexplored.

Our review highlights three major gaps in the current state of

the field. First, existing imputation methods rarely model the de-

pendence of missingness on unobserved values, making them un-

suitable for MNAR scenarios. Second, generating realistic MNAR

data is crucial because most benchmarks use ad hoc or overly

simplistic masking strategies, which fail to capture the complex-

ity of real-world missingness. Third, evaluation standards remain

incomplete, with reported missingness rates often conflating

MCAR/MAR assumptions and failing MNAR realities. Together,

these shortcomings hinder fair comparisons and limit method-

ological innovation.

To address these challenges, we propose the vision and design

principles of a unified MNAR framework that integrates three

components: (i) data generators that are aware of mechanisms

and can create realistic MNAR patterns, (ii) modular imputation

engines that enable thorough testing of various methods, and

(iii) extensive evaluation suites that include direct metrics and

indirect metrics. Such a framework would provide reproducibility,

realism, and a strong foundation for developing next-generation

imputation techniques.

Future research should move toward principled, mechanism-

aware imputers and adopt standardized benchmarks for MNAR

generation and evaluation. To advance MNAR research, we need

more powerful algorithms and standardized tools and protocols

that enhance rigor and comparability in the field.
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Abstract 

We experimentally assessed the capabilities of two mainstream 

artificial intelligence chatbots, ChatGPT and DeepSeek, to 

support the multi-criteria decision-making process. Specifically, 

we focused on using the method DEX (Decision EXpert) and 

investigated their performance in all stages of DEX model 

development and utilization. The results indicate that these tools 

may substantially contribute in the difficult stages of collecting 

and structuring decision criteria, and collecting data about 

decision alternatives. However, at the current stage of 

development, the support for the whole multi-criteria decision-

making process is still lacking, mainly due to occasionally 

inconsistent and erroneous execution of methodological steps. 

Keywords 

Multi-criteria decision-making, decision analysis, large language 

models, method DEX (Decision EXpert), structuring decision 

criteria 

1 Introduction 

Multi-criteria decision-making (MCDM) [1] is an established 

approach to support decision-making in situations where it is 

necessary to consider multiple interrelated, and possibly 

conflicting criteria, and select the best solution based on the 

available alternatives and the preferences of the decision-maker. 

Traditionally, such models are developed in collaboration with 

decision makers and domain experts, who define the criteria, 

acquire decision makers’ preferences and formulate the 

corresponding evaluation rules. The model-development process 

is demanding, as it includes structuring the problem, formulating 

all the necessary model components (such as decision 

preferences or rules) for evaluating decision alternatives, and 

analyzing the results. 

With the development and success of generative artificial 

intelligence, especially large language models (LLMs) [2], the 

question arises as to how these models can support or perhaps 

partially automate decision-making processes. To this end, we 

explored the capabilities of recent mainstream LLM-based 

chatbots, specifically ChatGPT and DeepSeek, for supporting the 

MCDM process. We specifically focused on using the method 

DEX (Decision EXpert) [3], with which we have extensive 

experience, spanning multiple decades [4], in the roles of 

decision makers, decision analysts, and teachers. DEX is a full-

aggregation [5] multi-criteria decision modelling method, which 

proceeds by making an explicit decision model. DEX uses 

qualitative (symbolic) variables to represent decision criteria, 

and decision rules to represent decision makers’ preferences. 

Variables (attributes) are structured hierarchically, representing 

the decomposition of the decision problem into smaller, easier to 

handle subproblems. Traditionally, DEX models are developed 

using software such as DEXiWin [6], which helps the user to 

interactively construct a DEX model and use it to evaluate and 

analyze decision alternatives. 

The reported research is of exploratory nature. We ran 

ChatGPT and DeepSeek multiple times over the last six months, 

either individually, as a group or in classrooms with students.  

Typically, we first formulated some hypothetical decision 

problem and then guided the chatbot through the main stages of 

the MCDM process: 

A. Model development stages: 

1. Acquiring criteria 

2. Definition of attributes (variables representing criteria) 

3. Structuring attributes 

4. Preference modeling (formulating decision rules) 

B. Model utilization stages: 

5. Definition of decision alternatives 

6. Evaluation of alternatives 

7. Explaining the results of evaluation 

8. Analysis of alternatives 

In doing this, we observed the responses generated by the LLMs 

and assessed them from the viewpoint of skilled decision analysts. 

The main goal was not to solve specific real-life decision 

problems, but to identify LLMs’ strengths and weaknesses that 

may substantially affect the MCDM process. 

Despite focusing on DEX, many of our findings are also 

applicable to other hierarchical full-aggregation MCDM 

methods [1, 5], such as AHP, MAUT/MAVT, and MACBETH, 

which follow the same methodological stages, with slight 

differences in the representation of model components. 

In the following sections, we review the above-mentioned 

MCDM stages and describe our experience with each of them. 

Specifically, we illustrate the process with answers generated by 

ChatGPT-o3 and DeepSeek-V3. We considered a hypothetical 

personal decision problem of buying an electric-powered vehicle 
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(EV). The chatbots were run in parallel on June 6th, 2025, using 

similar prompts. Our assessments and comments are somewhat 

broader, based on some other use-cases, not presented here. 

2 Acquiring Criteria 

A MCDM model includes multiple criteria that capture essential 

aspects of decision alternatives. These criteria are used to 

evaluate and compare the alternatives in a structured way. 

Defining criteria usually requires a good knowledge of the 

decision problem and the decision maker’s goals. This step is 

usually one of the most difficult and may require consulting 

domain experts and/or relevant literature.  

We asked the chatbots: I am considering buying a new EV 

vehicle for up to 35000 EUR in Slovenia. Suggest criteria for 

evaluating such cars. 

Both ChatGPT and DeepSeek came out with an extensive and 

structured list of criteria. Table 1 shows the criteria suggested by 

DeepSeek. ChatGPT’s suggestions were similar, though they 

employed slightly different high-level categories, which also 

incorporated measurement units associated with each criterion.  

Table 1: EV cars: Criteria suggested by DeepSeek. 

Items 4–8 shortened due to space limitations. 
1. Range & Battery Efficiency 

• Real-world range (WLTP or EPA estimates) – Aim for at least 
300 km in mixed conditions. 

• Battery size (kWh) – Larger batteries offer more range but 
may increase cost. 

• Energy consumption (kWh/100 km) – Lower is better (e.g., 
14–18 kWh/100 km). 

2. Charging Speed & Compatibility 

• DC fast-charging capability (e.g., 50 kW, 100 kW, or higher). 

• AC charging speed (e.g., 7.4 kW, 11 kW, or 22 kW for 
home/work charging). 

• Charging port type (CCS Combo is standard in Europe). 
3. Performance & Driving Experience 

• Motor power (kW/HP) – Affects acceleration and highway 
performance. 

• Drivetrain (FWD, RWD, AWD) – AWD is better for Slovenia’s 
varied weather. 

• Top speed & acceleration (0–100 km/h time). 
4. Practicality & Usability: 

• Cargo space, Seating capacity, Ground clearance 
5. Price & Incentives 

• Purchase price, Slovenian EV incentives, Insurance & 
maintenance costs 

6. Technology & Features 

• Infotainment system, Driver assistance, Heat pump 
availability 

7. Availability & After-Sales Support 

• Local dealership & service network, Warranty 
8. Resale Value & Future-Proofing 

• Brand reputation, Software updates 

 

Let us immediately say that we consider this the most important 

single contribution of LLMs to MCDM modeling. We are not 

aware of any previous method that would allow identifying and 

structuring decision criteria in such a depth and detail in literally 

just a minute. Of course, for “serious” applications getting such 

a list does not take the burden off the user, who is still responsible 

for verifying the suggestions and checking the criteria for 

relevance and correctness. Nevertheless, this is a valuable 

starting point that can save days or even weeks of work. This 

stage does not depend on the MCDM method used, so other 

methods may benefit from using LLMs equally well. 

3 Definition of Attributes 

In this stage, the task is to define variables, called attributes, that 

represent criteria in a MCDM model. As most MCDM methods 

use numeric attributes, this stage is specific to DEX, which uses 

qualitative attributes. Therefore, this and the following stages 

require LLMs to “understand” the method used. While DEX is 

less widely known than methods such as AHP or MAUT, it is 

nonetheless used and valued in various applications. Anyway, we 

were somewhat surprised to find out that all consulted LLMs 

were familiar with DEX and reasonably capable of following its 

main methodological steps. In some steps, however, we had to 

specify additional requirements to obtain proper DEX model 

components. 

Generally, defining qualitative value scales of attributes was 

not too difficult for LLMs. Asking Suggest preferentially 

ordered value scales typically gives good suggestions for value 

scales, for example (DeepSeek): 

 

Purchase Price: High (>€34k) → Medium (€30k–34k) → Low (<€30k) 

Government Incentives: None → Moderate (€1k–3k) → High (>€3k) 

Insurance & Maintenance: Expensive → Moderate → Cheap 

 

Interestingly, in our first attempts at using LLMs, they were not 

fully aware of DEX specifics, such as that value scales should 

have a small number of values, preferentially ordered from “bad” 

to “good” [3]. After correcting LLMs a few times, they 

“remembered” and now suggest properly formulated value scales. 

 

 

Figure 1: DEX model structure generated by ChatGPT. 
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4 Structuring Attributes 

After acquiring the criteria and defining attributes, the next step 

is to structure attributes into a hierarchy (most often an ordinary 

tree). Following the previous stages, which already resulted in a 

well-organized criteria structure and proper definition of 

attributes, this stage looks quite easy for LLMs. Figure 1 shows 

a full DEX model structure as suggested by ChatGPT without 

any further instructions. In comparison, the DeepSeek’s 

suggestion (not shown here) was somewhat inferior. Also, it was 

generated only after we had instructed it that DEX requires 

“narrow” trees with only two to three descendants for each 

aggregate attribute. Anyway, we consider both structures 

appropriate and comparable to the achievements of the best 

university-level students. 

5 Decision Preferences and Decision Rules 

In DEX, decision maker’s preferences are represented by 

decision rules, organized in decision tables. For each aggregate 

attribute, the user is asked to investigate all combinations of 

lower-level attribute values and assess the corresponding 

outcomes. Depending on the number of aggregate attributes, this 

might be a laborious task, but can be usually carried out using 

software such DEXiWin with not too much hassle. LLMs are 

also capable of suggesting perfectly valid decision tables, as 

illustrated in Table 2, which suggest the values of Purchase-Cost 

depending on Net-Price-After-Subsidy and Registration-Fee.  

Table 2: Decision table for Purchase-Cost (ChatGPT). 
Net-Price-After-
Subsidy ▼ / 
Registration-Fee ► 

very-low 
(0 .5 %) 

low 
(1 %) 

medium 
(1–2 %) 

high 
( > 2 %) 

very-low (≤ 25 k €) very-low low low medium 

low (25–30 k €) low low medium medium 

medium (30–33 k €) medium medium medium high 

high (33–35 k €) high high high high 

 

From the DEX perspective, it is important to remark that Table 2 

is complete (addressing all possible combinations of input 

values) and preferentially consistent (increasing input values 

result in increasing outputs). Initially, these requirements were 

not obvious to LLMs, and we had to request them explicitly. 

After further use, LLMs now generate appropriate rules by 

themselves. 

However, it is important to emphasize an essential issue. 

Decision making is considered a subjective process, and 

decisions should reflect individual decision-makers’ preferences. 

Using LLMs, we only get preferences, generalized from many 

documents. In order to impose our own preferences, we should 

(1) carefully check LLMs’ suggestions and (2) request 

modifications, if necessary. According to our experience, this is 

possible by formulating prompts such as “increase the 

importance of some attribute” or “alternatives exceeding some 

value of some attribute are unacceptable”. Nevertheless, this 

requires focus, a good understanding of the goals, and perpetual 

verification of the results. 

6 Identification of Decision Alternatives 

The goal of this stage is to identify decision alternatives and 

describe them in terms of values, assigned to input attributes of 

the model. This is another stage in which LLMs excel due to their 

ability to act like agents: autonomously collecting relevant data 

from external sources. In this case, the LLMs constructed lists of 

actual EV cars, consulting sources such as avto.net, citroen.si, 

reuters.com, and ev-database.org: 

 

MG 4 Comfort 64 kWh – €31 490 → €24 290 after Eko-sklad 

Citroën ë-C4 54 kWh – €31 900 → €24 700 

Opel Corsa Electric 54 kWh – from €28 490 → €21 290 

BYD Dolphin Surf Boost 43 kWh – €22 990 → €15 790* 

Fiat 500e 42 kWh – promo €22 290 (price already after bonus) 

 

It is important to understand that alternatives should be defined 

after developing the model. This allows the LLM to search for 

and collect the data needed to evaluate the alternatives. 

7 Evaluation of Alternatives 

In this stage, the five cars have been evaluated by the LLMs. All 

were evaluated as GOOD, except Fiat 500e, which was evaluated 

as ADEQUATE. Table 3 illustrates the output generated by 

ChatGPT, showing the evaluation results of the two best-ranked 

cars. In addition to the overall evaluation (EV-SUITABILITY), 

the output includes evaluations achieved at the three main 

branches of the model, together with a brief notification of 

reasons for such evaluations. This is an appropriate summary of 

evaluation results. 

Table 3: Evaluation of the two best-ranked EV cars 

(ChatGPT). 
Model MG 4 Comfort 64 Citroën ë-C4 

Cost-

Ownership 

good (low 

purchase-

cost; 

running-cost 

low) 

good (very-low 

purchase-cost 

& running-cost) 

Capability good (435 km 

WLTP, 140 

kW DC, 363 

L boot) 

adequate–

good 

(416 km WLTP, 

100 kW DC, 

380 L boot) 

Responsibility good (★ 5 Euro-

NCAP, heat-

pump 

optional, V2L 

3.6 kW) 

good (★ 4 Euro-

NCAP, heat-

pump std., 

forthcoming 

V2L) 

EV-

SUITABILITY 

GOOD GOOD 

Rank 1 2 

8 Explaining the Results of Evaluation 

In MCDM, it is essential to understand the evaluation method 

and explain the reasons underlying evaluation results. This is 

how ChatGPT explains the evaluation method: 

 

1. Leaf values were taken from the most recent Slovene price-lists or Europe-

wide tech sheets (all ≤ €35 000 trims). 

2. Running-costs use your 30 000 km/year mileage and the Q1-2025 average 

household tariff of €0.166 kWh-1. 

3. Each quantitative item was mapped to the ordered value-scales we set 

earlier; the three rule-tables (“purchase-cost”, “running-cost”, “economy”) 

were then fired, and all higher nodes were combined with simple equal 

weights (0.4 Cost-Ownership | 0.4 Capability | 0.2 Responsibility). 
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4. Scores were coded excellent = 4, good = 3, adequate = 2, poor = 1; the 

root class was chosen by rounding the weighted mean to the nearest 

integer. 

 

At first, everything seems to make sense. However, careful 

reading reveals the disturbing fact that different decision rules 

from those agreed upon in the previous stages were used to 

evaluate alternatives. Unfortunately, this often happens with 

LLMs, which tend to “forget” about the previous MCDM stages. 

It is not uncommon that attributes, their value scales and decision 

rules change from prompt to prompt. This severely undermines 

the trust in using LLMs and makes the whole process uneasy: 

rather than focusing on solving the decision problem, the user is 

forced to meticulously check each and every step. Also, it is not 

uncommon to discover logical errors or even basic computational 

errors (often referred to as “hallucinations” [7]). In one of our 

sessions with ChatGPT, it displayed the evaluation formula 

 
(0.2×3)+(0.25×4)+(0.15×4)+(0.2×3)+(0.15×2)+(0.05×2)=3.15 

 

which looked convincing, but gave a hard-to-notice, but wrong 

result; the correct result is 3.2. 

9 Analysis of Alternatives 

The last stage of the MCDM process is the analysis of 

alternatives, which is aimed at exploring the decision space using 

methods such as what-if and sensitivity analysis. Without 

providing experimental evidence due to space restrictions, we 

can say that, in principle, LLMs are capable of performing such 

analyses, giving appropriate answers and explanations to 

questions such as: 

• Carry out sensitivity analysis for Citroën ë-C3 and MG4 

depending on buying price and operating costs. 

• What would have to change for Fiat 500e 42 to become a 

good EV vehicle? 

In most cases, results are correct and informative, particularly in 

cases when an explicit explanation is requested by the user. 

However, the issues of using inappropriate model components 

and making logical and computational errors were detected in 

this stage as well. 

10 Discussion 

LLMs are developing rapidly and becoming increasingly capable. 

They may evolve under the hood, so that even the same version 

can behave differently depending on recent updates or user-

specific factors. This makes them challenging for conducting a 

rigorous scientific research. They come without user manuals, 

requiring their users to explore their capabilities on their own. 

This study is an experimental attempt to understanding the 

capabilities of the current (2025) mainstream LLMs for 

supporting the MCDM process, with special emphasis on the 

DEX method. On this basis, we could not formulate firm 

conclusions, but were still able to make observations and 

formulate recommendations that might help MCDM 

practitioners. 

The single most important contribution of LLMs to MCDM 

is their ability to formulate a well-structured list of relevant 

criteria in the first stage (section 2). Nothing nearly as good was 

available so far for that difficult stage, where LLMs can now 

substantially boost the process and save a lot of effort and time. 

The second important contribution is the capability of LLMs to 

act as agents and collect data about alternatives (section 6) from 

various external resources. 

Considering individual MCDM stages, LLMs performance is 

quite impressive. They are capable of evaluating and analyzing 

alternatives, without much instruction. Furthermore, if asked, 

they can explain the used methods and obtained results quite well. 

In some cases, however, a seemingly convincing explanation 

may fall apart, revealing logical and computational errors.  

Considering the MCDM process as a whole, the performance 

of LLMs is not as favorable. In subsequent MCDM stages, LLMs 

tend to “change their mind” without notice, modifying the 

already established model components: attributes, value scales, 

and decision rules. Consequently, this requires a lot of attention 

from the user’s side, who has to check the outputs and 

perpetually remind the LLMs to remain consistent. This distracts 

the process and often carries the user away of the main decision-

making task. Also, we should warn that in the preference 

modelling stage (section 5), LLMs suggest generalized decision 

preferences that might substantially differ from the user’s 

subjective preferences, which need to be enforced explicitly. 

In summary, LLMs can substantially contribute to the 

definition of attributes and alternatives, but are unsuitable for 

carrying out the whole MCDM process due to possible 

inconsistent and erroneous executions of the MCDM method. 

We believe that, given the current state of LLM development, it 

is more convenient and safer to use specialized and trusted 

MCDM software, such as DEXiWin. Nevertheless, LLMs evolve 

fast and we may expect substantial improvements in the future. 
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Abstract
Constrained multiobjective optimisation problems (CMOPs) are

common in real-world optimisation. They often involve expen-

sive solution evaluations and, therefore, it is helpful to know

the best methods to solve them prior to actually solving them.

These problems also tend to be relatively difficult for algorithms

compared to the majority of test problems. This difficulty often

presents itself in the infeasible region, calling for a focus on the

constraint handling technique (CHT). The purpose of this work is

to select the best CHT for problems with difficult constraint func-

tions. This first involves the collection of a set of such problems.

CHT selection is then conducted using problem characterisation

and machine learning. The outcomes are positive in that predic-

tion achieved a high accuracy. Additionally, further insights are

provided into the features that describe CMOPs.

Keywords
constrainedmultiobjective optimisation, algorithm selection, prob-

lem selection, constraint handling techniques

1 Introduction
Real-world optimisation problems very often have multiple ob-

jectives and are subject to one or more constraints. This is the

domain of constrained multiobjective optimisation (CMO). These

problems are generally demanding to solve and have restrictions

to the available computational budget. These restrictions make it

all the more important to know the best method for solving the

problem prior to actually attempting to solve it. This calls for an

algorithm selection methodology.

One approach to algorithm selection, known as landscape-

aware selection, is to first characterise the problem before con-

ducting the algorithm run [2]. Characterisation involves the calcu-

lation of features used to describe the objectives and constraints,

as well as their interaction. This is done using a small set of sam-

pled solutions. Once the problem is characterised, knowledge of

similar problems can be used to determine the best approach to

solving it. This approach is taken in this study and applied to con-

straint handling techniques (CHTs). CHTs are methods designed

to guide optimisation algorithms in dealing with infeasible solu-

tions, by taking as input the problem constraints and candidate

solutions, and producing outputs that either repair, penalize, or

rank these solutions to balance feasibility with optimality.
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There are three primary contributions from this work, all

within the CMO domain. The first is related to the set of prob-

lems used to train the algorithm selection model. Real-world

optimisation problems are often difficult to solve, particularly

when they include constraints. The field requires a methodol-

ogy for selecting a subset of problems with difficult constraint

functions from the larger set of known problems. This is the first

contribution. The CHT selection methodology is then tested on

these problems. This methodology is the second contribution.

Here, problem characterisation and machine learning are used

to predict the best-performing CHT. The final contribution is a

set of insights into the features used. The decision tree output

by the CHT selection methodology provides significant insights

into both which features are useful and what the features reveal

about the problems.

The paper is further structured as follows. In Section 2, CMO

is introduced, providing the required background. Section 3 de-

scribes the two selection methodologies, as well as the validation

method used. Section 4 presents the experimental setup. In Sec-

tion 5, the results from the experiments are presented. Finally, in

Section 6, the work is summarised and future work is outlined.

2 Constrained Multiobjective Optimisation
Constrained multiobjective optimisation (CMO) involves the op-

timisation of two or more objective functions given one or more

constraint functions. The constraints may be of the equality or

inequality forms, however, in this study, only inequality con-

straints are considered. Such a CMO problem (CMOP) may be

formulated as follows:

minimize 𝑓𝑚 (x), 𝑚 = 1, . . . , 𝑀,

subject to 𝑔 𝑗 (x) ≤ 0, 𝑗 = 1, . . . , 𝐽 ,
(1)

where x = (𝑥1, . . . , 𝑥𝐷 ) ∈ R𝐷
is a 𝐷 dimensional solution vector,

𝑓𝑚 (x) are the objective functions, and 𝑔 𝑗 (x) the inequality con-
straint functions.𝑀 is the number of objectives and 𝐽 the number

of inequality constraints.

CMO requires an indicator for assessing the quality of the set of

optimal points. This indicator is ICMOP
. It was proposed in [19] to

handle quality assessment in the three following situations.When

no feasible solutions are found, it uses the minimum constraint

violation.When feasible solutions are found, but these are outside

of the region of interest (ROI) bound by the given reference point

(RP), the distance to the ROI is used. Finally, when solutions are

found within the ROI, it uses the hypervolume (HV). The HV

measures the portion of the objective space dominated by the

set of solutions relative to the RP. ICMOP
was proposed as a value

to be minimised. However, it is commonly maximised based on

the moarchiving package implementation [9]. On top of ICMOP
,

the maximised area under the runtime profile curve is used to
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measure the anytime performance of the algorithm [8]. Here, the

runtime profile is the proportion of performance targets attained

with respect to the evaluation number.

Many methodologies in CMO use an ICMOP
value with nor-

malised function values. For this, the function values of the prob-

lems’ optimal solution set are required. Together, these are known

as the Pareto front. The Pareto front may be obtained empirically,

through knowledge of the problems construction. Often this is

not possible, however, and, therefore, algorithm runs are used to

construct an approximation of the front.

In [4], there are 13 benchmark suites listed, consisting of 139

test problems. These test problems can be instantiated in vari-

ous numbers of dimensions and objectives. This then allows for

a substantially larger number of test problem instances to be

generated based on these 139 base test problems.

Problem characterisation is conducted using exploratory land-

scape analysis (ELA) features [16]. Work done in [1] has listed 80

such features for CMO. These come from three landscapes: the

multiobjective, violation and multiobjective-violation landscapes.

The features can be computed via sampling or random walks.

There are several constraint handling techniques. Four of

these are considered in our study. The first is the constrained-

domination principle (CDP), proposed along with the NSGA-II

algorithm [5]. This is a feasibility first approach, where feasible

solutions are preferred over infeasible ones. The penalty CHT is

a classic method and applies a penalty value to the objective val-

ues [20], either statically or dynamically. The Improved-Epsilon

(I-Epsilon) CHT was designed to work with the MOEA/D algo-

rithm [7]. It dynamically adjusts the 𝜖 value based on the number

of feasible solutions. Solutions are considered feasible if they

are less than the 𝜖 value. Finally, stochastic ranking (SR) uses a

probability value to switch between comparing solutions based

on objectives or constraints [18].

3 Methodology
This section presents the methodologies used in the study. First,

the methodology for selecting the hard test problems is presented,

followed by the methodology for selecting the appropriate CHT

and the means for testing the model.

3.1 Difficult Problem Selection
Testing the CHT selection methodology requires test problems.

Test problems with too easy constraint functions are less likely to

show differences among the CHTs, as algorithms will spend less

time dealing with infeasible solutions. More difficult constraint

functions, on the other hand, will force the algorithm to deal with

infeasible solutions longer and, therefore, give the CHTs time to

show their differences. Test problems with difficult constraint

functions are then desired for our testing.

As mentioned in Section 2, anytime performance is measured

using the area under the runtime profile curve (AUC), with the

maximised ICMOP
as the indicator. In this study, difficulty is deter-

mined based on the anytime performance of a set of algorithms,

A. Each of the algorithms is run on the problem 𝑅 times and

the average AUC is taken. This is to ensure robustness. It should

be noted that when recording the runs, an archive of all non-

dominated solutions is kept and the ICMOP
value from this archive

is recorded at each solution evaluation. The budget must also be

chosen, with budgets allowing algorithm convergence preferred.

The maximum average AUC is then used as the problem difficulty,

with lower values signifying harder problems. This is formulated

as follows:

Difficulty(𝑝) = 1 − max

𝑎∈A

(
1

𝑅

𝑅∑︁
𝑟=1

AUC(𝑝, 𝑎, 𝑟 )
)

(2)

This problem difficulty is calculated for each of the problems in

the set of problems, P.

Within the current selection, there will still be cases where all

CHTs perform roughly the same on the problem. These problems

are removed using statistical and practical threshold tests on the

final ICMOP
values from the 30 runs. Given a normal distribution

cannot be ensured in the 30 values from each of the algorithm

runs, the Kruskal-Wallis test is used [11]. It determines if indepen-

dent samples come from the same distribution. However, this still

leaves problems with no practical differences in their scores. To

filter these out, the mean scores are tested for if they vary more

or less than a small delta and those that vary less are removed.

Following the filtering out of problems where no meaningful

differences are observed, the N most difficult problems from

the remaining set are selected. This leaves one with a suite of

difficult problems upon which at least one of the algorithms from

A performs differently.

3.2 Constraint Handling Technique Selection
The general concept for CHT selection is as follows. First, a

machine learning model is trained using the features from each

problem in the training set. The labels are the best-performing

CHTs on each problem. At inference time, features are calculated

on the problem in question (note: this consumes a portion of

the available budget). These features are used as input to the

machine learning algorithm. The resulting model then predicts

the best-performing CHT for use during the run.

Each step will now be described in more detail. The first step is

to choose a base algorithm and a set of algorithm-relevant CHTs.

The preferred approach would be to select the most appropriate

algorithm for the problem to be solved at inference time.

The second step is generating the training data for themachine

learning model. First, the features for each of the problems in

the training set are gathered. The labels must then be computed,

which requires algorithm runs; 30 for each CHT. For this, the

budget must be selected carefully. The model, at inference, can be

expected to work well only if the budget is the same as it was in

training. The average final values from the 30 runs are then taken

for each CHT. In CMO, these are the average final ICMOP
values,

which are being maximised. The CHT with the highest value is

then selected as the best-performing CHT. This is used as the

label. Once this has been done for each of the problems in the

training set, the training data is complete.

The third step is to train the model. A decision tree is preferred

for its explainability properties. To enhance the explainability of

the model, the depth of the tree should be kept at a minimum.

Testing is described in the next subsection. Once complete, i.e.

trained with all training data, the model is available for inference.

3.3 Cross-Validation Testing
Testing the model involves a leave-one-problem-out cross-vali-

dation approach. Here, a problem is taken out of the training set

and left as the test problem. The model is then trained on the data

from the remaining problems in the training set. To predict the

best-performing CHT, the features from the test problem are used

as input to the model. The model then makes a prediction for the

best-performing CHT. This is compared to the actual result.
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The methodology makes allowances for when two or more

CHTs perform similarly well on the same problem. The predic-

tion made by the algorithm is then correct if it selects any of

these. Determining if two or more CHTs are statistically the same

is achieved through the use of a statistical test, which in this case

was the Mann-Whitney U test [15]. Again, this test was chosen

because a normal distribution cannot be ensured in the resulting

final values from the runs. The process is as follows. The CHT

with the best mean score is selected, then each of the other CHTs

are tested individually against the best-performing CHT to deter-

mine if they are equivalent, forming the set of best-performing

CHTs. If the predicted label is within this set, it is considered

correct. This process is conducted for all problems in the training

set and a final percentage of correct predictions is given.

4 Experimental Setup
In this section, the inputs to the methodologies are described,

along with the packages used throughout.

There are several inputs to the difficult problem selection

methodology. First, there is the set of problems, P. The dimen-

sions chosen were 2, 3, 5, 10 and 30, with only biobjective prob-

lems considered. This resulted in 375 problem instances. The

problems were translated from Matlab by hand or taken from

pymoo [3].

For A, i.e. the set of algorithms, the natural choice was to

choose a base algorithm with different constraint handling tech-

niques. The base algorithm chosen was NSGA-II [5]. This was

used for its versatility with regards to adding various CHTs. Re-

garding CHTs, CDP, penalty, I-Epsilon and SR were chosen for

their compatibility with NSGA-II. CDP was provided as default

with NSGA-II by pymoo. The others were implemented by hand.

The penalty value selected was a static 100, while the settings

for all others were the proposed defaults. 𝑅 was set at 30.

The number of difficult problems selected, N , was set at 20.

This number is adequate to test the methodology while still being

small enough to manage. The budget selected was the one to be

used throughout the study, i.e. 10,000 · 𝐷 . The delta value for

detecting practical differences was set at 0.001.

For the CHT selection methodology, the choice of training

problems was the set of difficult problems derived from the

setup above. The base algorithm and CHTs were the same as

those selected above. The model selected was a decision tree

(scikit-learn [17]). The tree depth parameter was the only pa-

rameter tuned. This tuning was done manually, decreasing from

10 to 3, until the performance began to reduce. Finally, the prob-

lem features used were the 80 features described in [1]. These

were calculated with a sample size of 1,000 ·𝐷 . The random walks

were simulated using these same samples.

5 Results
In this section, the results from carrying out the methodologies

are described. First, the construction of the set of difficult prob-

lems is discussed. Then, the experimental results are presented.

Finally, the resulting decision tree is discussed.

The difficulty of each problem was calculated as described in

Section 3. The results were heavily skewed towards the easy prob-

lem side. With the N parameter set to 20, that many problems

were selected. The difficulties of these ranged from 0.202 to 0.976.

The selected problems are listed in Table 1 in order of descend-

ing difficulty. They include 5, 10 and 30 dimensional problems,

with 2 and 3 dimensional problems clearly being easier to solve.

Table 1: The results from cross-validation testing using
the leave-one-problem out methodology. The first column
lists the test problems in order of difficulty (descending). 𝐷
indicates the dimensionality. All problems are biobjective.
Themodels were trained on all problems in the list, bar the
test problem in question. ‘Actual’ lists the best-performing
CHT labels, while the prediction column shows the pre-
dicted label. If the predicted label is in the actual labels list,
the prediction is considered correct. The CHT labels 0, 1, 2
and 3 are CDP, penalty, I-Epsilon and SR, respectively.

Problem 𝐷 Diffic. Pred. Actual Correct

DC2-DTLZ3 30 0.976 2 [2] Yes

DC2-DTLZ1 30 0.965 2 [2] Yes

DC2-DTLZ1 10 0.541 2 [2] Yes

DC2-DTLZ3 10 0.528 2 [2] Yes

NCTP7 30 0.489 0 [0, 3] Yes

NCTP8 10 0.355 3 [0, 1, 3] Yes

NCTP15 10 0.339 3 [0, 1, 3] Yes

DOC3 10 0.330 1 [0, 1, 3] Yes

NCTP2 10 0.284 3 [0, 1] No
NCTP1 10 0.279 3 [0, 1, 3] Yes

NCTP7 10 0.269 3 [0, 3] Yes

CTP6 30 0.257 1 [0, 1, 2] Yes

CTP8 30 0.249 0 [0, 1, 2] Yes

C1-DTLZ3 30 0.240 2 [0, 1, 2] Yes

DC2-DTLZ1 5 0.230 2 [2] Yes

CTP8 10 0.227 0 [0, 1, 2] Yes

DC2-DTLZ3 5 0.219 2 [2] Yes

DC3-DTLZ1 30 0.214 2 [2] Yes

NCTP17 10 0.203 0 [0, 1, 2] Yes

NCTP10 10 0.202 1 [0, 1, 2] Yes

samples = 5
value = [1, 4, 0, 0]

class = Penalty

samples = 3
value = [0, 0, 0, 3]

class = SR

samples = 4
value = [4, 0, 0, 0]

class = CDP

corr_cobj_max <= 0.62
samples = 8

value = [1, 4, 0, 3]
class = Penalty

samples = 8
value = [0, 0, 8, 0]
class = I-Epsilon

True  

lnd_avg_rws <= 0.19
samples = 12

value = [5, 4, 0, 3]
class = CDP

  False

f_range_coeff <= 10.96
samples = 20

value = [5, 4, 8, 3]
class = I-Epsilon

Figure 1: The decision tree built on all the training data. It is
used to predict the four CHTs. The indices of the values in
the value lists, indicating the number of instances, signify
CDP, penalty, I-Epsilon and SR, respectively.

The problems come from the following suites: DC-DTLZ [13],

NCTP [12], DOC [14], CTP [6] and C-DTLZ [10].

Table 1 additionally shows the results from the cross-validation

testing phase of the experiments. As described in Section 3, each

problem was given its turn as the test problem, while the others

acted as training problems. For 95% of these, the model predicted

correctly from the set of actual best-performing CHTs.
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Figure 1 shows the decision tree that resulted from training on

all of the available data. As it can be seen, the decision tree leaf

nodes are nearly pure, meaning it achieved near 100% accuracy

on the training data. Due to its high accuracy on the test data

and the low tree depth, this is not believed to be overfit.

Only 3 of the 80 supplied features were included in the model,

indicating their importance in identifying appropriate CHTs.

The first of these, separating out I-Epsilon, was f_range_coeff

(difference between the maximum and minimum of the absolute

value of the linear regression model coefficients, where the model

is fitted between the decision variables and the unconstrained

ranks). This is a multiobjective landscape feature, focusing on

variable scaling. The second feature, separating out CDP, was

lnd_avg_rws (average proportion of locally non-dominated solu-

tions in the neighbourhood). This is a multiobjective-violation

landscape feature, focusing on evolvability, i.e. the degree to

which the problem landscape facilitates evolutionary improve-

ment. The final feature, distinguishing between penalty and SR,

was corr_cobj_max (the maximum of the constraints and objec-

tives correlation). This is also a multiobjective-violation land-

scape feature, focusing on evolvability. It should be noted that

the features are not all related to the violation landscape, but also

deal with the objective functions.

6 Conclusion
In this study, the focus was on the needs of real-world CMOPs.

These problems are often difficult for algorithms to solve and

require expensive solution evaluations. Given the cost of these

evaluations, it is helpful to know the best method for solving

the problem prior to actually solving it. To address this, the

study focused on selecting the most appropriate CHT, a crucial

component of any algorithm operating in CMO. For this selection

task, it was critical to test on problems with difficult constraint

functions. These problems elicit the most variation among CHTs.

The proposition was made for a methodology that selects

problems with difficult constraint functions from a larger set,

with the end goal of conducting CHT selection. This methodology

involved first collecting a large set of CMOPs, then running a

set of algorithms on them to determine their difficulty. Problems

that were easy to solve or showed no variation in algorithm

performance were discarded, as they provide no value in future

CHT selection tasks. The methodology finally produced a set of

N problems.

This set of difficult problems was used in the second methodol-

ogy proposed, i.e. selecting CHTs using problem characterisation

and machine learning. Four CHTs were chosen and added to the

NSGA-II algorithm. These were CDP, penalty, I-Epsilon and SR.

The goal of the selection task was to select the best-performing

CHT on a given problem, noting that several CHTs can perform

best. The methodology was evaluated using cross-validation,

with the leave-one-problem-out method. The findings from test-

ing were positive and indicate that it is possible to select the

most appropriate CHT for a given difficult problem. Further, the

final decision tree trained on all the considered difficult problems

provides insights into the features characterising CMOPs.

In future work, the plans are to extend the CHT selection

methodology to the broader domain of algorithm selection.
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Abstract
In safety-critical settings – such as low-voltage electrical distri-

bution networks – Deep Reinforcement Learning (DRL) policies

are hard to deploy due to limited capability to explain why a

particular sequence of actions is taken. We use Scenario-Based

eXplainability (SBX) with temporal prototypes to explain the

policy of our DRL agent. SBX clusters short time-windows of

latent trajectories and uses their medoid trajectories as human-

friendly summaries. Temporal prototypes map the embeddings

of these medoids to actions, and generate explanations of the

form “This scenario is similar to prototype𝑋 ⇒ Do action 𝑌 .” We

apply our approach to a real low-voltage distribution network

Srakovlje. Preliminary results show that our method offers practi-

cally useful human-friendly explanations for sequential decision

making.

Keywords
deep reinforcement learning, explainability, voltage control, low-

voltage distribution network, prototypes

1 Introduction
A rapid growth of renewable energy resources and a significant

increase in electricity demand due to the electrification of trans-

port and heating [8] are reshaping generation (e.g. distributed

photovoltaic systems) and consumption (e.g. heat-pumps, elec-

trical vehicles) in electrical distribution networks. Increasing

reverse power flows and voltage variability in low-voltage net-

works strongly affect voltage profiles and make the network

operation and control more challenging.

Deep reinforcement learning (DRL) has recently emerged as a

powerful paradigm for sequential decision-making in complex,

high-dimensional environments, with notable successes in games

(Chess [18], Go [19], Atari [13]), autonomous driving [10], and

industrial robotic process automation [7]. Voltage control in dis-

tribution networks shares similar characteristics, which makes

DRL a promising methodology to solve the control problems in

low-voltage networks.

While voltage control is standard at higher voltage levels (e.g.,

with STATCOMs), most LV research has focused on optimizing

individual assets at the customer level [11, 6]. Recent compar-

isons indicate that DRL can outperform classical algorithms for

micro-grid management with demand-side flexibility [14]. For in-

stance, dueling double DQN (D3QN) has been used to reduce over-

voltages in PV-rich networks [16]; model-free RL has optimized
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battery charging/discharging to increase self-sufficiency [12]; and

effective consumption/generation strategies have been learned

under price signals and network constraints [2, 1]. Given the

growing heterogeneity of LV networks and the rise of behind-

the-meter actuators, DRL methods are typically developed and

validated first in simulation [4]. Their adoption and implemen-

tation are often hindered by a lack of explainability of these

models.

We present a prototype-based explainability approach for DRL-

based voltage control in LV distribution networks that directly ex-

ploits flexibility from prosumers. In our approach, the agent acts

on the network’s operating state, coordinating different flexibility

options (e.g. photovoltaic systems, batteries, EVs, heat pumps).

We focus on improving power quality by reducing voltage vio-

lations. Additionally, we use prototype based explainability to

provide interpretation and reasoning behind the action.

2 Related Work
Explainable Artificial Intelligence (XAI) aims to make the de-

cisions of models understandable to humans. The explanation

process and the final result should be focused on generating ex-

planations that are intuitive to us. Prototype-based explanations

provide a compelling choice that is interpretable by design. XRL

remains an active area of research. One such widely employed

explainability technique, primarily used in image classification,

is the saliency map, which bases its explanations on pixel-wise

feature attribution [20]. Building on this idea, Sequeira et al. [17]

made the agent’s interactions with the environment the focal

point of their Interestingness Framework.
In supervised learning, prototype networks explain predictions

via similarity to learned or human-selected exemplars [3, 15].

Extending this paradigm to reinforcement learning, prototype-

wrapper policies force decisions to bemediated by human-friendly

prototypes (single state-snapshot); a recent example is the Prototype-

Wrapper Network (PW-Net), which wraps a pre-trained agent

and maps latent states to action decisions through prototype

similarities [9]. Beyond interpretability, prototypes have been

leveraged to improve representation learning and exploration

efficiency: Proto-RL pre-trains prototypical embeddings and uses

prototype-driven intrinsic motivation to accelerate downstream

policy learning in pixel-based control [23]. In model-based RL,

prototypical context learning has also been explored for dynam-

ics generalization [22].

Despite the critical role of explainability in voltage control in

low-voltage power systems, there is little research addressing

this challenge. Zhang et al. [24] applied the SHAP explainability

method to a deep reinforcement learning model for implement-

ing proportional load shedding during under-voltage situations.

They also used Deep-SHAP [25] to enhance the computational

efficiency of their XAI model. The model’s output elucidates its
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Figure 1: High-level SGTP pipeline: (1) collect latent win-
dows; (2) SBX clustering and medoid selection; (3) train
temporal-prototype layer; (4) case-based explanations dur-
ing rollout.

predictions through a visualization layer and a feature impor-

tance layer that addresses both global and local explanations.

Existing research on explainability in power systems, particu-

larly regarding voltage control, focuses on post-hoc explainability

techniques. Compared to explanations for a single feature (indi-

vidual voltage value) such as SHAP, our method considers the

temporal component in the explanation process. To the best of

our knowledge, this approach has not been applied to the ex-

plainability of the reinforcement learning field in this specific

manner before.

3 SBX-guided Prototype Selection
We employ Scenario-Based eXplainability (SBX [5]) as an exten-

sion of the PWNet [9] to temporal prototypes (prototypes of
trajectories, not just snapshots of the state space) to provide
global, scenario-level structure and local, time-resolved explana-

tions for a trained control policy. SBX is used to partition behavior

and select representative temporal prototypes. On top of the SBX-

selected prototypes (without any human-defined prototypes), we

train a temporal prototype model that maps latent features to

actions. This yields a two-tier view: SBX provides a summary of

behavior, while temporal prototypes expose time-local patterns

and their nearest neighbors that drive actions.

3.1 Data Preparation and Latent Extraction
We consider a trained policy 𝜋 acting in discrete time. A trajec-

tory is a sequence of observation–action pairs. For analysis, we

operate on fixed-length trajectories of length 𝐿:

𝑤𝑡 =
(
(𝑜𝑡 , 𝑎𝑡 ), . . . , (𝑜𝑡+𝐿−1, 𝑎𝑡+𝐿−1)

)
, 𝑡 = 0, . . . ,𝑇 − 𝐿.

Observations are first mapped by the frozen policy backbone to

latent vectors 𝑥𝑡 ∈ R𝑑 . We denote the latent trajectory by 𝑋𝑡 =

(𝑥𝑡 , . . . , 𝑥𝑡+𝐿−1) ∈ R𝐿×𝑑 . We collect an offline dataset by rolling

out the trained PPO agent and recording, at each time step, the

policy’s penultimate-layer latent vector and the corresponding

environment action. This yields per-episode sequences of latents

and actions which are then converted into trajectories of length

𝐿. The supervised target for each trajectory is the action at its

last real-time step.

3.2 SBX Prototype Selection
SBX is performed in the latent space by clusteringwindow embed-

dings with k-means over a range of cluster counts and selecting

the number of clusters via a silhouette-style score. Within each

selected cluster, the medoids (nearest to the centroids) are taken

as temporal prototypes. Optionally, flattened action windows

are concatenated to latent trajectories before k-means to bias

prototype selection toward action-discriminative regions. The

SBX step produces a prototype tensor of shape (𝐾, 𝐿, 𝑑).

3.3 Temporal Prototype Model
We introduce 𝐾 temporal prototypes {𝑃𝑘 }𝐾𝑘=1, each a length-𝐿

latent template 𝑃𝑘 ∈ R𝐿×𝑑 selected by SBX (medoids). A shared

temporal encoder 𝑔𝜃 : R𝐿×𝑑 → R𝑝 maps trajectories to embed-

dings 𝑧𝑡 = 𝑔𝜃 (𝑋𝑡 ) and prototypes to 𝑒𝑘 = 𝑔𝜃 (𝑃𝑘 ). Following
PW-Net, prototype activations use an L2-to-activation mapping.

𝑎𝑘 (𝑡) = log

∥𝑧𝑡 − 𝑒𝑘 ∥22 + 1

∥𝑧𝑡 − 𝑒𝑘 ∥22 + 𝜀
, 𝜀 > 0. (1)

Outputs are linear in activations, 𝑦𝑡 =𝑊 𝑎(𝑡), optionally post-

processed to valid actions (Tanh/ReLu for steer/gas/brake). The

schematics of the algorithm is outlined in Figure 1.

3.4 Inference and Explanations
At test time, we slide a window over trajectories, compute activa-

tions 𝑎𝑘 (𝑡), and predict actions 𝑦𝑡 . Explanations are provided by

(i) the SBX scenario summaries (offline) and (ii) nearest-neighbor

windows to each prototype in the encoder embedding space.

• Scenario-level (global): SBX clusters and medoids sum-

marize typical behaviors.

• Temporal prototype-level (local): per-prototype nearest
windows (and prototype self-windows) illustrate charac-

teristic action trajectories.

For each time step, form the most recent latent window, com-

pute the encoder embedding and prototype activations, map them

linearly to actions, and apply Tanh/ReLu post-processing. Key

hyperparameters are 𝐿 (window length), encoder size 𝑝 , and learn-

ing rate. We select them on a held-out set using validation MSE

and qualitative visualization of nearest-neighbor trajectories.

4 Experiments
4.1 Simulation and voltage control policy
We examine a real-world low-voltage distribution network con-

sisting of 26 consumers, of which 7 are active consumers. Those

active consumers are equipped with small solar plants (11kWp).

The total yearly consumption in this network is negative, mean-

ing that the solar plants are producing more electricity than is

needed. A visual representation of the network is displayed in

Fig. 2.

The learning process extended over 1500 episodes, each con-

taining 96 steps (representing a 15-minute interval across one

day). We evaluated the model every 20 episodes (1 epoch). In this

network, we focus on handling mainly high voltages as those are

a bigger problem in our example.

4.2 Explaining a Simulation
We consider a real low-voltage distribution network. An obser-

vation/state is the vector of per-bus voltage magnitudes 𝑠 =

[𝑣1, . . . , 𝑣𝑛] (in per unit). Actions are per-active-consumer flex-

ibility commands 𝑎 = [𝛼1, . . . , 𝛼𝑚] with 𝛼𝑖 ∈ [−1, 1]: negative
values decrease consumption (or increase net export) and positive

values decrease the generation for active consumers (bounded

by their instantaneous battery output). The agent acts every 15
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Figure 2: The network Srakovlje is located in Gorenjska
region (north-western part of Slovenia). Active consumers
(red), and their most representative activations are dis-
played with the corresponding graph. Green circles denote
the most common over-voltage buses prior to voltage con-
trol. The width of the green circle indicates the severity of
the original over-voltage measurements.

minutes; episodes comprise 96 steps (one day). The goal is to keep

voltages within operating limits while minimizing interventions

and losses.

Following prior work on distribution-voltage control [21],

we use a reward that balances voltage quality, activation effort,

and network losses. Trajectories are generated by a PPO policy

trained in this environment.

Figure 3: Centroids and underlying medoids of the sce-
narios in the Power Control environment. The individual
color represents the average voltage signal in the network
corresponding to the scenarios.

We used trajectories with length 𝐿 = 96 which gives us 𝐾 = 3

prototypes (Figure 3). Scenario selection via a silhouette-style

criterion over 𝑘 ∈ {2, . . . , 8} yielded a preferred 𝑘 = 3 scenarios.

Representative scenario-level activation summaries are shown in

Figure 4. Task fidelity: offline action-level discrepancy against

the reference policy (mean-squared error over held-out trajecto-

ries at the final step) was MSE = 3.218. Scenario quality: stored
similarity scores by 𝑘 were: 𝑘 = 2: 0.131, 𝑘 = 3: 0.118, 𝑘 = 4: 0.083,

𝑘 = 5: 0.082, 𝑘 = 6: 0.089, 𝑘 = 7: 0.093, 𝑘 = 8: 0.096. A recom-

puted silhouette for the chosen 𝑘 = 3 partition gave 0.099 with

per-scenario supports [4212, 7312, 5912] trajectories, indicating
three regimes with substantial coverage. Prototype locality: In

the latent space, the average distance from each prototype to

its top-25 nearest trajectories was 0.124 on average, suggesting

coherent time-local patterns.

Figure 4: Representative prototypes in the Power Control
environment. Each color represents the Scenario, and the
individual line represents the activations by the individual
active consumers.

4.3 Results
Fidelity.Across both domains, the prototype-based policy closely

tracks the black-box in task reward, while achieving low action

discrepancy on held-out episodes. This suggests that mediating

actions through temporal prototypes does not materially degrade

performance.

Global structure. SBX consistently discovers a small set of

recurring scenarios that align with intuitive regimes (straight

driving vs. cornering in continuous control; typical operating

conditions in slower dynamics). Scenario summaries (state/action

mean±std) are distinct and exhibit stable temporal patterns.

Local interpretability. For representative episodes, the nearest-
neighbor aggregates around each prototype show coherent time-

local patterns, and the most influential prototypes (largest con-

tributions) align with observed actions. Explanations adopt a

case-based form, relating current decisions to similar prototypi-

cal windows.

Performance Analysis. We compared the rewards across

different policy architectures. Table ?? presents the results of

running 20 episodes for each policy variant, measuring key per-

formance metrics including mean reward, consistency (standard

deviation), and coefficient of variation (CV) as a measure of relia-

bility.

Over 20 episodes, the Base policy achieves the highest mean

reward (221.8; range 201.0–257.5). PWNet closely matches the

Base with a mean of 220.7 (≈ 0.5% lower; range 185.8–249.5),

indicating that mediating decisions through prototypes incurs

negligible performance loss. The Temporal PWNet trades some

reward for interpretability, averaging 211.5 (≈ 4.7% below Base;

range 168.4–231.8). Overall, relative performance is: Base ≈ 100%,

PWNet ≈ 99%, Temporal PWNet ≈ 95%.

The results demonstrate several key insights about our ap-

proach. The Base Policy achieves the best rewards. The PWNet

Policy shows comparable performance, indicating that prototype-

based explanations can be achieved without significant perfor-

mance degradation. Our Temporal PWNet + SBX approach achieves

a mean reward of 211.47 ± 14.60, representing a modest per-

formance trade-off in exchange for enhanced interpretability

through temporal prototypes and scenario-guided explanations.
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5 Discussion
This work introduces Scenario-Guided Temporal Prototypes,

which combines global scenario discovery (SBX) with local, time-

resolved prototypes to explain DRL decisions in voltage control

problem in power networks. We observe that temporal proto-

types can approximate black-box actions off-line with low dis-

crepancy while forcing decisions through human-friendly ex-

emplars. SBX discovers a small number of recurring regimes,

with clear scenario-level summaries (Figure 3) and consistent

prototype neighborhoods. This supports case-based reasoning

over the policy’s temporal dynamics rather than single-step fea-

ture attributions. Tight nearest-neighbor bands and balanced

per-scenario support indicate that selected prototypes are repre-

sentative rather than outliers.

The limitations of our current approach include reliance on a

particular windowing choice and off-line evaluation that does not

account for control feedback. Extremely imbalanced or highly

non-stationary data may complicate selection. Prototype inter-

pretability depends on the quality of medoids and the clarity of

the associated concepts; domains lacking clear temporal motifs

may benefit less from temporal prototypes and may also see

degradation in performance. SBX does not identify the outliers

that might be important for the agent to succeed. The identifica-

tion of such states within the current architecture will be explored

in future work. Future work also includes dynamic prototype

lengths and human-in-the-loop curation tools for prototype edit-

ing and labeling.

6 Conclusion
We presented a pre-hoc interpretability framework that (i) dis-

covers scenario structure from trajectories and (ii) explains ac-

tions via temporal prototypes. The approach yields faithful, time-

resolved explanations without materially degrading control qual-

ity, as demonstrated in Power Network voltage control. Explana-

tions take a case-based form—“this situation is similar to proto-

type X”—and are grounded by scenario summaries and prototype

locality.

Beyond improving transparency, our approach offers prac-

tical steps: scenario coverage, per-scenario prototype counts,

and nearest-neighbor coherence expose where explanations are

strong or require refinement. Looking ahead, we plan to enable

interactive prototype curation, incorporate uncertainty-aware

explanation scores, and explore joint training schemes that cou-

ple prototype-based interpretability with context-aware latent

dynamics. We will explore the sensitivity of the hyperparameter

L to the actual training success. We have also identified that the

fidelity metrics beyond the MSE will be necessary to explore.

At this moment comparison to the saliency methods or SHAP

explanations is still challenging due to the different nature of

explanations (one being feature step-wise based and the other

being multi-step and comparison based). Together, these steps

can help bridge the gap between high-performing DRL policies

and the trust required for their deployment.
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Abstract 

Whilst relatively uncommon compared to other skin cancers, 

melanoma is one of the most aggressive forms of this cancer. 

Given early and accurate detection, the condition can be treated 

successfully. Despite advancements in dermoscopy, diagnostic 

variability among dermatologists persists, often delaying 

treatment. This paper investigates the performance of a deep 

learning model based on ResNet-50 against human 

dermatologists in melanoma detection, highlighting synergies 

between AI and human diagnostics. Our findings indicate that AI 

can be as accurate or better than individual dermatologist 

performance in key metrics like sensitivity and specificity, and 

that a workflow focused on collaboration in the diagnostic 

process yields superior outcomes compared to either approach 

alone. 

Keywords 

Melanoma, skin cancer diagnosis, AI in cancer diagnosis, 

dermatology 

1 Introduction 

Globally, melanoma accounts for a disproportionate number of 

skin cancer-related deaths despite being less common than other 

skin cancers like basal and squamous cell carcinomas. In the 

United States alone, melanoma only accounts for one in 100 

cases of skin cancer, while causing the majority of deaths from 

this type of cancer [31]. Early detection dramatically improves 

prognosis, with five-year survival rates exceeding 90% when 

melanoma is identified at an early stage [1]. However, diagnostic 

accuracy in dermatology remains highly variable, dependent on 

clinician experience, lesion characteristics, and access to 

dermoscopic tools. 

This variability presents a significant diagnostic challenge. 

Studies have revealed that dermatologists may miss up to one in 

five (20%) cases of melanoma. There is also disagreement 

between professionals on lesion categorization [3, 4]. Artificial 

intelligence (AI), particularly deep learning algorithms trained 

on large dermoscopic datasets, has emerged as a potential 

equalizer, capable of achieving and possibly exceeding the 

classification accuracy of dermatologists [1, 2]. 

AI’s ability to analyze complex visual patterns in skin lesions 

offers a novel solution to diagnostic gaps. However, questions 

remain regarding its performance in clinical settings, 

generalizability potential biases, and ethical implications [14, 15]. 

This study aims to compare the diagnostic performance of a 

ResNet-50-based AI model with that of board-certified 

dermatologists and explore synergistic diagnostic workflows. 

We place specific emphasis on aspects of dataset composition, 

prospective evaluation design, and clinical integration to expand 

on the findings of previous studies. 

2 Research Questions 

This paper will focus on and attempt to answer the following 

research questions:  

 

1. How does the diagnostic accuracy of an AI model 

compare to that of human dermatologists? 

2. Can AI-human collaboration enhance melanoma 

detection outcomes? 

3. What are the ethical and practical considerations for 

AI integration in clinical dermatology? 

3 Related Work 

Early studies such as Esteva et al. [1] demonstrated the power of 

artificial intelligence in skin cancer diagnostics. The authors 

showed that deep convolutional neural networks (CNNs) could 

match the diagnostic performance of dermatologists in 

melanoma classification. Haenssle et al. [2] confirmed these 

findings in a controlled reader study. Similarly, Brinker et al. [4] 

found that a CNN outperformed 86% of participating 

dermatologists. 
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Recent research has shifted toward examining the potential of 

collaborations between humans and AI. Tschandl et al. [3] and 

Allen et al. [26] found that AI-assisted diagnosis improved the 

accuracy of clinician diagnosis alone. Navarrete-Dechent et al. 

[7] conducted a prospective trial showing how synergistic 

diagnosis combining dermatologists and AI tools improved 

diagnostic accuracy. 

However, limitations persist. Most studies use retrospective 

or experimental setups lacking real-world clinical integration. 

Few address model bias, particularly regarding skin tone and 

underrepresented populations [14, 15, 33, 34]. Those could lead 

to false diagnoses. Continued reliance on HAM10000 and 

institutional datasets restricts generalizability of research 

findings. 

In addition, the absence of real-world patient context such as 

patient history and a physical exam may cause clinicians to 

underestimate diagnostic complexity. Furthermore, adoption 

barriers among clinicians remain underexplored at the time of 

writing [27].  

This submission seeks to fill these gaps with a prospective 

evaluation of AI-human performance and practical deployment 

considerations. 

 

4 Methods 

4.1 Data Acquisition and Preprocessing  

Dermoscopic images were sourced from the commonly used 

HAM10000 dataset [13], supplemented by institutional image 

archives. Inclusion criteria comprised high-resolution 

dermoscopic images of histopathologically confirmed 

melanomas and benign nevi. Exclusion criteria included images 

with low resolution, artifacts, or incomplete metadata. 

All images underwent standardized preprocessing procedures 

such as resizing to 224×224 pixels, normalization, and 

augmentation (flipping, rotation, and contrast adjustments) to 

enhance generalizability [21, 23]. 

 

4.2 AI Model Architecture 

For this study, we utilized a ResNet-50 CNN pretrained on 

ImageNet, fine-tuned on the melanoma dataset. The model 

incorporated dropout regularization and cross-entropy loss 

optimization. Training was conducted on NVIDIA GPUs using a 

70/15/15 train-validation-test split. This architecture and training 

paradigm has demonstrated high performance in skin lesion 

classification tasks and is widely adopted in dermatology AI 

literature [1, 4].   

 

4.3 Human Cohort and Diagnostic Protocol 

Twenty board-certified dermatologists with 5–25 years of 

clinical experience participated. We asked each participant to 

review 100 randomized images. Images were presented in 

isolation, blind to patient history and pathology. Diagnoses were 

binary (melanoma vs. benign). In a second round, participants 

reviewed the same images with AI output overlays. 

This two-phase diagnostic design aligns with previous 

human-versus-AI studies, notably those by Haenssle et al. and 

Tschandl et al., which examined both solo and AI-assisted 

diagnostic conditions [2, 3, 7]. Randomization and blinding 

ensure impartial evaluation, a standard methodological feature in 

comparative diagnostic trials [5, 6]. 

 

4.4 Evaluation Metrics 

Performance was measured using sensitivity, specificity, area 

under the ROC curve (AUC-ROC), and average diagnostic time 

per image. Inter-rater agreement was assessed using Fleiss’ 

kappa.  

 

5 Results 

5.1 AI vs Human Diagnostic Performance 

The AI model achieved an AUC-ROC result of 0.94, with 89% 

sensitivity and 85% specificity. Dermatologists averaged an 

AUC of 0.87, with 82% sensitivity and 83% specificity. Notably, 

a total of 75% (15 out of 20) dermatologists were outperformed 

by the AI in sensitivity [4]. 

We further analyzed inter-rater variability among clinicians 

using Fleiss’ kappa statistics. Without AI assistance, Fleiss’ 

kappa was 0.58 (moderate agreement). With AI assistance, kappa 

increased to 0.72 (substantial agreement), indicating improved 

consensus among readers.  

This improvement in agreement supports the claim that AI 

support enhances diagnostic reliability and synergizes with 

human expertise. 

 

Table 1: Inter-Rater Variability 

 

Scenario Fleiss’ Kappa 

Clinicians Alone 0.58 

Clinicians + AI Assist 0.72 

Source: research performed in the course of this study 

 

5.2 AI-Human Synergy Analysis 

When assisted by AI, dermatologist sensitivity improved to 91%, 

and specificity rose to 87%, surpassing both the solo AI and 

unassisted human performance. Average diagnostic time 

dropped from 22 seconds to 15 seconds per image [28]. 

Table 2: Visual Summary of Results 

Diagnostic 

Modality 

Sensitivity Specificity AUC-

ROC 

Avg Time/ 

Image 

AI Alone 89% 85% 0.94 3 seconds 

Dermatologists 

Alone 

82% 83% 0.87 22 seconds 

Dermatologists 

+ AI 

91% 87% 0.96 15 seconds 

Source: research performed in the course of this study 
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6 Discussion 

We were able to affirm previous findings that artificial 

intelligence has the capacity to match or outperform 

dermatologists in the detection of melanoma [1, 5]. Moreover, 

diagnostic synergy between human experts and AI enhances 

overall performance, aligning with findings from Tschandl et al. 

[3] and Navarrete-Dechent et al. [7]. 

 

6.1 Ethical Considerations and Bias Analysis 

Despite strong results when combining clinician expertise with 

AI in melanoma detection, concerns persist. These concerns 

begin even before the algorithm is applied. AI models may have 

been subject to biased training data. In this context, 

underrepresentation of darker skin tones remains problematic 

[14, 15]. As a result, AI may exacerbate healthcare disparities 

[20], and there remains a need for inclusive datasets and 

algorithmic transparency [19] to address these challenges. 

To strengthen our analysis of bias and inclusivity, we present 

a descriptive breakdown of our dataset by skin type (Fitzpatrick 

scale): 

 

Table 3: Skin Type Breakdown 

 

Fitzpatrick Skin Type Number of Cases Percentage (%) 

I–II (Light) 500 40 

III–IV (Medium) 500 40 

V–VI (Dark) 250 20 

Total: 1,250 Images   

Source: research performed in the course of this study 

 

This distribution allows for more robust discussion of skin 

tone bias and ensures inclusiveness in our findings. We 

acknowledge that the representation of darker skin types (V–VI) 

remains limited and may impact generalizability. Future studies 

should prioritize dataset balance for equitable AI performance. 

 

In collaborative settings, explainability remains another 

challenge, as clinicians may distrust opaque AI decisions that 

lack transparency. Incorporating interpretable AI frameworks 

and continuous feedback loops can help address these issues [21]. 

 

6.2 Integrating AI into Clinical Practice 

Adoption hurdles include clinician skepticism, workflow 

integration, and regulatory uncertainty [27, 25]. Real-world 

implementation requires AI tools to function as second readers, 

supporting—not supplanting—clinicians [6, 22]. 

     Regulatory guidance from the FDA (2022) emphasizes post-

market monitoring, performance transparency, and adaptive 

learning constraints. Clinician training, robust validation, and 

clear liability frameworks are essential for safe deployment. 

 

7 Conclusion 

This study highlights the promise of AI-human collaboration in 

melanoma diagnosis. A fine-tuned ResNet-50 model achieved 

diagnostic accuracy comparable to board-certified 

dermatologists and improved performance when integrated into 

clinician workflows. While AI holds transformative potential, 

challenges around bias, explainability, and regulatory oversight 

must be addressed to ensure equitable, trustworthy deployment. 

Future work should focus on prospective clinical trials, 

patient-facing applications, and interdisciplinary frameworks for 

human-AI co-diagnosis. A hybrid diagnostic model, leveraging 

AI’s speed and consistency with human intuition and contextual 

awareness, represents the future of dermatological practice. 

As diagnostic models develop, so will technology. 

Improvements in AI, such as federated learning and enhanced 

explainability methods will lead to improved trust and adoption 

in clinical settings.  
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Abstract
Root canal treatment is a medical procedure aimed at preventing or

treating apical periodontitis, which is an inflammation around the

apex of a tooth root. In this study, we analyzed a dataset collected

by an experienced practitioner over the course of several years,

and developed a forecasting model, based on the XGBoost algo-

rithm, to predict the outcome of the treatment. The trained models

achieved a mean area under the receiver-operating-characteristic

curve (AUROC) of 0.92 and average precision (AP) of 0.77. We dis-

cuss the importance of individual features in view of expert dental

knowledge. To assist the practitioner in daily practice, we devel-

oped a web-based application to provide an assessment of treatment

outcomes.

Keywords
root canal treatment outcome, feature importance, gradient boost-

ing machines

1 Introduction
Apical periodontitis is an inflammation of tissues around the apex

of a tooth. It is a major health burden in the general population,

with 6% of all teeth showing signs of this condition. Root canal

treatment (RCT) is aimed to either prevent the onset of apical

periodontitis or to help the tissue to heal if it is already present [13].

Predicting treatment outcomes in RTC is of high interest both to

the patients and the dentists, as well as to the insurance companies,

as information about the likelihood of successful treatment can

lead to better allocation of resources and avoid potentially more

invasive procedures, such as tooth removal and its replacement

with an implant.

Machine learning has previously been used to study some as-

pects of the root canal treatment, including association between

patient-, tooth- and treatment-level factors and root canal treat-

ment failure [10], predicting root fracture after root canal treatment

and crown installation [6], and non-surgical root canal treatment

prognosis [2]. In this study, we analyze the data collected by Jurič

et al. [13]. This dataset is of special interest since it relies on the
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RCT patient data obtained by a single experienced practitioner (en-

suring a high level of consistency in the treatment approach), as

opposed to studies where numerous dentists were treating patients

and different choices between them could have resulted in a less

representative dataset. The aim of the study was to develop and

evaluate an algorithm that predicts the outcome of the RCT, as well

as to analyze how robust the algorithm is and which features influ-

ence the outcome the most. This study goes hand-in-hand with the

study by Jurič et al. [13] where the analysis was conducted solely

using statistical methods.

2 Related Work
To our knowledge, utilization of machine learning in endodontics

is still relatively unresearched, specifically when predicting treat-

ment outcome only using tabular data. Among the related papers,

[10] employs XGBoost to explore the association between patient-,

tooth- and treatment-level factors and root canal treatment fail-

ure, while [2] used Random Forests (RF), K Nearest Neighbours

(KNNs), Logistic Regression (LR) and Naive-Bayes (NB) to predict

the outcome of non-surgical root canal treatments, similarly to

this study. Paper [8] explores the prediction of treatment longevity

using Support Vector Machines (SVMs), LR and NB, while [14]

investigates the relation between root canal morphology and root

canal treatment using both statistical and machine learning meth-

ods, specifically, using RF, SVMs and Gradient Boosting Machines

(GBMs). Moreover, papers [19, 18] investigate the prediction of

case difficulty and prognosis of endodontic microsurgery, while [6,

9] explore the prediction of root fracture and postoperative pain

after root canal treatment. Additionally, multiple papers have been

found to investigate root canal treatment outcome or related factors

using deep learning (DL) on X-ray images, specifically panoramic

or periapical radiographs, such as [3, 22, 11, 1, 5].

3 Data
The dataset analyzed in this study contains treatment details, clin-

ical and radiographic data regarding primary or secondary root

canal treatment of mature permanent teeth collected and curated

in [13]. Three different types of outcome were determined - clinical,

radiographic, and combined, for which both a strict (no clinical or

radiographical sign of disease) and loose (only negligible sign of

disease) assessment criteria were used. In this paper, only strict

assessments were considered and used as prediction targets. All

assessments were binary, with 1 representing successfull and 0
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representing unsuccessfull treatment outcome. The dataset was

fairly imbalanced, with 88% of all cases representing successfull

radiographic outcome, 92% successfull clinical outcome and 83%

successfull combined outcome. The study cohort consisted of 740

patients and 1264 teeth, resulting in 3153 root canal treatment cases

and 84 features in total. The majority of features represented either

categorical or binary values, such as variables representing gender,

tooth type, root canal etc., while variables such as age and working

length were treated as continous.

4 Methods
This section outlines the methods used for ranking feature impor-

tance and finally training baseline models that can be used as a tool

for prediction of root canal treatment outcome.

4.1 Data Preprocessing
First, data regarding second visits was removed, to ensure consis-

tency among cases. Next, features directly dependent or derived

from a specific feature were excluded from the dataset to minimize

the dimensionality of the data, as well as any post-operative factors

that were directly used to determine the treatment outcome. The

dataset was further reduced by removing redundant features, which

can only have one value or their value is missing for more than 50%

of all cases. Similarly, cases for which more than 50% of features are

missing were excluded, resulting in 3153 cases and 84 features in

total. Lastly, the dataset was preprocessed using label encoding and

evenly split into training (80%) and testing (20%) sets. Furthermore,

the training set was split into training (80%) and validation (20%)

sets when ranking feature importance, to avoid overfitting.

4.2 Model Architecture
For the underlying model, gradient boosting machines were used,

specifically the XGBoost algorithm [7], as it remains widely re-

garded as the state-of-the-art and preferred choice for tabular data

tasks, over the more and more popular deep learning algorithms, as

shown in [4, 12, 20]. Furthermore, algorithms based on transparent

methods, such as decision trees, are strongly preferred for applica-

tions in medicine when compared to the "black box" approaches

typically associated with deep learning.

4.3 Metrics
Due to the dataset’s high imbalance between negative ( 87%) and

positive ( 13%) cases, standard classification metrics such as ac-

curacy or area under the receiver-operating-characteristic curve

(AUROC) can be highly misleading, therefore average precision

(AP) was chosen as the key metric for estimating model’s perfor-

mance and ability to produce quality predictions, specifically using

the formula:

𝐴𝑃 =

𝑛∑︁
𝑖=2

(𝑅𝑖 − 𝑅𝑖−1) · 𝑃𝑖

where 𝑅𝑖 and 𝑃𝑖 are recall and precision at the 𝑖-th threshold when

testing on 𝑛 samples [17], while AUROC was only used to provide

additional insight when interpreting results.

4.4 Grid Search
To obtain reasonable starting training hyperparameters and a base-

line model that utilizes all available information, we performed

cross-validated grid-search over a simple manually defined param-

eter grid, using the scikit-learn library [17].

4.5 Correlation Clustering
When a subset of features in a dataset is highly correlated, standard

methods such as feature permutation importance or performing an

ablation study often produce inaccurate results, since the model

can highly depend only on a specific feature and discard correlated

features. Similarly, methods such as SHapley Additive exPlanations

(SHAP) [16] or XGBoost’s built-in feature importances only account

for the contribution of a specific feature to the model’s prediction,

which can again be misleadingly low due to the feature’s correlation

to another.

To address this problem, clustering was performed based on the

correlation between features. Let 𝑋 ∈ R𝑚×𝑛
represent the dataset

with 𝑚 cases and 𝑛 features. By calculating the Spearman rank

correlation coefficient [15, 17, 23] on 𝑋 , a symmetric feature cor-

relation matrix 𝐶 ∈ R𝑛×𝑛
was obtained and transformed into a

distance matrix 𝐷 ∈ R𝑛×𝑛
. To group correlated features, hierarchi-

cal clustering using Ward’s method [17, 21] was performed on 𝐷 to

obtain a hierarchical clustering tree, which was then flattened into

discrete clusters containing features with high absolute correlation.

4.6 Ranking Feature Importance
To determine the significance of a specific feature 𝑓 , a separate

XGBoost model𝑀𝑓 was trained and evaluated on a reduced dataset

𝑋𝑓 to obtain baseline results. Next, permutation testing was con-

ducted by permuting the feature 𝑓 in the testing set and calculating

the drop in performance of 𝑀𝑓 compared to the baseline results.

Each feature was tested 20 times. Lastly, a mean drop and p-value

were calculated on the observed performance drops by performing

a t-test, where a high mean drop represented high feature impor-

tance and a low p-value represented a low chance that the observed

drop in performance was caused by an outside factor and not by

the random distribution of 𝑓 in the test set. To ensure that the fea-

ture’s importance estimation was not corrupted by any correlated

features and at the same time account for the feature’s possible

non-linear connections with other features, while also minimizing

the computational cost as much as possible, the reduced dataset 𝑋𝑓

was determined as follows.

First, using the model trained on all features (see 4.4), SHAP

values [17, 16] were calculated to determine the most contributing

feature inside of each cluster. Let 𝐹 = {𝑓1, . . . , 𝑓𝑛} represent the set
of all features and 𝑆 : 𝐹 → R𝑚 the transformation that returns

SHAP values for a specific feature. The most contributing feature

inside of the 𝑖-th correlation cluster𝐶𝑖 = {𝑓𝑗 | 𝑗 ∈ 𝐼𝑖 } was calculated
by taking the feature with the highest mean absolute SHAP value

i.e. such 𝑓 ∗ ∈ 𝐶𝑖 that ∀𝑗 ∈ 𝐼𝑖 : |𝑆 (𝑓𝑗 ) | ≤ |𝑆 (𝑓 ∗) |.
The reduced dataset 𝑋 ∗ ∈ R𝑚×𝑟

, containing only representative

features, was then transformed into 𝑋𝑓 for a feature 𝑓 ∈ 𝐶𝑖 by

replacing 𝑓 ∗
𝑖
by 𝑓 in 𝑋 ∗

. Such approach allows eliminating features

highly correlated to 𝑓 and reduces computational cost by only

utilizing the most contributing feature within each cluster, while
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still accounting for any non-linear connections between 𝑓 and

features in other clusters. The procedure is visualized in Figure 1.

Figure 1: The hierarchical correlation tree is first flattened
into clusters 𝐶1, . . . ,𝐶𝑟 , for which representative features
𝑓 ∗
1
, . . . , 𝑓 ∗𝑟 define the base dataset 𝑋 ∗, from which we get 𝑋𝑓

for 𝑓 ∈ 𝐶𝑖 by replacing 𝑓 ∗
𝑖
by 𝑓 .

4.7 Evaluation
After obtaining feature importances, features with p-value < 0.05

were deemed as significant. Next, a model using starting parameters

found in 4.4 was trained on features belonging in the 𝑘-th percentile

in terms of feature importance, for 𝑘 in 1%, 5%, 10%, 25%, 50%, 75%,

and 100% (the latter corresponding to all significant features).

5 Results
Figures 2 show the comparison of performances in terms of AP of

models trained on different percentiles. The highest performance

was achieved when utilizing the entire preprocessed dataset consist-

ing of 84 distinct features in total, achieving AUROC of 0.90 and AP

of 0.70 when predicting radiographic outcome, AUROC of 0.94 and

AP of 0.86 when predicting clinical outcome and finally AUROC of

0.91 and AP of 0.77 when predicting combined outcome. Out of the

84 chosen features, our method deemed 39 of them significant for

radiographic assessment, 54 significant for clinical assessment, and

65 for combined assessment, which produced AUROC of 0.88, 0.85,

0.87 and AP of 0.66, 0.75 and 0.70 respectively.

6 Discussion and Conclusion
Achieving high performance, our paper shows promise in using ma-

chine learning techniques for predicting the outcome of endodontic

treatments. Moreover, we developed a web application, which al-

lows predicting the outcome of root canal treatments using the

models trained on different subsets of data, serving as a tool to

assist in assessing the quality and success of a treatment, as well as

to give insight for possible further patient care.

Furthermore, all the statistically significant factors found in the

original study [13], are found as significant by our method as well.

Specifically, "lesion diameter" was found to be the most relevant

factor, with "root PAI" and "canal code" being in the top 5%, "tooth

type" ("tooth group" and "canal number") in the top 10%, "type of

sealer" and "quality of coronal restoration" in the top 25%, "tender-

ness to periapical palpation" and "quality of root filling" in the top

50% and lastly "injury history" in the top 100% of all significant

features. Here, we exclude factors such as "number of visits" and

"number of canals per root", since they were not used in this study.

Moreover, among the most important factors that this study found

and were not accounted for or found as insignificant in [13], are

"age" as the second most important factor, "cumulative time" being

in the top 5% and "alergic disorders", "working length", "treatment

type", "obturation", "PD local", "vertical percussion", "fistulation"

and "pain bite" being in the top 25%. Such results suggest that ma-

chine learning techniques can perhaps be a better or alternative

approach for ranking feature significance in comparison with stan-

dard statistical methods such as logistic regression models, since

they better account for possible non-linear relationships between

different factors and the treatment outcome.

To further refine our approach of selecting significant features,

we plan to test different p-values, as the models trained on only

significant features achieved a lower performance than the models

trained on the entire dataset, with a 5% drop in AUROC and a 7%

drop in AP on average, suggesting that there are features which our

method deemed insignificant despite enhancing the models’ ability

to learn and produce accurate results. Future work will also involve

analysis of third-party datasets to investigate whether the results

obtained in this study are generalizable and to what degree the data

collected by a single experienced practitioner is different to a dataset

that is typically collected over a course of several years by a number

of dentists-in-training. Additionally, we wish to incorporate various

explainability techniques, to better justify the models’ predictions,

in turn giving a deeper insight into how specific factors affect the

outcome of root canal treatments as well as better assist a doctor

in understanding and interpreting the predicted outcome.
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Abstract 

This study investigates predictive maintenance of CNC 

machinery within the LABtop production environment 

through the deployment of iCOMOX sensor modules on a 

compressor and machine spindle. Each module integrates 

multi-modal sensing capabilities, including vibration, 

magnetic field, temperature, and acoustic measurements, 

enabling comprehensive monitoring of machine conditions. 

Data was collected at five-minute intervals over a 30-day 

period, resulting in an unlabeled dataset due to the absence 

of recorded failures or anomalies. The analysis employed 

unsupervised machine learning techniques, specifically 

principal component analysis (PCA) for dimensionality 

reduction and clustering to identify operational patterns. 

PCA successfully reduced the original 11-dimensional 

dataset to two principal components, allowing for effective 

visualization and grouping. The elbow and silhouette 

methods determined three optimal clusters for both sensors, 

with one cluster in each case identified as a potential outlier. 

Results suggest that dense clusters represent normal 

operation, while outlier clusters may indicate measurement 

errors or emerging machine faults. Although supervised 

learning could not yet be applied, future work will integrate 

fault-labeled data to enable robust predictive maintenance 

models.  

Keywords 

predictive maintenance, PCA method, production 

environment, silhouette analysis, elbow method. 

 

1   Introduction 

The increasing complexity of modern production systems 

demands advanced approaches to machine maintenance in 

order to minimize downtime, reduce costs, and ensure 

consistent product quality. Traditional maintenance 

strategies, such as corrective or preventive maintenance, 

often fail to provide early warnings of failures and may 

result in either excessive servicing or unexpected 

breakdowns. Predictive maintenance, by contrast, leverages 

sensor data and machine learning techniques to detect 

patterns, identify anomalies, and forecast potential failures 

before they occur. This approach not only enhances 

operational efficiency but also extends the lifetime of critical 

equipment.¸ 

    Within the LABtop production environment (consists of 

multiple machines in sequence - mostly drilling and cutting 

machines), predictive maintenance has been explored 

through the integration of advanced multi-sensor 

monitoring solutions. For this purpose, the public research 

institute Rudolfovo implemented iCOMOX sensor modules 

on both the compressor and the spindle of a CNC machine. 

Each iCOMOX module integrates several sensing elements—

vibration, magnetic field, temperature, and acoustic 

measurements—providing a rich dataset suitable for 

machine learning–based condition monitoring. 

    The collected data were acquired over a continuous 30-

day period at five-minute intervals. Since no machine 

failures, temperature anomalies, or bearing defects were 

recorded during this time, the dataset lacked diagnostic 

labels and was therefore treated as unlabeled. To address 

this, unsupervised learning methods were employed to 

uncover latent structures in the data. Principal component 

analysis (PCA) was used to reduce the dimensionality of the 

dataset, while clustering methods were applied to identify 

patterns and potential anomalies in machine operation. The 

aim of this study is to evaluate the feasibility of 

unsupervised learning methods in predictive maintenance 

for industrial equipment, specifically under conditions 

where fault-labeled data are unavailable. By analyzing the 

clustering behavior of sensor signals, this work provides 

insights into normal operating regimes and potential 

deviations that may correspond to early indicators of faults 

or measurement errors. Future work will incorporate 

supervised learning techniques once labeled fault data 

become available, enabling the development of robust 

predictive models. 
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2   Related Work 

The field of predictive maintenance (PdM) has advanced 

considerably, with strong emphasis on unsupervised 

learning methods for anomaly detection and health 

assessment when labeled failure data are unavailable. PdM 

has been shown to significantly reduce maintenance costs, 

decrease unexpected downtime, and enhance equipment 

reliability [1]. Multi-sensor monitoring platforms such as 

iCOMOX have emerged as versatile tools for industrial 

condition monitoring. These devices integrate vibration, 

magnetic field, temperature, and acoustic sensors into a 

compact, industrial-grade package capable of edge analytics 

and cloud integration [2–5].  

    Such systems enable continuous monitoring of machine 

health and support the implementation of predictive 

maintenance strategies in Industry 4.0 environments. From 

a methodological perspective, unsupervised learning 

techniques, such as principal component analysis (PCA) and 

clustering, are widely applied for exploratory data analysis, 

dimensionality reduction, and anomaly detection. A 

comprehensive survey highlights the breadth and maturity 

of these techniques across domains [6]. Clustering methods 

including k-means, DBSCAN, and OPTICS are instrumental 

in grouping operational states and unveiling deviations that 

may signify incipient failures [7].  

    Hybrid methods combining PCA with clustering have 

proven effective in enhancing fault detection capabilities. 

For example, a railcar health monitoring system employing 

DBSCAN clustering with PCA achieved fault detection 

accuracy of 96.4% [8]. Similarly, kernel PCA has been 

applied to construct health indices for unsupervised 

prognostics [9]. In compressor maintenance, incorporating 

clustering-derived features into supervised classifiers 

improved predictive accuracy by 4.9% and reduced training 

time by 23% [10]. Several studies also propose frameworks 

that integrate unsupervised learning with IoT and Big Data 

infrastructures, enabling scalable predictive maintenance 

solutions across industrial environments [11]. These works 

demonstrate the feasibility of extracting actionable health 

indicators from unlabeled sensor data and underscore the 

critical role of advanced analytics in industrial condition 

monitoring. 

3   Methodology 

3.1   Data Acquisition 

Two iCOMOX sensor modules were installed on critical 

machine components within the LABtop production system: 

the spindle of a CNC machine and the air compressor. Each 

sensor module integrates vibration, magnetic field, 

temperature, and acoustic sensing elements, thereby 

providing multimodal monitoring capabilities. Data were 

sampled at 5-minute intervals over a continuous 30-day 

observation period, resulting in an unlabeled dataset due to 

the absence of recorded failures, anomalies, or maintenance 

events. 

 

3.2  Data Preprocessing 

Raw signals from the iCOMOX modules were aggregated 

into feature vectors, yielding an 11-dimensional dataset. 

Standard preprocessing steps included: normalization of 

features to remove scaling effects, filtering to reduce noise 

(particularly in the acoustic and vibration signals), and 

synchronization of multimodal sensor streams. 

3.3   Dimensionality Reduction 

To facilitate visualization and clustering, dimensionality 

reduction was performed. Multiple techniques (e.g., t-SNE, 

Isomap, and autoencoders) were evaluated; however, 

Principal Component Analysis (PCA) demonstrated superior 

stability and interpretability. The data were reduced from 

11 to 2 principal components, which captured the majority 

of the variance and allowed effective 2D representation. 

3.4  Clustering Analysis 

Clustering was applied to the reduced dataset to uncover 

hidden structures and potential anomalies. The elbow 

method (Figure 1) and silhouette coefficient (Figure 2) were 

employed to determine the optimal number of clusters. 

Based on these metrics, three clusters were identified for 

each sensor dataset. 

    The analysis was conducted separately for the two sensor 

modules (iCOMOX1 on the spindle and iCOMOX2 on the 

compressor). Outlier clusters were identified and 

highlighted for subsequent interpretation. 

Figure 1: Elbow method 

Figure 2: Silhouette coefficient 
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4 Results 

PCA successfully compressed the 11-dimensional dataset 

into a two-dimensional space. The first two principal 

components explained the majority of the variance (>80%), 

enabling effective visualization of patterns in machine 

behavior. Figure 3 illustrates the scatter plot for iCOMOX1. 

Three distinct clusters are visible, with Cluster 1 

(highlighted in orange) showing divergence from the main 

operating regime. Figure 4 presents the scatter plot for 

iCOMOX2, where Cluster 2 (highlighted in green) emerges 

as an outlier relative to the normal operating clusters. 

Figure 3: PCA Scatter plot for ICOMOX1 

Figure 4: PCA Scatter plot for ICOMOX2 

    Clusters containing densely grouped points correspond to 

normal operating conditions of the CNC spindle and 

compressor. The outlier clusters, however, represent either: 

• sensor noise or measurement anomalies (e.g., 

transient vibration spikes or acoustic distortions), 

or 

• incipient machine faults, which could not be 

conclusively confirmed due to the absence of 

ground-truth failure data. 

• PCA combined with clustering effectively 

distinguished between normal operation and 

anomalous behavior. 

• Both sensor datasets (iCOMOX1 and iCOMOX2) 

revealed three clusters, with one consistently 

standing out as an outlier. 

• Without diagnostic labels, these outliers cannot be 

definitively classified as machine faults, but their 

presence highlights potential events of interest for 

further investigation. 

• The results validate the feasibility of unsupervised 

learning for predictive maintenance in 

environments lacking labeled fault data.  

5 Discussion 

The findings from this study demonstrate the viability of 

unsupervised learning methods in particular PCA and 

clustering for analyzing unlabeled condition-monitoring 

data in industrial environments. By reducing an 11-

dimensional dataset to two principal components, it was 

possible to visualize operational states and uncover outlier 

clusters that may correspond to anomalous machine 

behavior. This outcome aligns with previous work 

emphasizing the effectiveness of dimensionality reduction 

and clustering in predictive maintenance tasks where 

labeled fault data are limited or unavailable [6,8,9]. 

    The observation of three clusters for both the spindle 

(iCOMOX1) and compressor (iCOMOX2) highlights the 

presence of distinct operating regimes within the LABtop 

system. The fact that one cluster consistently emerged as an 

outlier suggests potential precursors to faults or, 

alternatively, sensor-related anomalies. While conclusive 

interpretation requires diagnostic labels, the clustering 

nevertheless provides an essential first step toward 

identifying patterns that can later inform supervised 

learning models once fault data become available. 

    Compared to related studies, the present results confirm 

trends reported in railcar health monitoring [8] and 

compressor maintenance [10], where unsupervised 

approaches successfully revealed structural patterns in the 

absence of labeled datasets. The advantage of PCA lies in its 

ability to preserve variance while simplifying visualization, 

which proved more effective than alternative reduction 

methods considered here (e.g., t-SNE or Isomap). This 

echoes findings from other industrial applications where 

PCA has served as a reliable baseline for anomaly detection 

[9]. 

    An important implication is that multi-sensor platforms 

such as iCOMOX provide the richness of data required for 

advanced analytics. The combination of vibration, acoustic, 

magnetic field, and temperature measurements enables 

detection of subtle variations that might not be visible 

through single-sensor monitoring. As highlighted in prior 

work [2–5], the integration of multimodal data streams 

significantly strengthens predictive maintenance 

frameworks by improving robustness and interpretability.  

    Nevertheless, this study also underscores the limitations 

of unsupervised learning. Without failure labels, it is not 
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possible to conclusively distinguish between anomalies 

arising from true machine faults and those caused by sensor 

noise or environmental conditions. This limitation has been 

widely noted in the literature [6,11]. Future work should 

therefore focus on generating labeled datasets through 

controlled fault injection or long-term monitoring until 

natural failures occur. Such datasets would enable 

supervised and hybrid learning approaches, which have 

shown promise in achieving higher predictive accuracy and 

more actionable decision support [1,10]. 

    In summary, the present analysis validates the potential 

of unsupervised learning for predictive maintenance in 

data-scarce environments. While preliminary, the results 

establish a methodological foundation for extending 

condition monitoring at LABtop to more advanced machine 

learning pipelines, ultimately contributing to early fault 

detection, reduced downtime, and optimized maintenance 

planning. 

6  Future Work 

The present study establishes a foundation for predictive 

maintenance at LABtop using unsupervised learning 

methods; however, several directions remain open for 

further investigation. 

    First, the absence of diagnostic labels limited this study to 

exploratory clustering and anomaly detection. Future work 

will prioritize the collection of labeled datasets through 

either (i) controlled fault injection experiments on non-

critical test equipment or (ii) extended operational 

monitoring until natural failures occur. The availability of 

labeled fault data will enable the application of supervised 

learning and hybrid approaches, combining clustering-

derived features with classification models to improve fault 

detection accuracy and reliability, as demonstrated in 

recent compressor studies [10]. Second, while PCA provided 

an effective means of dimensionality reduction, more 

advanced techniques such as kernel PCA, autoencoders, and 

variational autoencoders should be investigated. These 

methods may capture nonlinear relationships in the sensor 

data that PCA cannot, potentially yielding richer health 

indicators and more precise separation of operational 

regimes [9]. Third, the present work focused primarily on 

offline analysis. Future research should extend to real-time 

streaming analytics, leveraging the edge-processing 

capabilities of the iCOMOX platform [2–5]. Deploying online 

anomaly detection models would allow immediate 

identification of abnormal conditions and facilitate 

proactive maintenance decisions.  

    Fourth, integration with IoT and cloud-based platforms 

remains a key step toward scalable deployment. By 

embedding unsupervised learning models into Industry 4.0 

architectures, LABtop can benefit from centralized 

monitoring, cross-machine comparisons, and fleet-level 

anomaly detection, as highlighted in existing frameworks 

[11]. 

    Finally, interpretability remains an essential concern. 

Future efforts will explore explainable AI (XAI) techniques 

to provide actionable insights into why certain clusters or 

anomalies are flagged, thereby enhancing operator trust 

and enabling domain experts to validate and refine the 

models. 
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Abstract
This student paper investigates the use of machine learning tech-

niques to automate the detection of tool wear in cuttingmachines,

replacing manual monitoring with intelligent, data-driven so-

lutions. Although the proposed ML methods are standard in

predictive maintenance, our contribution lies in providing the

systematic multi-dataset benchmark tailored for direct transfer

to industrial environments. This establishes a reproducible base-

line before deploying and validating on real UNIOR data. As

part of the project, and in anticipation of collecting real-world

accelerometer data from industrial machines, we conducted a

series of benchmarking experiments using five publicly avail-

able datasets that include accelerometer and audio signals under

various wear-related conditions. The datasets cover a variety

of industrial contexts and labeling schemes, allowing us to as-

sess different preprocessing strategies and classification models

such as Random Forests, 1D Convolutional Neural Networks,

and Long Short-Term Memory networks. Our best results—an

F1-score of 0.9949—were achieved using an LSTM model on a

vibration dataset simulating fault conditions. These findings high-

light the strong potential of AI for predictive maintenance and

lay the groundwork for transferring the developed pipelines to

the system once real data become available. Future work will

focus on real-time wear detection and model deployment within

live production environments.

Keywords
accelerometer, neural networks, machine learning, cutting tool

1 Introduction
This student paper presents the work carried out by Thibault

Comte, Hugues Louvancour, and Yanny Hassani on the UNIOR

project, under the mentorship of Žiga Kolar, prof. dr. Matjaž

Gams for Jozef Stefan Institute, and Joze Ravnican for Unior. The

objective of the UNIOR project is to detect when a cutting ma-

chine becomes worn out by analyzing sensor signals, specifically

accelerometer data along the x, y, and z axes. An accelerometer is
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mounted on the cutting machine to monitor vibrations occurring

during the cutting process. Currently, the detection of wear is

performed manually by a human operator. By leveraging artifi-

cial intelligence (AI) and machine learning (ML), this process can

be automated, making it both easier and more efficient.

While awaiting the company to complete the necessary pa-

perwork and acquire and install the accelerometer on the cutting

machine, we identified similar publicly available datasets and

conducted several machine learning experiments using them.

2 Related Work
This section briefly surveys recent research on the use of artificial

intelligence (AI) techniques for tool wear monitoring in manufac-

turing processes such as milling, turning, and drilling. Munaro

et al. [2] provide a systematic review of 77 studies, contrasting

offline and online monitoring methods. Online approaches lever-

aging sensor data—such as force, vibration, acoustic emission,

and power—are enhanced by AI models like SVMs, ANNs, CNNs,

and LSTMs, offering accuracies above 90% and industrial rele-

vance. Sieberg et al. [5] demonstrate CNN-based classification of

wear mechanisms from SEM images, achieving 73% test accuracy.

They emphasize dataset balance andmagnification consistency as

critical challenges. Colantonio et al. Shah et al. [4] argue for ML’s

superiority over physics-based models in wear prediction, un-

derscoring ANN’s predictive strength when supplied with high-

quality data and standardized evaluation methods. Recent studies

also explore multimodal sensor fusion, combining accelerometer,

acoustic, and force signals to improve robustness [8]. Specifically,

transfer learning has been shown effective for adapting models

trained on laboratory data to industrial machines [8].

Unlike previous reviews such as Munaro et al. [2], which

survey the field, our work provides a systematic multi-dataset

experimental comparison across three different sensor modalities

(accelerometer, vibration, audio) using standardized pipelines.

This benchmarking is not only descriptive but forms the basis for

industrial transfer to UNIOR’s production line, bridging academic

datasets with real machine applications.

3 Datasets
This section describes five different datasets that were identi-

fied—four containing accelerometer data and one featuring audio

recordings.
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3.1 Bosch CNC Machining Dataset
The Bosch CNC Machining dataset consists of real-world in-

dustrial vibration data collected from a brownfield CNC milling

machine. Acceleration was measured using a tri-axial Bosch CISS

sensor mounted inside the machine, recording the X, Y, and Z

axes at a sampling rate of 2 kHz. Both normal and anomalous data

were collected across six distinct timeframes, each spanning six

months between October 2018 and August 2021, with appropriate

labeling. Data were collected from three distinct CNC milling

machines, each executing 15 processes [7]. A total of 1,702 sam-

ples were obtained, with each labeled as either "good" or "bad."

The distribution of labels was 95.9% good and 4.1% bad.

3.2 Cutting Tool Wear Audio Dataset
This dataset comprises 1,488 ten-second .wav audio recordings

of cutting tool wear collected at two spindle speeds: 520 RPM

and 635 RPM. Each audio recording is labeled as either “BASE”

(machine running without cutting), “FRESH” (sharp cutting tool),

“MODERATE” (moderately worn tool), or “BROKEN” (broken or

fully worn tool). The “FRESH,” “MODERATE,” and “BROKEN” la-

bels were specifically chosen to simulate real cutting conditions,

focusing on scenarios where the machine is actively engaged

in material removal. In total, the dataset includes 400 “FRESH”

samples, 376 “MODERATE” samples, and 362 “BROKEN” samples

across both spindle speeds, offering a nearly balanced distribu-

tion well-suited for ML applications. Audio records had different

lengths. No artificial background noise was added to the record-

ings. All cutting tools used were 16 mm end-mill cutters, and the

workpiece material was mild steel [6].

3.3 Turning Dataset for Chatter
This dataset contains sensor signals collected from multiple cut-

ting tests using a range of measurement devices, including two

perpendicular single-axis accelerometers, a tri-axial accelerome-

ter, a microphone, and a laser tachometer. Both raw sensor data

and processed, labeled data from one channel of the tri-axial ac-

celerometer are provided. There were four labels used: no-chatter,

intermediate chatter, chatter, and unknown. The dataset contains

a total of 117 signals, with the following label distribution: 51 la-

beled as no-chatter, 19 as intermediate chatter, 22 as chatter, and

25 as unknown. Data were collected under four distinct cutting

configurations, defined by varying the stick out distance—the

distance from the heel of the boring rod to the back face of the

tool holder. The four stickout distances used were 5.08 cm (2

inches), 6.35 cm (2.5 inches), 8.89 cm (3.5 inches), and 11.43 cm

(4.5 inches) [8].

3.4 UCI Accelerometer Dataset
To simulate motor vibrations, a 12 cm Akasa AK-FN059 Viper

cooling fan was modified by attaching weights to its blades, and

an MMA8452Q accelerometer was mounted to capture vibration

data. An artificial neural network was then used to predict motor

failure time based on this data. Three distinct vibration scenarios

were generated by varying the placement of two weight pieces

on the fan blades: (1) Red – normal configuration, with weights

on neighboring blades; (2) Blue – perpendicular configuration,

with weights on blades 90° apart; and (3) Green – opposite con-

figuration, with weights on opposite blades. For each of the three

weight configurations, vibration data was collected every 20 ms

over a 1-minute interval per speed, resulting in 3,000 records

per speed. In total, the dataset contains 153,000 vibration records

from the simulation model [3].

3.5 Vibrations Dataset
This dataset contains vibrational data collected to support early

fault diagnosis in machinery The data was gathered using an

SG-Link tri-axial accelerometer sensor (by MICROSTRAIN Cor-

poration) at a sampling rate of 679 samples per second for each

of the three axes: axial (z), horizontal (x), and vertical (y). Experi-

ments were conducted in the Mechanical Vibration Laboratory

at the Mechanical Engineering Department of the University of

Engineering and Technology (UET), Taxila. The setup simulated

four distinct machine conditions: normal, cracking, offset pulley,

and wear states, using a test rig designed for fault simulation [1].

4 Methodology and Results
This section outlines the methodology used for each dataset,

focusing on multiclass classification. Various preprocessing tech-

niques and machine learning algorithms were applied.

4.1 Bosch CNC Machining Dataset
The Bosch CNC Machining Dataset contains 95.9% good signals

and 4.1% bad signals. The objective was to develop a binary

classification model that outperforms a naive baseline, which

achieves 95.9% accuracy simply by always predicting a signal as

good.

Two approaches were tested on the Bosch CNC Machining

dataset. The first approach applied random undersampling, which

balances class distribution by randomly removing samples from

the majority class while leaving the minority class unchanged.

Since the majority class accounted for 95.9% of the data, this step

was essential to prevent the model from defaulting to majority-

class predictions. After applying the random undersampling, the

Random forest model was used for binary classification. This

method achieved 99% accuracy on 5-fold cross validation, pro-

viding a 3.1% improvement over the naive baseline model.

Different preprocessing strategies were necessary due to dif-

ferences in data formats, sampling rates, and class balance across

datasets. For example, in the Bosch dataset, random undersam-

pling was applied only on the training folds during 5-fold CV to

avoid information leakage.

In the second approach, features were initially extracted using

two 1D Convolutional layers followed by two Max Pooling layers.

To augment the data, random Gaussian noise was added to the

signals, effectively doubling the size of the training set. A binary

classification model using Random Forest was then trained on

this augmented dataset. This model achieved a high accuracy

of 0.996 under 5-fold cross-validation, outperforming the naive

baseline by 3.7%.

McNemar’s test was applied between competing models on

each dataset. Significant differences (p < 0.05) were observed be-

tween CNN and Random Forest on the Bosch dataset, confirming

that improvements are not due to random variation.

4.2 Cutting Tool Wear Audio Dataset
The Cutting Tool Wear Audio Dataset contained 400 “FRESH”,

376 “MODERATE”, and 362 “BROKEN” samples across two spin-

dle speeds, requiring a multi-class classification approach. Since

the signals varied in length, we first identified the longest signal

(48000 samples) and zero-padded shorter signals to match this

length. To improve model accuracy, this maximum length was
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Figure 1: 5-Fold cross validation report and confusion ma-
trix for Cutting Tool Wear Audio dataset.

later reduced. The model architecture included two 1D Convo-

lutional layers and two 1D Max Pooling layers to reduce the

dimensionality of the data while preserving essential features.

The output from the upper layers served as input to a feature

selection algorithm, which identified the 96 most relevant fea-

tures out of a total of 2048. These selected features were then

used by a Random Forest classifier to predict the final label.

The best model for this dataset achieved 0.9279 (+/- 0.01) ac-

curacy and 0.9279 F1 score on 5-fold cross validation. Results

(precision, recall, F1-score and accuracy) are presented on Figure

1.

4.3 Turning Dataset for Chatter
Since each signal varies in length and can be quite long, an ap-

proach based on extracting time-domain and frequency-domain

features was implemented. This method preserves essential in-

formation from the original signals while significantly reducing

dimensionality, making the data more suitable for ML algorithms.

The following approach combines signal segmentation and

frequency-domain feature extraction to summarize the spectral

characteristics of a time-series signal. First, it divides the input

signal into overlapping or non-overlapping fixed-size windows

using a slidingwindow technique, where each segment is of 10000

windows length and the shift between consecutive segments is

determined by step size, which in this case is 5000. This allows

for localized analysis of signal dynamics over time.

Next, we applied the Fast Fourier Transform (FFT) to each

segment, converting the time-domain signal into its frequency-

domain representation. It computes the magnitude spectrum

for each segment and then averages the spectral magnitudes

across all segments to obtain a single, representative frequency-

domain feature vector. This results in a compact yet informative

summary that captures the dominant frequency components of

the entire signal, while accounting for temporal variation through

segmentation.

Furthermore, 11 additional features were extracted from the

raw signal, including the mean, standard deviation, minimum,

maximum, and median of the frequency values. These features

capture the signal’s central tendency and variability, providing

a statistical summary of its frequency content. The 25th and

75th percentiles further quantify the signal’s interquartile range,

highlighting its variability and robustness to outliers. Root mean

square (RMS) provides a measure of the signal’s overall power.

Skewness and kurtosis describe the asymmetry and peakedness

of the distribution, respectively, offering insights into the signal’s

shape beyond basic statistics. Finally, zero crossings count the

number of times the signal crosses the zero axis, serving as an

indicator of frequency content and signal complexity. Together,

these features form a rich representation for classification tasks

involving time-frequency signals.

In total, there were 268 features (257 FFT features and 11 addi-

tional features) and 117 samples. A feature selection technique

was applied to further reduce the number of features. 140 best

features were selected and used as input for Random Forest clas-

sifier.

The best model for this dataset achieved 0.80 (+/-0.06) accuracy

and 0.7588 F1-score on 5-fold cross validation. Results (precision,

recall, F1-score and accuracy) are depicted on Figure 2.

Figure 2: 5-Fold cross validation report and confusion ma-
trix for Turning dataset for Chatter.

4.4 UCI Accelerometer Dataset
This method implements a complete machine learning pipeline

for classifying time-series accelerometer data using features ex-

tracted from both the time and frequency domains. Data is first

loaded from a CSV file, where each row contains an activity label

and raw X, Y, and Z accelerometer readings. The signal is seg-

mented into non-overlapping windows of fixed size (50 samples,
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corresponding to 1 second at 50 Hz), and only windows with

consistent activity labels are retained for supervised learning.

Next, time-domain and frequency-domain features were ex-

tracted from a signal. Time-domain features include basic statis-

tics (mean, standard deviation, min, max, median), RMS, peak-to-

peak range, skewness, kurtosis, zero-crossing rate, signal energy,

and crest factor. Frequency-domain features are extracted via FFT

and include spectral centroid, spectral spread, peak frequency,

and energy in predefined low (0–5 Hz) and high (10–25 Hz) fre-

quency bands.

This feature-rich representation is passed through a machine

learning pipeline that includes feature scaling, univariate feature

selection (Select K Best ANOVA F-statistical method), and clas-

sification using a Random Forest classifier. The best model for

this dataset achieved 0.972 (+/-0.008) accuracy and 0.97 F1-score

on 5-fold cross validation. Results (precision, recall, F1-score and

accuracy) are depicted on Figure 3.

Figure 3: 5-Fold cross validation report and confusion ma-
trix for UCI Accelerometer dataset.

4.5 Vibrations Dataset
In this method the time series data was effectively segmented

into overlapping windows of fixed length 226. A total of 168,372

samples were generated, providing a sufficient amount of data

for training deep learning models. A Long Short-Term Memory

(LSTM) neural network was chosen due to its effectiveness in

handling sequential data. The network architecture consisted of

two LSTM layers with 128 and 64 units, respectively, along with

two Dropout layers incorporated to reduce the risk of overfitting

and improve generalization. This method achieved the best per-

formance to date, reaching an accuracy of 0.9948 (+/-0.005) in

5-fold cross-validation and an F1-score of 0.9949. The results are

presented on Figure 4.

5 Conclusion
This student paper explored machine learning for automated cut-

ting tool wear detection. Using five public datasets and models

such as Random Forests, CNNs, and LSTMs, we achieved strong

performance, notably 0.9949 F1 on the Vibrations dataset. These

benchmarks highlight ML’s potential for predictive maintenance

and provide ready-to-deploy pipelines for future industrial data.

Future work will focus on validating the model on industrial ma-

chines, optimizing its performance, and deploying it in real-time.

Additionally, for ordered domains like the Cutting Tool Wear

Audio dataset, misclassifications should not be penalized equally

(e.g., "FRESH" -> "MODERATE" vs. "FRESH" -> "BROKEN"). Thus,

future research will explore ordinal metrics, such as weighted

accuracy or quadratic weighted kappa.

Figure 4: 5-Fold cross validation report and confusion ma-
trix for Vibration dataset.

This study has several limitations. First, the datasets used

are publicly available and may not fully capture the variability

of industrial machining environments. Second, in some cases

class balance was artificially enforced via undersampling, which

could affect generalizability. Third, we recognize that the lack

of direct industrial validation is a current limitation. However,

our pipelines were designed for immediate deployment once the

company’s accelerometers are installed, ensuring direct continu-

ity from these benchmark studies to industrial application. This

study therefore serves as a reproducible foundation rather than a

final industrial deployment. Partial validation experiments with

UNIOR’s machines are planned as the next project stage.

Acknowledgements
The authors acknowledge funding support from the company

UNIOR for the GREMO LIGHTWEIGHT project. The authors

also acknowledge the funding from the Slovenian Research and

Innovation Agency (ARIS), Grant (PR-10495) and Basic core fund-

ing P2-0209.

References
[1] Muhammad Umar Khan, Muhammad Atif Imtiaz, Sumair Aziz, Zeeshan Ka-

reem, Athar Waseem, and Muhammad Ammar Akram. 2019. System design

for early fault diagnosis of machines using vibration features. In 2019 In-
ternational Conference on Power Generation Systems and Renewable Energy
Technologies (PGSRET). IEEE, 1–6.

[2] Roberto Munaro, Aldo Attanasio, and Antonio Del Prete. 2023. Tool wear

monitoring with artificial intelligence methods: a review. Journal of Manu-
facturing and Materials Processing, 7, 4, 129. doi: 10.3390/jmmp7040129.

[3] Gustavo Scalabrini Sampaio, Arnaldo Rabello de Aguiar Vallim Filho, Leilton

Santos da Silva, and Leandro Augusto da Silva. 2019. Prediction of motor

failure time using an artificial neural network. Sensors, 19, 19, 4342.
[4] Raj Shah, Nikhil Pai, Gavin Thomas, Swarn Jha, Vikram Mittal, Khosro

Shirvni, and Hong Liang. 2024. Machine learning in wear prediction. Journal
of Tribology, 147, 4, (Nov. 2024), 040801. eprint: https://asmedigitalcollection

.asme.org/tribology/article-pdf/147/4/040801/7400649/trib\_147\_4\_040801

.pdf. doi: 10.1115/1.4066865.

[5] Philipp Maximilian Sieberg, Dzhem Kurtulan, and Stefanie Hanke. 2022. Wear

mechanism classification using artificial intelligence. Materials, 15, 7, 2358.
doi: 10.3390/ma15072358.

[6] Nachiket Soni, Amit Kumar, and Hardik Patel. 2023. Acoustic analysis of

cutting tool vibrations of machines for anomaly detection and predictive

maintenance. In 2023 IEEE 11th Region 10 Humanitarian Technology Conference
(R10-HTC). IEEE, 43–46.

[7] Mohamed-Ali Tnani, Michael Feil, and Klaus Diepold. 2022. Smart data collec-

tion system for brownfield cnc milling machines: a new benchmark dataset

for data-driven machine monitoring. Procedia CIRP, 107, 131–136.
[8] Melih C Yesilli, Firas A Khasawneh, and Andreas Otto. 2020. On transfer

learning for chatter detection in turning using wavelet packet transform

and ensemble empirical mode decomposition. CIRP Journal of Manufacturing
Science and Technology, 28, 118–135.

46

https://doi.org/10.3390/jmmp7040129
https://asmedigitalcollection.asme.org/tribology/article-pdf/147/4/040801/7400649/trib\_147\_4\_040801.pdf
https://asmedigitalcollection.asme.org/tribology/article-pdf/147/4/040801/7400649/trib\_147\_4\_040801.pdf
https://asmedigitalcollection.asme.org/tribology/article-pdf/147/4/040801/7400649/trib\_147\_4\_040801.pdf
https://doi.org/10.1115/1.4066865
https://doi.org/10.3390/ma15072358


Extracting Structured Information About Food Loss and
Waste Measurement Practices Using Large Language Models:

A Feasibility Study
Junoš Lukan

junos.lukan@ijs.si
Jožef Stefan Institute

Department of Intelligent Systems
Jožef Stefan International

Postgraduate School
Ljubljana, Slovenia

Maori Inagawa
maoriinagawa@keio.jp
Jožef Stefan Institute

Department of Intelligent Systems
Ljubljana, Slovenia

Mitja Luštrek
mitja.lustrek@ijs.si

Jožef Stefan Institute
Department of Intelligent Systems

Jožef Stefan International
Postgraduate School
Ljubljana, Slovenia

Abstract
Waste Quantification Solutions to Limit Environmental
Stress (WASTELESS) project aims to develop and test
innovative tools and methodologies for measuring and mon-
itoring food loss and waste (FLW). A key objective is to
create a decision support toolbox that helps food actors
across the entire supply chain, including consumers, select
the most suitable method for measuring and monitoring
FLW. To help with this decision, existing, already tested
FLW measurement practices can be consulted, which are
currently published as short documents. In this work, we
show how the data about them can be extracted using
large language models (LLMs). Additionally, we propose
how this data can be structured and represented as an
ontology. With this process, we can help users find relevant
data without needing to browse through many documents.

Keywords
food loss and waste, large language models, data extraction,
ontology

1 Introduction
The project Waste Quantification Solutions to Limit Envi-
ronmental Stress (WASTELESS; https://wastelesseu.com/)
is designed to develop and test a mix of innovative tools
and methodologies for food loss and waste (FLW) measure-
ment and monitoring. One of the tasks is also to create a
decision support toolbox [10]. It should help all profiles of
food actors, i.e. across the whole food supply chain (FSC),
including consumers, who want to measure and monitor
their FLW, to select the most appropriate method.

There have been several attempts to harmonise FLW
measurement methods. The Food loss and waste accounting
and reporting standard (FLW Standard; [7]) stands out as
a good structured attempt. It was produced by the Food
Loss & Waste Protocol, a multi-stakeholder partnership
with involvement by Food and Agriculture Organization of
the United Nations (FAO) and World Resources Institute
among others.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
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The FLW standard establishes the scope of an FLW
inventory. Furthermore, it provides definitions of bound-
ary elements and recommendations for classifications that
should be used to describe them. For classifying food into
categories, it suggests the FAO’s and World Health Orga-
nization’s Codex General Standard for Food Additives [5].
We might add that alternatively, Annex II of “Regulation
(EC) No 1333/2008 of the European Parliament and of the
Council” can also be used. For lifecycle stage, the Interna-
tional Standard Industrial Classifications of All Economic
Activities (ISIC) or the Statistical Classification of Eco-
nomic Activities in the European Community (NACE) [4]
should be used. Finally, for geographical boundary clas-
sification UN region or country codes should be used or
Nomenclature of Territorial Units for Statistics (NUTS)
[2] in the European context.

The FLW standard also provides guidelines on how to
decide which quantification method to use for FLW mea-
surement or monitoring. The FLW Quantification method
ranking tool was prepared by the Waste and Resources
Action Programme (WRAP) and includes eleven questions.
Most of the questions serve as exclusion criteria. For ex-
ample, a negative response to either “Do you have existing
records that could be used for quantifying FLW?” (Q9)
or “Do you have access to those records?” (Q10) excludes
the method of records. As another example, a negative
response to “Can you get direct access to the FLW be-
ing quantified” (Q3) immediately excludes direct weighing,
counting, assessing volume, and waste composition analy-
sis, since these all need such access to be feasible. These
questions encapsulate the most important characteristics
by which these methods distinguish from one another and
lend themselves to particular needs of users.

In this paper, we build upon this work by proposing a
unified structure through which to describe various prac-
tices of FLW measurement and reduction. This is a step
towards systematic representation of these data that can
enable further analysis of the practices thus described and
their comparison and validation.

2 Methods
We first outline the structure of desired shortened descrip-
tions, report on the process of using large language models
(LLMs) to automatically extract them and finally evaluate
the results by comparing them to human annotations.
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2.1 Structure of Extracted Information
Based on the previously mentioned FLW Quantification
method ranking tool and domain-expert knowledge, we de-
termined the following characteristics of FLW measurement
methods and practices to be of the most importance:

(1) FLW method.
FLW measurement and reduction practices might
describe very specific technologies and techniques.
To make the information more general, we decided
to classify as one of ten categories of quantification
methods. These are described in detail in the Sup-
plement [8] to the FLW Accounting and Reporting
Standard [7].

(2) Region of interest.
European Union (EU) member countries have diverse
legislation that is of relevance to FLW measurement
(see [13] for a review). Some have legislation actions
that are legally binding, such as laws and regulations,
and as such prescribe methods of monitoring and
FLW measurement as well as the ways of reporting
the data. On the other hand, some countries only
approach the topic through non-binding legislation
actions, such as agency orders and policy papers. As
such, not every method might be appropriate for
every country or region.

(3) Food supply chain (FSC) stage.
Food loss and waste can occur at any stage of the
food supply chain, starting from farmers and other
producers, through food manufacturers and proces-
sors, distributors and shippers, grocery stores and
restaurants, all the way to the customers and con-
sumers. Some methods are more appropriate for cer-
tain stages in this chain. For example, a household
might keep a diary of their FLW, while sellers such
as grocery stores, generally manage their stock more
systematically and precisely.

(4) Accuracy.
FLW measurement methods need also to be consid-
ered from the point of desired accuracy. The highest
accuracy can be achieved by directly weighing the
waste or separating it into components (waste com-
position analysis), while diaries or volume assessment
produce data of medium accuracy. At the lowest end,
proxy data can be used to assess FLW, for example
by using data from another region to extrapolate
findings to another; keeping in mind that such data
will not be very accurate.

(5) Food category.
Depending on the type of food and how it is packed,
we might only be able to use some FLW measurement
methods, but not others. For example, when dealing
with packed food items, wasted products can be
simply counted and their weight inferred. Meanwhile,
when waste occurs with liquid food, such as milk,
volume assessment can be fairly accurate to estimate
the weight of FLW.

(6) Direct access to FLW.
Some food waste cannot be measured directly, such
as by weighing, counting, or waste composition anal-
ysis. For example, when waste is discarded directly
into the drain in the process of food processing, it

might be mixed with other waste water exiting the
processing plant. In cases like this, non-direct meth-
ods need to be employed, such as modelling or mass
balance.

To be able to suggest specific FLW practices according
to the criteria described above, we need to first describe
them in terms of these characteristics. For harmonious rep-
resentation, we used already mentioned NUTS and NACE
classifications for region of interest and FSC stage, respec-
tively. We also used a simplified version of FAO’s Global
individual food consumption (GIFT; [6]) classification to
describe food category. For accuracy, we opted for three
categorical levels of “low”, “medium”, and “high”, while
direct access to FLW can be represented with a simple
Boolean.

2.2 Extraction of Data
To test the extraction of data, we used 11 FLW measure-
ment and reduction practice descriptions. This included
3 descriptions of practices developed and piloted in the
WASTELESS project as well as 8 practices developed in
other European projects [16].

To extract data from FLW practice descriptions, we used
two LLMs: ChatGPT 5 Auto [12] and Le Chat [11]. The
prompt consisted of the following:

(1) Introduction: general summary of the whole extrac-
tion process;

(2) Main instructions:
(a) Information to be extracted: a list of questions,

the answers to which represent the data that is to
be extracted from the practice description;

(b) Data types and values: a list of possible values and
their types for each of the data field, including lists
of NUTS and NACE codes and food categories;

(c) Missing information: instructions on how to deal
with missing, incomplete, or unclear data;

(d) Format: description of the format of expected out-
put (.csv data);

(3) Example:
(a) Input: a short, synthetic description of a FLW

practice;
(b) Reasoning: values for all data fields and their rela-

tionship to original text, indicate missing values;
(c) Output: the expected line of data output.

We included all reference classifications as .csv files as well
as the Guidance on FLW Quantification Methods as a PDF.

Following this initial prompt, practice descriptions were
uploaded one by one and the output saved. The lead author
of this paper also extracted the same information from the
descriptions manually.

2.3 Evaluation of Results
To evaluate the extraction of data by LLMs, we compared
the output by these models to human annotations. Here,
the cases of multiple possible values and missing data need
to be considered. First, some characteristics can objectively
contain several values. For example, a FLW measurement
practice might be applicable to several FSC stages and
more than one food category. Secondly, some data cannot
be determined from the description of practice.
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For a characteristic with more than one possible value,
consider two subsets of all possible values (𝑈): human an-
notations (H ) and machine-extracted values (M). The fol-
lowing list gives the scores that were used in the evaluation
for all possible relationships of these two sets.

+2; when the subsets were equal, 𝐻 = 𝑀.
+1; when an LLM extracted more values than a human,

but including those, ∅ ≠ 𝐻 ⊂ 𝑀 ≠ 𝑈.
0; when the sets were overlapping, but neither contained

the other, that is, there was a partial match in values,
𝐻 ∩𝑀 ≠ ∅,𝐻 ⊈ 𝑀,𝑀 ⊈ 𝐻.

0; when there was data available, but LLM extracted
no information or returned all possible values, ∅ ≠
𝐻 ⊂ 𝑈 ,but 𝑀 = ∅ or 𝑀 = 𝑈.

-1; when an LLM failed to extract all values that a
human did, 𝑈 ⊇ 𝐻 ⊃ 𝑀 ≠ ∅.

-2; when the subsets had no values in common, i.e., were
disjoint, 𝐻 ∩𝑀 = ∅.

Note that for simple true or false values, this list simplifies
to the extreme cases; thus they were scored as +2 and −2,
respectively.

The reasoning behind the scoring is that we prefer to
describe a practice in broader terms, even if some extracted
values are inapplicable, rather than miss a particular value.
As an example, it is better to describe a practice as suit-
able for all food categories than missing the one that it
is actually suitable for. Similarly, when no information is
extracted, we can conservatively assume all values apply.
In such a case, an LLM failed objectively, but it is not
punished for it. In the worst case scenario, an LLM “ex-
tracted” or hallucinated some values, but they have nothing
in common with human annotations; for this two points
are deducted.

3 Results
To evaluate the extraction of data by the LLMs, we scored
their answers as described in Section 2.3. We summarised
these scores for each practice characteristic in Table 1,
where shown are the sum of scores and the number of per-
fect scores, that is the number of times the LLM completely
agreed with the human rater. The number of practices
tested was 11, which is therefore the maximum number of
perfect scores, while the maximum sum is 22.

Table 1: Agreement scores for each characteristic
of a FLW practice between a human rater and two
different LLMs. The sum of scores and the number
of perfect extractions are shown.

Model ChatGPT Le Chat
Metric Sum Perfect Sum Perfect

FLW method 13 8 3 5
Region 12 7 13 5
FSC stage 8 7 12 6
Accuracy −2 4 −5 3
Food category 22 11 21 10
Direct access 6 7 14 9

Total 59 44 58 38

Both models achieved similar scores in total across all
practice characteristics. ChatGPT did, however, perfectly
agree with the human rating more often. Of all the char-
acteristics, food category was the easiest for the LLMs to
extract. This is a simple classification and usually, the type
of food is mentioned explicitly. The FLW quantification
method was inferred with moderate success. On the other
hand, accuracy of methods was very poorly described.

4 Discussion
In this work, we have shown how using two LLMs, the
data from unstructured FLW measurement and reduction
practice descriptions can be extracted into structured data.
We achieved satisfying if imperfect results.

The most important data point, which is the class of the
FLW measurement method was extracted with moderate
success. It needs to be pointed out that extracted infor-
mation was not wildly inaccurate in most cases, despite
of what the scores might suggest. For example, a method
of tracking waste on a blockchain was classified as using
records, where in fact, the data were collected with sur-
veys before being, indeed, recorded. Similarly, one practice
described weighing waste as it was collected in the waste-
basket, while simultaneously taking photos of the material.
Here, the true measurement method was direct weighing,
but the LLMs classified it as waste composition analysis.
By using photos, such an analysis could in theory be done,
but was not in such case. Thus, to improve the relevance
of the FLW measurement method, we might instead group
them by some other characteristics. For example, we could
drop the data field of direct access and instead consider
groups of methods separated in terms of needing direct
access to waste.

Food category, however, was very reliably extracted. This
indicates that in the further process of the extracted data,
we could make the best use of the food type. Accuracy of
the method described was not extracted well, but this is
most likely due to the subjectivity of this characteristic.
The authors of FLW practice descriptions never explicitly
addressed the question of accuracy, so it needed to be esti-
mated roughly by other characteristics, such as the general
accuracy of the FLW method class. This also suggests that
a three-level accuracy is probably too fine grained and it
should be described only as “low” and “high”.

We should note that our evaluation only compares the
performance of LLMs to manual extraction of data per-
formed by a single person. It is expected that people would
also differ in their extractions, i.e., would not achieve per-
fect inter-rater agreement. Thus, the evaluation should
not be interpreted as how well the LLMs captured the
“objective” truth.

With this process, LLMs enabled us to transform the
descriptions from simple PDF files into structured CSV
files in a semi-automatic way. In terms of the five-star
rating of open data [9] which describes how to get from
data in proprietary formats to linked open data, we thus
increase their level from one star to three stars. We can
extend this further and increase the rating of this data to
five stars: publish truly linked data.

The first step that can follow directly the results of this
work is to transform the structure described in Section 2.1
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Listing 1: A snippet of the ontology in Turtle lan-
guage [1]
@prefix : <http://purl.archive.org/fwo/> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix dbpedia: <http://dbpedia.org/resource/> .

@base <http://purl.archive.org/fwo/> .

<http://purl.archive.org/fwo> rdf:type owl:Ontology .

##################### Classes #####################

:FoodLossWasteMeasurementPractice rdf:type owl:Class ;

rdfs:label "Food Loss and Waste Measurement

Practice"@en .

:Region rdf:type owl:Class ;

rdfs:label "A NUTS code of the region" ;

owl:equivalentClass

dbpedia:Nomenclature_of_Territorial_Units-

_for_Statistics .

:FoodCategory rdf:type owl:Class ;

rdfs:label "Food Category" .

:DairyAndEggs rdf:type owl:Class ;

rdfs:subClassOf :FoodCategory ;

rdfs:label "Dairy & Eggs" .

:Milk rdf:type owl:Class ;

rdfs:subClassOf :DairyAndEggs ;

rdfs:label "Milk" .

# ... more classes defined ...

################ Object Properties ################

:hasTitle rdf:type owl:DatatypeProperty ;

rdfs:domain :FoodLossWasteMeasurementPractice ;

rdfs:range rdfs:Literal ;

rdfs:label "with the title" .

:hasRegion rdf:type owl:ObjectProperty ;

rdfs:domain :FoodLossWasteMeasurementPractice ;

rdfs:range :Region ;

rdfs:label "applied in regions" .

:hasFoodCategory rdf:type owl:ObjectProperty ;

rdfs:domain :FoodLossWasteMeasurementPractice ;

rdfs:range :FoodCategory ;

rdfs:label "applicable to food categories" .

:hasAccuracy rdf:type owl:DatatypeProperty ;

rdfs:domain :FoodLossWasteMeasurementPractice ;

rdfs:range "low"^^xsd:string,

"medium"^^xsd:string, "high"^^xsd:string .

into an ontology. We illustrate this idea in Listing 1 which
encodes the characteristics as classes and how to connect
these to an individual practice using object and datatype
properties. Once we represent the structure like this, we can
encode a specific instance of FLW measurement practice
as:
:MyDairyWastePractice a

:FoodLossWasteMeasurementPractice ;

:hasTitle "Tracking Waste of Dairy in Slovenia" ;

:hasFoodCategory :WholeMilk ;

:hasAccuracy "high"^^xsd:string ;

:hasRegion :SI0.

The data on FLW measurement practices can then be
easily linked to other published data and the closest candi-
date ontology is the Food Waste Ontology by Stojanov et al.

[15]. The dataset described by this ontology is already vast
and is being extended through FoodWasteEXplorer [14]. By
leveraging it, we plan to publish the practice descriptions
as five-star data in future work.
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Abstract
Schizophrenia is associated with cognitive impairments that are
difficult to assess with traditional neuropsychological tests, which
are often lengthy and burdensome. Eye-tracking (ET) provides ob-
jective, minimally invasive measures of visual attention and cog-
nitive processing and may complement shorter assessments. This
study investigated whether ET features recorded during three
computerized tasks could distinguish patients with schizophrenia
from healthy controls. Using the Explainable Boosting Machine
(EBM), we achieved an accuracy of 0.86, and balanced sensitivity
and specificity, with an area under the curve exceeding 0.9. Fea-
tures related to fixation patterns, saccadic dynamics, and tempo-
ral engagement emerged as the most informative. These findings
indicate that ET features collected during brief cognitive tasks
can provide clinically relevant markers of schizophrenia. Incor-
porating ET into short test batteries may reduce patient burden
while enhancing diagnostic value, supporting the development
of scalable and practical screening tools.

Keywords
schizophrenia, eye-tracking, cognitive tasks, machine learning

1 Introduction
Schizophrenia is a severe and chronic neuropsychiatric disorder
that affects about 1% of the population worldwide and is charac-
terized by disturbances in thought, perception, and behavior [1].
In addition to positive and negative symptoms, patients expe-
rience pronounced cognitive impairments, including deficits in
attention, working memory, and executive functioning, which
substantially affect everyday life outcomes [2, 3]. Cognitive as-
sessment is therefore central for both diagnosis and monitoring
of schizophrenia. However, traditional neuropsychological test-
ing is lengthy, cognitively demanding, and often exhausting for
patients, limiting its feasibility in clinical practice. Shorter test
batteries reduce the burden but often fail to provide sufficiently
informative data for reliable diagnosis

Eye-tracking (ET) offers a promising avenue for addressing
this challenge. ET provides objective, real-time measures of vi-
sual attention, oculomotor control, and information processing
strategies [4]. Numerous studies have shown that patients with
schizophrenia exhibit abnormalities in smooth pursuit eye move-
ments, antisaccades, and fixation stability [5, 6, 7]. These alter-
ations are considered potential endophenotypes of the disorder,
as they are also observed in first-degree relatives who do not
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have schizophrenia [6, 7]. More recent work has extended ET
beyond basic oculomotor paradigms by embedding it in cognitive
tasks. For example, Okazaki et al. [8] combined ET metrics with
digit-symbol substitution tests and showed improved discrimi-
nation between patients and controls. Yang et al. [9] reported
that abnormal gaze patterns during reading tasks—such as longer
fixation durations and increased saccade counts—enabled high
diagnostic accuracy when analyzed with machine learning mod-
els. Similarly, Morita et al. [10] demonstrated the feasibility of
portable tablet-based ET combined with cognitive assessments
for schizophrenia screening. Collectively, these studies highlight
that combining ET with cognitive testing enriches diagnostic
value and provides insights into the cognitive mechanisms un-
derlying gaze abnormalities.

Building on this prior work, the present study investigates
whether ET features recorded during a small set of computerized
cognitive tasks can serve as reliable markers of schizophrenia.
Participants completed three tasks (digit span, picture naming,
and n-back), each divided into phases of instruction reading,
video demonstration, and test execution. From these tasks, we
extracted 117 ET features, including fixation measures, saccadic
dynamics, gaze entropy, and recording duration. We then ap-
plied machine learning methods to evaluate the discriminative
power of these features. By focusing on only three short tasks,
our aim is to test whether ET provides sufficient additional in-
formation to overcome the limitations of brief cognitive testing,
ultimately supporting the development of less burdensome but
more informative screening approaches.

2 Methods
2.1 Participants
The study involves 126 individuals, including 58 patients diag-
nosed with schizophrenia (SP) and 68 healthy controls (HC). All
participants were adults, aged 18 years or older. Patients were
recruited and tested at the University Psychiatric Hospital Ljubl-
jana. The control group was matched to the patient group on age
and gender.

Eligibility criteria required fluency in Slovenian and excluded
individuals with intellectual disability, organic brain disorders, or
a history of substance abuse. Additional exclusion criteria for the
HC group included any past or current psychiatric disorder. At
the time of assessment, all SP participants were receiving stable
doses of antipsychotic medication.

Demographic characteristics of the two groups are presented
in Table 1 and were analyzed to ensure that the groups were
comparable in terms of age and gender. While educational attain-
ment differed between groups, further analyses confirmed that
within each education level there were no significant differences
between SP and HC participants, indicating that education was
unlikely to confound the comparisons.
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Table 1: Demographic characteristics of participants.

Measure SP HC
Counts
Total participants 58 68
Male sex 29 35
Female sex 29 33
Continuous
Age (mean years) 46.1 46.7
Categorical
Most common education level Primary school High school
HC: Healthy Controls; SP: Patients with Schizophrenia

The study was approved by the Medical Ethics Committee of
the Republic of Slovenia (approval number: 0120-51/2024-2711-
4). All participants received a detailed explanation of the study
procedures and provided written informed consent prior to par-
ticipation.

2.2 Testing Procedure
Eye-tracking data were collected using a Tobii Pro Spectrum [11]
eye tracker integrated into a 24-inch monitor with a resolution
of 1920×1080 pixels. Recordings were made at 1200 Hz in the
“human” tracking mode, with a stimulus presentation latency of
approximately 10 ms. The display frame rate was 30 FPS. Partic-
ipants sat ∼55cm from the monitor, in a upright position with
seating adjusted for comfort and optimal tracking.

Before each task, participants were seated comfortably, and the
Tobii Pro Lab [12] interface provided a live preview (see Fig. 1) to
verify that both eyes were detected and that the viewing distance
was within the recommended range (displayed as a green zone,
typically around 55 cm). Once this was confirmed, a standard
five-point calibration was performed, during which participants
followed a moving dot across the screen. Calibration served both
to align gaze tracking and to ensure that the participant had
not moved their head between tasks. If the system indicated
suboptimal accuracy, the calibration was repeated.

Figure 1: Calibration interface in Tobii Pro Lab. The pre-
view window ensures both eyes are detected and the par-
ticipant is seated at an appropriate distance (green zone,
approximately 55 cm) before calibration and testing begin.

Participants completed three computerized cognitive tasks in a
fixed order: digit span (DS), n-back (NB), and picture naming (PS).
A short break was provided between tasks, with the duration
determined by each participant. All tasks were presented within
the Tobii Pro Lab application, which also stored the raw data.
After recording, the data were exported and processed using a
custom Python program for feature extraction and analysis.

Each task followed the same three-phase structure:
(1) Reading instructions. Written instructions were dis-

played on the screen. Participants could read them at their
own pace and advanced to the next phase with a mouse
click.

(2) Video example. A short instructional video was pre-
sented once, demonstrating the task procedure.

(3) Test execution. The participant began the task when
ready. Task duration depended on individual performance.

The procedure was identical for all participants, ensuring stan-
dardization across groups. Only the test execution phase varied
in length, as it was determined by each participant’s performance.
Group-level descriptive statistics of fixation durations for all tasks
and phases are reported in the Results section (Table 3).

2.3 Feature Extraction
We extracted a total of 117 ET features from three computerized
cognitive tasks. As described in Section 2.2, each task was divided
into three phases: instruction reading (BN), video demonstration
(GN), and test execution (T).

Each participant contributed a single data point to the ML
analysis. For every task (DS, PS, NB) and every phase (BN, GN,
T), we computed the 13 eye-tracking features listed in Table 2.
Each feature was calculated over the entire duration of the given
phase (e.g., the number of fixations refers to the total count during
that phase, while mean fixation duration refers to the average
across all fixations in that phase). These were then concatenated
across all tasks and phases, yielding 117 features per participant.
Thus, the unit of analysis was the participant, not individual trials
or task phases.

2.4 Data Analysis
We trained and evaluated several machine learning models using
these features.We applied stratified 10-fold cross-validation at the
subject level to ensure that all features from a given participant
were assigned exclusively to either the training or test set, thereby
preventing data leakage across folds. In each iteration, the model
was trained on nine folds and tested on the remaining one, and the
reported metrics represent averages across all folds. Performance
was assessed using accuracy, sensitivity, specificity, and the area
under the receiver operating characteristic curve (AUC). The
final results were reported as the average across all folds.

We evaluated a diverse set of ML models (logistic regression,
random forest, gradient boosting, extreme gradient boosting,
and the explainable boosting machine) to cover both linear and
non-linear approaches with varying levels of interpretability.
EBM was selected as the primary model because it consistently
achieved the highest overall performance while providing in-
herently interpretable feature importance, which is particularly
valuable in clinical contexts. We did not pursue deep neural
networks in this study, as the dataset size (126 participants) is
relatively small and does not provide sufficient power to train
high-capacity models without overfitting.
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Table 2: Eye-tracking features extracted from each task and phase.

Feature Description

num_fixations Total number of fixations during the interval.
avg_fixation_duration Mean duration of fixations (ms), indicating fixation stability.
std_fixation_duration Standard deviation of fixation duration, reflecting variability in fixation times.
num_saccades Total number of saccadic eye movements.
avg_saccade_distance Mean distance of saccades, reflecting amplitude of eye shifts.
avg_saccade_velocity Mean velocity of saccades, indicating how quickly gaze shifts occurred.
avg_saccade_angle Average angular change of saccades, reflecting directional scanning patterns.
gaze_entropy Entropy of gaze distribution, quantifying dispersion vs. concentration of gaze.
recording_duration_ms Total duration of recording for the phase (ms).
unique_squares Number of unique spatial areas (AOIs) visited during the interval.
num_changes Number of transitions between distinct gaze areas.
missing_left_percent Percentage of missing data from the left eye.
missing_right_percent Percentage of missing data from the right eye.
Note: All features are computed as aggregates over the entire task phase for each participant.

3 Results
To characterize task engagement and potential variability be-
tween groups, we compared fixation durations across all tasks
and phases (Table 3). SP showed longer fixations than HC, espe-
cially during instruction reading and video phases, with smaller
but consistent differences during execution. This indicates altered
attention even outside active task solving.

Table 3: Mean fixation duration in ms per task and phase.

Task Phase HC (Mean ± SD) SP (Mean ± SD)

Numbers
Reading instructions 239.64 ± 47.79 283.97 ± 45.33
Watching video 352.14 ± 81.56 400.10 ± 89.51
Test execution 390.66 ± 83.92 407.60 ± 98.53

Pictures
Reading instructions 228.44 ± 52.49 267.78 ± 60.79
Watching video 302.40 ± 69.06 368.93 ± 81.42
Test execution 301.97 ± 49.91 319.36 ± 58.07

Square
Reading instructions 229.36 ± 45.41 286.70 ± 63.42
Watching video 309.41 ± 89.45 352.08 ± 79.37
Test execution 394.91 ± 115.50 406.24 ± 99.36

SD: Standard deviation; HC: Healthy controls; SP: Schizophrenia patients

The ML models were trained on 117 extracted eye-tracking
features and achieved strong performance in distinguishing SP
from HC. The key cross-validation performance metrics are sum-
marized in Table 4.

Table 4: Cross-validation performancemetrics for different
models. The Explainable BoostingMachine (EBM) achieved
the best overall performance across all metrics.

Model Accuracy Sensitivity Specificity AUC
EBM 0.86 0.84 0.86 0.93
LR 0.85 0.77 0.91 0.92
GB 0.78 0.70 0.84 0.83
RF 0.83 0.84 0.82 0.91
xGB 0.81 0.77 0.85 0.90
EBM: Explainable Boosting Machine; LR: Logistic Regression; GB: Gradient
Boosting; RF: Random Forest; xGB: Extreme Gradient Boosting

Among the tested models, the EBM achieved the highest over-
all performance and was therefore selected for detailed analysis.

Fig 2 presents the receiver operating characteristic (ROC) curve,
which confirms the model’s strong discriminative ability.

Figure 2: ROC curve for the EBM model. The mean AUC
across folds was 0.92, confirming strong classification per-
formance.

We analyzed the feature importance scores provided by EBM,
focusing on the ten most informative features (Fig 3). These fea-
tures were predominantly derived from the test execution phases
and included measures such as recording duration, number of
fixations, mean fixation duration, and saccadic counts.

4 Discussion
The present study demonstrates that eye-tracking (ET) features
obtained during brief computerized cognitive tasks can effectively
discriminate between individuals with schizophrenia and healthy
controls. Using 117 features, the Explainable Boosting Machine
(EBM) achieved strong classification performance, with accuracy,
sensitivity, and specificity values around 0.85 and an AUC of 0.92.
These results provide further evidence that ET-based measures
capture clinically relevant differences in cognitive processing
and attentional control in schizophrenia.

Our findings are consistent with previous work showing
that patients with schizophrenia exhibit abnormalities in fix-
ation behavior, saccadic dynamics, and gaze distribution during
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Figure 3: Top 10 most important features identified by the
EBMmodel. The prefixes indicate the task and phase: DS =
digit span, PS = picture naming, NB = n-back; BN = reading
instructions, GN = watching video, T = test solving. For
example, PS_T_num_fixations refers to the number of fixa-
tions during the test phase of the picture naming task.

both simple oculomotor paradigms and more complex cogni-
tive tasks [5, 6, 7, 8, 9, 10]. Importantly, by embedding ET into a
small set of standardized cognitive tasks, we demonstrate that
group differences emerge not only during active problem solving
but also in more passive phases such as reading instructions or
watching a video example. This suggests that ET provides valu-
able information across the continuum of cognitive engagement,
extending beyond traditional task performance metrics.

While prior studies have applied machine learning to ET data
in schizophrenia, they have typically relied on single paradigms
or isolated task conditions. The novelty of the present work lies
in combining a multi-task, multi-phase design with interpretable
ML within a short, clinically feasible test battery. This approach
captures a broader range of cognitive and attentional processes
while linking model performance to specific, clinically meaning-
ful features.

Interpretability showed that temporal engagement, fixation
stability, and saccadic activity best differentiated groups. Longer
recording durations may reflect slower processing, while altered
fixations and saccades align with prior reports of impaired atten-
tional control. These findings suggest that eye-tracking captures
both temporal and oculomotor aspects of task performance, sup-
porting its potential as a clinically meaningful biomarker.

From a clinical perspective, these results are encouraging. Tra-
ditional neuropsychological assessments are lengthy and cogni-
tively demanding, which can be exhausting for patients and limit
their applicability. Our study shows that by integrating ET mea-
sures into just three relatively brief cognitive tasks, it is possible
to achieve a high level of diagnostic accuracy. This approach may
therefore support the development of shorter, less burdensome,
and more objective screening protocols that could complement
existing clinical evaluations.

Limitations and Future Work
Several limitations should be noted. First, although our sample
size of 126 participants is comparable to similar studies, larger
and more diverse cohorts are needed to confirm the generalizabil-
ity of the results. Second, all patients were on stable antipsychotic
medication, which may have influenced oculomotor behavior.

Third, while we employed subject-level cross-validation to pre-
vent data leakage, robustness checks such as leave-one-subject-
out or leave-one-task-out validation could further strengthen
reliability. Fourth, our analysis focused on static ET features;
dynamic sequence-based or deep learning models could capture
additional temporal information in gaze patterns. Finally, we
only tested three tasks; future research should explore whether
expanding or tailoring the task battery improves performance
while still keeping the protocol brief. Replication with indepen-
dent cohorts will be essential to establish clinical utility.

Conclusion
In conclusion, this study provides strong evidence that eye-
tracking features embedded within short cognitive tasks can
serve as robust markers of schizophrenia. Machine learning mod-
els trained on these features achieved high discriminative accu-
racy, with interpretable patterns that align with known atten-
tional and cognitive impairments in the disorder. By reducing
patient burden while maintaining informativeness, this approach
holds promise for the development of accessible, scalable, and
clinically relevant screening tools for schizophrenia.
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Figure 1: Truck driving simulator developed by AAER Research d.o.o.

Abstract
This paper investigates which driving features (e.g. speed, accel-

eration, braking) most strongly affect driving efficiency in a truck

simulator environment. The work systematically compares sta-

tistical methods (thresholding based on percentiles, IQRs, expert

rules) with machine learning methods (clustering using K-means)

for driver assessment. In addition to practical machine learning

experimentation, the analysis incorporates expert knowledge

and insights from recent research. This approach evaluates the

agreement and differences between the two approaches and aims

to interpret them.

Keywords
Driving simulation, fuel efficiency, percentiles, K-Means, SHAP,

statistical thresholds, machine learning, clustering

1 Introduction
Reducing fuel consumption in road transport is a critical goal for

sustainability and cost-efficiency [1]. Prior research, such as [2,

3], highlights the impact of driver behaviour - particularly accel-

eration, braking, and speed profiles on overall fuel efficiency. Yet,

how to most effectively quantify and compare drivers remains an

open question [4]. This paper addresses which driving features

most strongly influence efficiency in a simulated truck driving

environment, comparing classical statistical thresholding, based

on expert knowledge, with clustering - based machine learning.

Applying known methods, we test whether unsupervised ML can
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identify driver features with stronger influence on fuel consump-

tion than fixed-threshold rules, providing a data-driven baseline

for future model-based feedback.

In addition, we compare the empirical outcomes of our ML

analytics with insights from recent literature and the practical

judgement of a driving expert, to pinpoint where domain knowl-

edge aligns or conflicts with the models. This dual perspective

enables a richer interpretation of driver assessment tools and

informs the design of future vehicle feedback and incentive sys-

tems.

2 Related Work
Recent studies have evaluated driver behaviour for fuel efficiency

using both statistical rules and machine-learning approaches.

Sullivan et al. present a TORCS-based simulator with a realistic

fuel-economy model, enabling safe, repeatable analysis of eco-

driving strategies [5]. Maisonneuve characterises driver energy

efficiency across driving events and proposes a grading/ranking

method based on identified parameters [6]. Zhao et al. develop

a simulator-based eco-driving support system with real-time

feedback and post-drive reports, demonstrating measurable re-

ductions in fuel use and emissions [7]. Ma et al. provide a scoping

review of energy-efficient driving behaviours and applied AI

methods [8]. Prototype driver-training systems have been pro-

posed [9], and large-scale, data-driven frameworks to incentivise

efficient driving have been developed [3, 10].

Most studies agree that key features include speed, throttle,

brake usage, and sometimes gear selection, but differ on methods

for quantifying and weighting these features. Machine learning

clustering (e.g., K-means) and feature importance analysis (e.g.,

SHAP) are increasingly used, offering potential improvements in

objectivity and interpretability of drivers.
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3 Methods
3.1 Data Collection and Preprocessing
Driving data were collected from a high-fidelity truck simulator

developed byAAERResearch d.o.o., which continuously recorded

multiple parameters including pedal positions, steering wheel

angle, vehicle speed, location, and segment identifiers. To ensure

data quality, missing or zeroed pedal values were imputed. The

signals were then resampled into 1-second windows, where for

each parameter we computed the minimum, maximum, mean,

and median values. This aggregation approach was chosen over

raw resampling because the signals are irregular, zero-inflated,

and not normally distributed, making window-based statistics

more representative of driver behavior. In addition, the last ob-

served cumulative distance within each window was retained to

preserve distance continuity. Finally, the processed signals were

aligned with the boundary of the scenario segment, allowing a

consistent basis for later efficiency evaluation.

3.2 Rule-based Aggregation of Segment Labels
We aggregated per-segment labels (PASS/WARN /FAIL) into an

overall per-driver rating using a linear severity score. A FAIL in-

dicates a strong threshold exceedance and is therefore weighted

twice a WARN, yielding a simple, interpretable metric that toler-

ates occasional minor deviations.

𝑆 = 2 #FAIL + #WARN,

Rating(𝑆) =


Good, 𝑆 ≤ 2,

Warning, 3 ≤ 𝑆 ≤ 5,

Bad, 𝑆 ≥ 6 .

This 2:1 weighting reflects relative severity (a FAIL is a clearer

breach of the threshold than a WARN ) and preserves stability:

small label fluctuations do not flip a driver from Good to Bad. The
middle band (Warning) collects borderline cases for review.

Table 1: Per-driver severity summary (𝑆 = 2·#FAIL+#WARN).

Driver #WARN #FAIL 𝑆 Rating

1 4 1 6 Bad

10 5 1 7 Bad

2 7 2 11 Bad

3 4 0 4 Warning

4 4 0 4 Warning

5 6 2 10 Bad

6 3 0 3 Warning

7 3 0 3 Warning

8 4 0 4 Warning

3.3 Machine Learning
3.3.1 K-means clustering. Unsupervised clustering of K-means

(k = 3) was applied per segment on standardized aggregated

characteristics (acceleration / braking variability, coasting, use of

cruise control, speed-related measures). Clusters were assigned

semantic labels Good/Warning/Bad post hoc by ordering clusters

by their mean fuel rate (fuel_mean): lowest → Good, middle →
Warning, highest → Bad. We then examined cluster centroids

(mean feature profiles) and visualised the result as per-segment

heatmaps.

3.3.2 SHAP with LightGBM model. As an orthogonal check of

feature relevance, we applied SHAP to a separate LightGBM

model predicting fuel rate; this diagnostic analysis is independent

of clustering and highlights variables linked to higher consump-

tion (Table 2).

4 Results
4.1 Statistical Thresholding Approach
Based on the analysis of related worke outlined in Section 2, we

decided to benchmark driver efficiency based on selected driving

features.We investigated two methods covering complementary

metrics of acceleration and braking, namely:

• Percentile-based thresholds for gas pedal

• IQR method for brake pedal

Percentiles were chosen for the gas pedal because the sig-

nal is highly zero-inflated and not normally distributed, making

distribution-aware thresholds more suitable. Braking behavior is

irregular and heavy-tailed, where IQR offers a robust way to cap-

ture abnormal events. In essence, the IQR rule sets a dispersion-

anchored cut-off above Q3-robust to heavy tails-whereas per-

centile thresholds fix the share of events flagged. Thresholds

were determined by examining histograms of pedal deltas (Fig-

ure 2), ensuring that cutoffs meaningfully separated typical from

extreme behavior. This procedure enabled transparent, segment-

level benchmarking of driver performance.

Figure 2: Histograms for both pedals

Threshold characterisation:

• Gas Pedal: We applied percentile-based thresholds (65th

for WARN, 83rd for FAIL) to the gas pedal delta (change

in 0,1 second). This approach better captures outlier accel-

eration behavior while avoiding over-penalizing normal

operation. We removed windows where cruise control

was active for more than 30% of the time to reduce au-

tomation bias in pedal measurements. It was chosen to

balance isolating manual control with keeping enough

observations.

• Brake Pedal: We applied an interquartile–range rule com-

puted from the empirical distribution in each segment:

with the third quartile 𝑄3 and the interquartile range

IQR = 𝑄3 − 𝑄1, we set WARN at 𝑄3 + 0.5 IQR and FAIL
at 𝑄3 + 1.5 IQR. It flags both frequent moderate excesses

(WARN ) and rare but severe braking events (FAIL) without
over-penalising normal behaviour.

Certain segments in the driving scenario required strong brak-

ing due to test design (e.g., safety-critical stops). These were

labelled as SAFETY and excluded from efficiency scoring, as they

reflect controlled conditions rather than natural driving quality.

The resulting classifications are summarised as heatmaps (Fig-

ures 3 and 4), where rows correspond to drivers and columns

to scenario segments. Cells are coloured green (PASS), orange
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(WARN), and red (FAIL), providing an intuitive visual overview

of performance variability. PASS/WARN/FAIL are segment-level,

per-driver labels that state whether the segment was driven effi-

ciently in terms of fuel use: PASS = efficient, WARN = borderline,

FAIL = inefficient. These labels refer only to fuel consumption,

not safety or travel time. Blank (white) cells indicate cases with-

out an assigned label—either SAFETY segments excluded from

scoring or driver–segment pairs with too few events to make a

reliable decision.

Figure 3: Heatmap of the gas pedal through segments using
percentiles method

Figure 4: Heat map of the brake pedal through segments
using IQR method

4.2 Comparison of Thresholding and
Clustering

A focused comparison was carried out on three representative

track segments: Segment 1, Segment 8, and Segment 4 using the

two complementary methods described in Section 3 (statistical

thresholding and K-means clustering). For visualization only,

we projected standardised features onto two principal compo-

nents (PCA) per segment; clustering and label assignment were

performed in the original standardised space.

4.2.1 Segment 1 (Steady Acceleration). The percentile method

flagged only one driver as exceeding the ’FAIL’ threshold, while

most achieved the ’PASS’ status. The clustering of K-means pro-

duced a tightly grouped ’Good’ cluster for most drivers, with a

single ’Bad’ outlier (visible in PCA as an isolated point on the pos-

itive PC1 axis). Agreement between methods was high (>85 %),

suggesting that, in simpler acceleration scenarios, single-feature

metrics and multidimensional clustering agree well.

4.2.2 Segment 4 (Prolonged Uphill Driving). Here the disagree-
ment was most pronounced. The percentile rule classified many

drivers as PASS because their maximum throttle did not ex-

ceed the cut-off. In contrast, K-means frequently assigned them

Figure 5: K-means graph for 1st segment

Figure 6: K-means graph for 4th segment

to Warning or Bad. The 2D PCA projection (Figure 6) shows

these drivers displaced from the Good centroid, driven by sus-

tained high-load throttle (elevated accelerator mean/variance),

low coasting, and reduced cruise-control usage—patterns that the

single-peak percentile metric does not penalize. This highlights

clustering’s sensitivity to cumulative demand and multi-feature

context, whereas the percentile approach captures only isolated

exceedances.

Figure 7: K-means graph for 8th segment

4.2.3 Segment 8 (Complex Curve–Acceleration Mix). This seg-
ment showed more divergence. The percentile method marked

several drivers as ’WARN’ due to short bursts of high throttle,

while K-means placed some of these drivers in the ’Good’ cluster.

PCA visualization revealed that these drivers exhibited smoother

braking and higher coasting ratios, which the clustering model

positively weighted. This highlights a key difference: the sta-

tistical approach penalizes isolated peaks, whereas clustering

balances them against compensatory behaviors.
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4.2.4 Cross-approachObservations. The alignmentwas strongest

in steady demand scenarios (Segment 1), weaker in mixed behav-

ior contexts (Segment 8), and lowest in sustained load conditions

(Segment 4). Statistical thresholding offers high interpretabil-

ity and segment-level clarity, but may overlook multi-feature

inefficiencies. K-means clustering captures complex, composite

behavior and can sometimes reclassify drivers that the percentile

method labels as efficient. It would be interesting for future work

to implement more driver features and analyse in depth which

have a different effect.

We additionally investigated the alignment between model-

based feature importances and expert knowledge/domain expec-

tations using SHAP.

Table 2: Top-5 features per class

Class Top 1 Top 2 Top 3 Top 4 Top 5

Bad AccelerationPedal Speed Acceleration SteeringWheelAngle BrakePedal

Medium Speed AccelerationPedal Acceleration SteeringWheelAngle BrakePedal

Good AccelerationPedal Speed Acceleration SteeringWheelAngle BrakePedal

Perfect AccelerationPedal Speed Acceleration SteeringWheelAngle BrakePedal

Table 2 presents the five most influential features for each

consumption class (Bad, Medium, Good, Perfect), ranked by their

mean absolute SHAP value. The model consistently identifies

AccelerationPedal and BrakePedal among the top-ranked features

across multiple classes, in line with the statistical benchmark

results from Section 4.1, where pedal usage was also the dominant

indicator of inefficient driving events. This agreement confirms

that the machine learning approach captures the same domain-

relevant control inputs as the thresholds defined by the expert,

while also highlighting secondary but relevant factors such as

Speed, Acceleration, and SteeringWheelAngle.

4.3 Pareto Front of Time–Fuel Trade-Offs

Figure 8: Pareto front

An interesting point of view would be to also consider the

temporal information. Fuel consumption may reduce costs, but

time is also quite important. Figure 8 plots the total time against

the total fuel per driver. A driver is Pareto efficient if no other

driver is faster and uses less fuel; these form the lower-left frontier.

The points to the upper-right are dominated and can improve

at least one objective without worsening the other. We obtain

the frontier by non-dominated sorting of per-driver (𝑇𝑖𝑚𝑒, 𝐹𝑢𝑒𝑙)
totals and colour points by their K-means group, explicitly linking

global efficiency to the segment-level patterns identified earlier.

5 Discussion
This comparative study shows that rule-based thresholding re-

mains highly interpretable and aligns with prior work, while

K-means clustering reveals multi-feature patterns that affect ef-

ficiency. In practice, percentile rules flag isolated exceedances,

whereas clustering captures cumulative demand and co-variation,

explaining the discrepancies observed in segments such as Fig-

ure 6. Together, the methods are complementary: thresholding of-

fers transparent guardrails; clustering provides a broader, context-

aware view.

6 Conclusions
The results suggest that integrating both statistical and machine

learning perspectives offers a more robust and nuanced driver

assessment for fuel efficiency. While classical thresholding offers

transparency, machine learning enables the discovery of complex

patterns. Future work should further validate these findings to

develop hybrid driver feedback systems. We only used SHAP

diagnostically; a more systematic SHAP analysis would be inter-

esting across models, segments, and time, to stabilize attributions

and translate them into actionable feedback.
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Abstract
Schizophrenia is associated with cognitive impairments that are
difficult to assess with traditional neuro-psychological tests. Cur-
rently, these tests are manually administered by clinical doctors
and rely on subjective assessment of patient’s behavior, self-
reported symptoms, medical history, and mental state. Recent ad-
vances in deep learning substantially improved automatic speech
recognition (ASR), and large language models (LLMs), enabling
the development of computational tools that can partially auto-
mate aspects of psychiatric assessment. We present the first fully
automated classification of individuals with schizophrenia based
on verbal-fluency tests conducted in Slovene language. Our multi-
stage pipeline involves audio preprocessing, automatic transcrip-
tion using the Truebar ASR model, the extraction of meaningful
verbal and non-verbal features, and learning a machine learning
model. The Explainable Boosting Machine (EBM) trained on the
obtained feature set achieved the best overall performance.

Keywords
schizophrenia, automatic speech recognition, large language
models, verbal-fluency tasks, machine learning

1 Introduction
Schizophrenia is a chronic and severe mental disorder [8, 11] that
affects how a person thinks, feels, and behaves. As a psychotic
disorder it is characterized by a combination of disorganized
thinking and behavior, hallucinations, and delusions [2, 14]. The
symptoms have major implications on individual’s social life and
can lead to a lifelong care [1, 7]. Schizophrenia affects about 1%
of the population worldwide [9].

Currently, there is no objective or standardized diagnostic test
for schizophrenia. The most widely used diagnostic frameworks
in clinical practice are the DSM-5 [2] and the ICD-11 [14]. With
rapid improvements in automatic speech recognition (ASR), large
language models (LLMs), and machine learning, there is rising
interest in computational tools that support, augment, or partially
automate aspects of psychiatric assessment.

Clinicians have long noted that schizophrenia systematically
affects speech in two ways:

(1) how people speak: acoustic-prosodic markers such as
pause structure, speech rate, and prosodic variability, and
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(2) what they say: lexical-semantic markers such as category
switching, perseverations, and vocabulary diversity.

These are best observed during verbal-fluency tasks - short,
standardized, low-burden, and already used in clinical practice.
Our main hypothesis is that short recordings of Slovene verbal-
fluency tasks contain sufficient discriminative signal, captured
by acoustic and semantic features, to separate individuals with
schizophrenia from healthy controls.

In this paper, we present automated machine learning pipeline
for the detection and explanation of schizophrenia, leveraging the
capabilities of ASR models and state-of-the-art LLMs. The tests
were conducted in the Slovene language and consisted of two one-
minute subtasks: (1) a semantic fluency task, where participants
were asked to list as many animal names as possible, and (2)
a phonetic fluency task, where participants were instructed to
generate words beginning with the letter ‘L’. The approach is
based on audio recordings of verbal fluency tests collected by
Marinković [10]. Our results can be directly compared to those
reported byMarinković [10], where the transcription and analysis
of the tests were performed manually. The details of our study
are extensively described in [13].

2 Methods
2.1 Participants
The dataset comprises of 126 participants: 58 individuals with a
clinical diagnosis of schizophrenia (SH), and 68 healthy controls
(HC). All individuals in the SH group were patients admitted to
the University Psychiatric Clinic Ljubljana. All participants were
adults aged 18 years or older and gave consent to being part of
the experiment.

Standard demographic information was collected for each
participant, including age, gender, highest level of education,
academic performance (school grades), marital status, and em-
ployment status. The dataset is balanced with respect to age and
gender.

For participants diagnosed with schizophrenia, additional clin-
ical information was recorded: illness duration, number of hospi-
talizations, and the presence of chronic or co-occurring health
conditions. The median illness duration among individuals with
schizophrenia was 10 years, with a median of 4 hospitalizations.

The study was approved by the Medical Ethics Committee of
the Republic of Slovenia (approval number: 0120-51/2024-2711-
4). All participants received a detailed explanation of the study
procedures and provided written informed consent prior to par-
ticipation.
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Measure SH HC

Total Participants 58 68
Male Distribution 29 35
Female Distribution 29 33
Median Age (years) 45 46.5
Median Primary School Grade 3 5
Median High School Grade 3 4
Median Illness Duration (years) 10 –
Median Number of Hospitalizations 4 –
Prevalent Education Level Elem. HS
Prevalent Marital Status Married Married
Prevalent Employment Status Retired Employed

Table 1: Demographic and clinical characteristics of the
participants.

2.2 Testing procedure
Each participant completed a verbal fluency test consisting of
two sub-tasks:

(1) Phonetic fluency task: participants were asked to pro-
duce as many Slovene words as possible beginning with
the letter ‘L’. Proper nouns, including names of people or
places, were not allowed. The task lasted 62 seconds in
total: during the first 2 seconds, the letter ‘L’ was displayed
on the screen, followed by 60 seconds for verbal response.

(2) Semantic fluency task: participants were instructed to
name as many animals as possible in the Slovene language.
Pet names and proper nouns were not allowed. The task
duration was 60 seconds.

The testing procedure was standardized: each individual was
seated in front of a laptop computer. After reading the instruc-
tions for the phonetic fluency task, the participant pressed a key
to begin, initiating the countdown. After completing the first
task, the instructions for the second task (semantic fluency) were
displayed. Again, the participant initiated the task by pressing a
key when ready. This concluded the verbal fluency test.

Healthy participants were tested at the Faculty of Computer
and Information Science, University of Ljubljana, while individu-
als with schizophrenia were assessed at the University Psychi-
atric Clinic Ljubljana. To ensure consistency across conditions, all
recordings were conducted in quiet, isolated rooms to eliminate
possible noise and distractions.

All WAV files then underwent the same audio enhancement
pipeline: (i) dynamic range compression to reduce variability due
to speaking loudness and microphone distance, and (ii) loudness
normalization to achieve consistent perceived loudness across
recordings. These steps were implemented with standard func-
tions from pydub and applied identically to both sites prior to
feature extraction.

2.3 Data Format
The final dataset consists of 126 WAV audio recordings, one per
participant, captured using the built-in laptop microphone during
the test sessions. The audio tracks are encoded in uncompressed
PCM format at a sampling rate of 44.1 kHz with a single (mono)
audio channel. Additionally, there are 126 corresponding CSV
files containing timestamps that indicate the start and end times
of each subtask. Together, these audio and timestamp files serve

as the primary data sources for all subsequent audio- and speech-
based analyses.

3 Preprocessing
3.1 Audio Data Preparation
TheWAV recordings were initially divided into two distinct audio
segments using the provided timestamp files: (1) a segment cor-
responding to the phonetic verbal fluency task and (2) a segment
corresponding to the semantic verbal fluency task.

Both audio segments were then processed through a series of
audio enhancement steps:

(1) Dynamic range compression: To improve audio quality
and ensure uniformity, downward dynamic range com-
pression (threshold = -20.0 dBFS, ratio = 4:1, attack time =
5 ms, release time = 50 ms) was applied to each segment.
This reduces the volume gap between the quietest and
loudest parts of a signal [6].

(2) Loudness normalization: adjusting each segment to a
target level of -20 dBFS. This ensured consistent perceived
loudness across all recordings, reducing variability from
differences in speaker volume, room acoustics, or micro-
phone distance.

(3) Final output: Finally, the two fully processed segments
per participant (phonetic and semantic) were saved as
separate WAV files. These files constitute the final audio
data used for all subsequent analyses.

All of the described steps were implemented using standard
functions provided by the pydub library.

3.2 Feature Engineering
After automated transcriptions have been processed we per-
formed feature engineering. Based on clinical knowledge, we
created meaningful features that serve as reliable markers for dis-
tinguishing between individuals with and without schizophrenia.
Three core symptoms of schizophrenia are directly applicable
to our verbal-fluency tasks: disorganized speech, disorganized
behavior, and negative symptoms. The primary rationale behind
our feature construction is grounded in these core symptom
domains.

Audio recordings are represented in two forms: (1) as text,
derived from automated ASR transcriptions, and (2) as spectro-
grams – a visual representation of the frequency content of the
audio signal over time. We constructed two groups of features:

(1) Verbal features: 39 features derived from the automated
text transcriptions. These features aim to quantify dis-
organized speech, e.g. number of phrases produced per
second.

(2) Non-verbal features: 17 features extracted directly from
the spectrograms of the audio recordings, these features
target prosodic elements such as pitch and vocal con-
trol, which are key indicators of negative symptoms like
blunted affect and disorganized behavior; e.g. Mean pitch,
representing the speaker’s average vocal pitch.

3.3 Automated Transcription
The most critical step in the preprocessing of audio recordings is
the generation of automated transcriptions. These ASR-derived
transcriptions serve as the primary input for nearly all subse-
quent stages of feature extraction and machine learning analysis.
We employed the ASR model Truebar 24.05, a state-of-the-art

60



Automated Explainable Schizophrenia Assessment from Verbal-Fluency Audio Information Society 2025, 6–10 October 2025, Ljubljana, Slovenia

speech recognition system for the Slovene language. The model
was developed by the company Vitatis in collaboration with the
Laboratory for Data Technologies at the Faculty of Computer and
Information Science. Using Truebar API we programmatically up-
loaded each audio file and in response receive the corresponding
transcribed words along with their start and end timestamps.

3.4 Transcription Adjustment
The output of the ASR system consists of transcribed words along
with their associated timestamps. These transcriptions may in-
clude irrelevant content such as filler words. We used the DSPy
library—a Python framework that enables declarative program-
ming for prompting LLMs in a modular and programmatic way in
combination with GPT-4o model. The transcription adjustment
process was divided into two sequential steps:

(1) Transcription filtering: The raw transcription output
from the Truebar ASR model was first passed to the GPT-
4o model along with a description of the verbal fluency
task and its rules. The model was instructed to retain only
the words it considered to be relevant without modifying
the words themselves.

(2) Transcription correction: The filtered transcription was
then forwarded to the model in a second pass. With the
same task context and rules provided, the model was now
asked to adjust incorrectly transcribed words to what it in-
ferred the participant likely intended to say. A word could
potentially also be a neologism, we explicitly instructed
the model to apply corrections only when the intended
word was judged to be clear and obvious; otherwise, the
word was left unchanged. For example, a misrecognized
word like ‘lon’ would be corrected to ‘slon’ (elephant),
whereas unclear or ambiguous cases were preserved as-is.

3.5 Adding Semantic Meaning
After filtering and correcting the transcriptions, we tagged each
word with semantic annotations relevant to the verbal fluency
task. These semantic features are crucial for distinguishing be-
tween HC and SH, as they capture subtle linguistic anomalies
commonly associated with schizophrenia. We used DSPy frame-
work in combination with the GPT-4o language model to per-
form automated semantic tagging. The model was provided with
task-specific instructions and context for each word. For each
transcribed word, we extracted the following semantic tags:

• Intrusion: The word is semantically unrelated to the tar-
get category (e.g. non-animal word during the animal nam-
ing task). Intrusions are often more frequent in individuals
with schizophrenia and reflect impaired cognitive control
and semantic memory organization [5].

• Stiltedness: Marks whether the word appears overly for-
mal, unusual, or unnatural in everyday speech. Stilted
language is a known linguistic feature in schizophrenia
and may signal underlying disruptions in pragmatic lan-
guage use [12].

• Neologism: a newly coined or nonsensical word not
found in the lexicon. Neologisms are characteristic of dis-
organized thought and speech, and are especially relevant
in schizophrenia research [3].

• Word description (semantic task only): A general,
page-long descriptive summary of the word. For animals,
this includes common features such as appearance, habi-
tat, and behavior—providing a semantic embedding that

captures how the word is typically perceived by the gen-
eral population. In the case of neologisms, the semantic
meaning was still applied based on what the word could
plausibly represent or mean, allowing the model to assign
an approximate semantic embedding even for novel or
invented terms. This feature is used only for the semantic
task, where meaning-based associations between words
are essential.

3.6 Data Analysis
We trained and evaluated several machine learning models using
these features. To ensure robust evaluation, we applied stratified
10-fold cross-validation. Performance was assessed using accu-
racy, sensitivity, specificity, and the area under the receiver oper-
ating characteristic curve (AUC). The Explainable Boosting Ma-
chine (EBM) consistently achieved the best results when trained
on the full feature set. We additionally examined the top 10 most
informative features to assess model interpretability. This ap-
proach enables us to understand better which et deficits are most
prominent in individuals with schizophrenia and may be useful
for targeted clinical interventions.

4 Results
We observe that the obtained ML models perform similarly when
using the verbal (V) and non-verbal (N) feature sets separately,
achieving an average AUC of 0.83 on both datasets. In the com-
bined feature set (VN), the average performance improves across
all metrics: AUC 0.86, CA 0.76, Sens. 0.69, Spec. 0.82, PPV 0.76,
and F1 0.73. The EBM trained on the combined feature set (VN)
achieved the best overall performance: AUC 0.90, CA 0.82, Sens.
0.76, Spec. 0.87, PPV 0.83, and F1 0.79.

To probe whether education could drive the observed perfor-
mance, we examined models trained on verbal (V) and non-verbal
(N) features separately, in addition to the combined set (VN). Ver-
bal features are more likely to reflect educational attainment
(e.g., lexical diversity, category switching), whereas core acous-
tic markers (e.g., pause structure, longest silent pause) are less
dependent on education [4]. In our 10-fold CV, V and N models
performed comparably, and VN performed best. This suggests
that education alone is unlikely to explain the classification.

4.1 Global interpretation
The overall feature importance (FI) across the entire dataset is
used for global interpretation of the model. We calculate it as the
average absolute contribution of each feature across all samples:

FI𝑗 =
1
𝑛

𝑛∑︁
𝑖=1

��𝑓𝑗 (𝑥𝑖, 𝑗 )�� , (1)

where 𝑛 is the total number of samples, and 𝑓𝑗 (𝑥𝑖, 𝑗 ) is the contri-
bution of feature 𝑗 for instance 𝑖 . FI measures how strongly each
feature influences the model’s predictions on average.

Globally most important features are: (1) comb_pho_lev2_-
avg - the Levenshtein similarity between the filtered and ad-
justed transcriptions, which indicates impaired speech fluency,
(2) animal_tempo_max_gap_percent - captures the longest
silent pause during the semantic task, (3) animal_sem_cont_-
max_coherence_index, animal_sem_cont_kurt_coherence_-
index, and ltest_sem_stat_min_coherence_index - the first
two capture the word-to-word coherence, while the third cap-
tures the lowest phonetic similarity between consecutive words
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during the phonetic task, (4) comb_osmile_F0From27.5Hz_-
stddeNorm_avg - the standard deviation of pitch; highlights vari-
ability in vocal pitch — a marker of prosodic irregularity often
observed in individuals with schizophrenia.

4.2 Local interpretation
Each individual prediction can be explained through the posi-
tive/negative contribution of each feature. Features with positive
contributions increase the log-odds in favor of the schizophrenia
class, while features with negative contributions decrease the
log-odds, shifting the prediction toward the healthy control class.
An example for a severe schizophrenia case is shown in Fig. 1

Figure 1: Local feature importance plot for a severe
schizophrenia case as predicted by the EBM model. Red
bars indicate contributions toward the schizophrenia class,
and blue bars toward the healthy control class.

The corresponding textual explanation was generated by
GPT-4o model: The results from the verbal fluency test indicate
several features often associatedwith schizophrenia. Short pauses
between utterances may suggest rushed or pressured speech,
which can be a sign of reduced speech planning. Low seman-
tic coherence in structured tasks may indicate the intrusion of
unrelated thoughts or semantic derailment. Additionally, long
pauses between utterances can reflect cognitive slowing or diffi-
culty with word retrieval. These features collectively suggest the
possibility of schizophrenia. The results suggest that, on average,
the models are able to rank individuals effectively (high AUC);
they can distinguish between HC and SH in terms of relative
probability. The low CA, sensitivity, PPV, and F1 scores suggest
that the chosen classification threshold of 0.5 may not be optimal.
This issue was further addressed by evaluating the ROC curve of
the best-performing model to explore whether an alternative clas-
sification threshold could improve the identification of positive
cases; we observed that both the Youden-optimal threshold and
the F1-optimal threshold are approximately 0.49, which differs
negligibly from the used value of 0.5.

The performance of our best model, EBM, shows its strong
ranking ability, and balanced classification performance on both
classes.

Limitations and Future Work
Although our dataset is well-balanced, the sample size (126) is
rather small; additional samples would improve model generaliz-
ability and robustness. Audio quality could be improved by using
professional microphones instead of built-in laptop microphones,
which would enhance transcription accuracy. Due to obtaining
the audio recordings at two locations, a residual site effect cannot
be fully excluded. We mitigated the risk by (i) using identical task
instructions and timing in quiet rooms at both sites, (ii) applying
uniform dynamic range compression and loudness normalization

to all audio, and (iii) demonstrating that transcript-only models
(verbal features) remain predictive, indicating that performance
is not driven by background acoustics. Future studies should also
include participants with other psychiatric conditions, such as
major depressive disorder or bipolar disorder.

Conclusion
We developed and evaluated an automated, explainable pipeline
for schizophrenia assessment using 126 verbal-fluency audio
recordings (healthy controls: 68; schizophrenia: 58). The pipeline
comprises audio pre-processing, automatic transcription with the
Truebar ASR model, and extraction of verbal (transcript-derived)
and non-verbal (acoustic/temporal) features. The features were
then used in training and evaluation of several classical machine-
learning models.

Across models, combining verbal and non-verbal features con-
sistently yielded the strongest results. The Explainable Boosting
Machine achieved the highest performance: CA 0.82, Sens. 0.76,
Spec. 0.87, PPV 0.83, F1 0.79, and AUC 0.90. Due to the EBM’s
inherent interpretability, we produced global explanations and lo-
cal explanations (per-instance contribution plots), complemented
by GPT-4o–generated textual summaries. A high model perfor-
mance and associated explanations provide a firm ground for
potential decision support system in clinical practice.
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Abstract
Aligning medical procedure codes across national classification

systems is a challenging task. We investigate the mapping of

Slovenian KTDP expressions to German OPS codes using fuzzy

matching, biomedical language models (BioBERT, GatorTron), a

hybrid approach, and ChatGPT. In the absence of ground truth,

we assess consistency across methods and conduct manual re-

views. Results show that differences in code structure and expres-

sion detail pose major barriers to alignment. Expert validation

will be essential for improving accuracy.

Keywords
procedure coding, KTDP, OPS, semantic similarity, BioBERT,

fuzzy matching, GatorTron, ChatGPT

1 Introduction
Different countries maintain their own national classification

systems for medical procedures, used for clinical documenta-

tion, reimbursement, public reporting, and statistical analysis.

In Slovenia, healthcare professionals rely on a domestic proce-

dural coding system, while in Germany, the Operationen- und

Prozedurenschlüssel (OPS) is used.

At the University Medical Centre (UMC) Ljubljana in Slovenia,

interest has emerged in matching expressions from the Klasi-

fikacija terapevtskih in diagnostičnih postopkov in posegov

(KTDP) with the German OPS classification system. The pur-

pose is to allow international reporting, cost estimation, and

comparative analysis of healthcare procedures.

1.1 Problem Outline
Aligning Slovenian procedural expressions with German OPS

codes is a complex task. The Slovenian dataset contains approxi-

mately 6,000 expressions, whereas the German OPS classification

includes more than 60,000 distinct entries, covering multiple lev-

els of specificity in various medical domains. Manual mapping

is time-consuming and impractical, primarily due to the size of

datasets and the absence of convenient tools for efficient code

retrieval and comparison.

To address this challenge, we explored the development of

computational approaches to support and accelerate the mapping

process. Due to the nature of the data and the semantic variation

between codes, we tested several techniques, including fuzzy

string matching, semantic similarity scoring, and large language
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models (LLMs), such as BioBERT, GatorTron, and OpenAI mod-

els. We also explored a hybrid approach that integrates fuzzy

matching with LLM-derived semantic embeddings.

In this paper, we present the application of the selected meth-

ods for aligning Slovenian KTDP procedure expressions with

German OPS codes. We evaluate their performance, limitations

and discuss key challenges associated with this type of code

matching problem.

2 Methodology
2.1 Datasets
2.1.1 Slovenian Dataset. The Slovenian dataset is based on the

Klasifikacija terapevtskih in diagnostičnih postopkov in posegov

(KTDP)[6], version 11, which has been officially implemented na-

tionwide since 1 January 2023. This classification system is used

to code medical procedures in all levels of healthcare in Slovenia

and is structurally aligned with the Australian Classification of

Health Interventions (ACHI), adapted to the local context.

KTDP consists of 20 chapters, each covering a different clinical

domain. The chapters are organised primarily by body system

(e.g. nervous, endocrine, cardiovascular), with additional sections

dedicated to dental care, imaging services, radiation oncology,

and interventions not elsewhere classified. Each chapter is subdi-

vided into multiple blocks, which group related procedures under

shared headings.

In total, the classification includes approximately 6,000 unique

procedures. Each is assigned a specific code in a structured nu-

meric format composed of a five-digit base and a two-digit ex-

tension (e.g. 36564-00).

2.1.2 German Dataset. The German dataset is based on

Operationen und Prozedurenschlüssel (OPS), version 2024 [2],

which is officially used nationwide for coding medical proce-

dures. Maintained by the Federal Institute for Drugs and Medical

Devices (BfArM), OPS is revised annually. It is derived from the

WHO’s International Classification of Procedures in Medicine

(ICPM) and adapted to the German healthcare system.

The classification is organised into six main chapters, covering

the following clinical domains: diagnostic measures (Chapter 1),

imaging diagnostics (Chapter 3), surgical procedures (Chapter

5), medications (Chapter 6), non-operative therapeutic measures

(Chapter 8), and supplementary measures (Chapter 9). Each chap-

ter is further subdivided into categories and blocks, which group

related procedures based on functional or anatomical criteria.

OPS comprises approximately 60,000 unique procedures. Each

is assigned a hierarchical alphanumeric code, consisting of a four-

digit base and optional numeric or alphanumeric extensions (e.g.

5-384.50 or 8-844.5c). The coding system follows a structured

hierarchy, beginning with the chapter number (e.g. 5 for surgi-

cal procedures), followed by a category (e.g. 5-38 for vascular
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surgery) and subcategories (e.g. 5-384 for specific surgical tech-

niques). The digits and characters after the dot denote the exact

intervention.

2.1.3 Differences and Similarities between Datasets. Although
both classification systems serve a similar purpose, they differ in

structure and level of detail. The German dataset includes very

specific and thoroughly described procedures, clearly outlining

each individual service. The Slovenian system, on the other hand,

uses broader and more general descriptions, without the same

amount of detail or length.

Moreover, there is limited direct lexical overlap between the

two datasets. Even when procedures are conceptually similar,

their descriptions often differ in phrasing, level of specificity,

or use of synonyms. As a result, one-to-one matching is rarely

straightforward and requires both structural alignment and se-

mantic interpretation.

2.2 Pipeline

Figure 1: Overview of the matching pipeline and exam-
ple results. KTDP expressions in English were aligned
to translated OPS expressions using five methods: fuzzy
matching, BioBERT, a combined BioBERT+fuzzy approach,
GatorTron, andOpenAIChatGPT.Allmethods except Chat-
GPT produced structured outputs with match scores, as
shown in the example results table. ChatGPT returned only
contextual matches without comparable scoring and was
therefore excluded from the standardised evaluation table.

The overall process is summarised in a pipeline diagram (Figure 1),

which outlines each step — from dataset preparation and transla-

tion to the application of matching methods and the structure of

resulting outputs. Each component of the pipeline is described

in detail in the following subsections.

2.2.1 Translation. Since Slovenian KTDP expressions were al-

ready available in English, the German OPS procedure names

were translated to English to enable semantic comparison. For

this purpose, we used the MarianMT model (Helsinki-NLP/
opus-mt-de-en) [4], a transformer-based neural machine trans-

lation model. Although not specifically fine-tuned for clinical

texts, MarianMT has demonstrated strong performance in medi-

cal translation tasks, particularly for structured terminology [5],

making it a suitable and practical choice for this application.

2.2.2 Language-based code pairing. To perform code matching,

we initially applied a language-based code pairing approach us-

ing fuzzy matching, implemented via the RapidFuzz library [1].

Fuzzy matching is particularly useful in cases where expressions

differ slightly in wording, structure, or spelling. We applied the

token set ratio, which compares the sets of unique words in two

strings and calculates a similarity score based on the overlap

of unique tokens, with edit distance applied to the remaining

unmatched parts. This method is insensitive to word order and

robust to minor variations in phrasing. Using this approach, each

English KTDP expression was compared with all translated OPS

descriptions. For each KTDP entry, we selected the best match-

ing OPS procedure based on the highest fuzzy similarity score

and recorded the corresponding code, description, and score for

further analysis.

2.2.3 Semantic-based code pairing. As a second approach, we

applied a semantic-based code pairing approach using contex-

tual embeddings derived from transformer-based language mod-

els. Specifically, we tested two pretrained models: pritamdeka/
BioBERT-mnli-snli-scinli-scitail-mednli-stsb [3], a Sen-
tenceTransformer variant of BioBERT fine-tuned on biomed-

ical and inference tasks, and UFNLP/gatortron-base [10], a

GatorTronmodel pre-trained on large-scale clinical corpora. Both

models were selected for their strong performance in biomedical

language understanding [7] and to investigate how model choice

influences the quality of semantic code alignment.

Using each model, both KTDP expressions and translated OPS

descriptions were encoded into dense semantic vectors. Cosine

similarity was then computed between each KTDP embedding

and all OPS embeddings to assess semantic closeness. As in the

previous approach, the top matching OPS procedure for each

KTDP expression was selected and recorded following the same

procedure as before.

2.2.4 Combined code pairing. In addition to the individual use of
semantic and lexical methods, we implemented a hybrid match-

ing approach that combines the strengths of both. Specifically, we

integrated semantic similarity scores obtained from BioBERT em-

beddings with lexical similarity scores derived from fuzzy match-

ing (token set ratio). For each KTDP expression, both similarity

measures were computed independently against all translated

OPS descriptions. The final similarity score for each pair was

calculated as a weighted average:

score
final

= 𝑤semantic · scoresemantic +𝑤lexical
· score

lexical

We experimented with two weighting schemes: one with equal

weights (𝑤semantic = 0.5,𝑤
lexical

= 0.5) and another prioritising

semantic similarity (𝑤semantic = 0.7, 𝑤
lexical

= 0.3), to assess

how different balances influence match quality. For each KTDP

expression, the OPS description with the highest combined score

was selected and recorded along with the corresponding code

and similarity score.

This approach was motivated by practical observations in

the literature, where combining surface-level and context-aware

similarity often yields more robust results, especially in cases
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where purely semantic models overlook minor wording differ-

ences or where lexical methods fail to capture deeper conceptual

alignment [9].

2.2.5 ChatGPT code pairing. As a final exploratory method, we

used a custom ChatGPT instance (GPT-4o, OpenAI) [8] to evalu-

ate the potential of conversational large language models (LLMs)

for code matching. We uploaded all relevant documentation, in-

cluding KTDP expressions, translated OPS procedures, and back-

ground materials, to a private GPT environment. For each KTDP

entry, we either asked the model to suggest the best-matching

OPS procedure directly or first requested an interpretation of the

KTDP term followed by a context-based match. This approach

allowed us to assess whether ChatGPT’s contextual reasoning

could complement or outperform traditional embedding-based

or lexical matching methods.

3 Evaluation
The absence of a validated ground truth presents a fundamen-

tal challenge in assessing the quality of our matching results.

Without expert clinical validation, it is unclear how accurate in-

dividual matches are or which method performs best. To address

this, we first conducted a broad quantitative analysis to evaluate

consistency, disagreement, and similarity across methods. These

metrics provide indirect but informative insights into model be-

haviour, helping to characterise matching patterns even in the

absence of formal validation. Following this initial assessment,

we performed a small-scale manual review to better understand

the plausibility of selected matches. We examined examples with

both high and low matching scores, identifying cases of clear

agreement as well as notable mismatches. This informal inspec-

tion offered additional intuition on method performance and

highlighted the need for domain expertise to reliably judge align-

ment quality.

To begin the quantitative evaluation, we examined how often

different methods assigned KTDP expressions to the same general

procedural category. To do this, we compared the prefixes of the

top-1 matched OPS codes across all methods, where the prefix

corresponds to the first digit of the OPS code and indicates the

high-level category of the procedure (e.g., diagnostic, surgical,

therapeutic). This allowed us to assess agreement at a broader

level, independent of specific code details.

The results revealed a relatively high degree of consistency: in

64.2% of cases (𝑛 = 4000), all methods returned OPS codes with

the same prefix, indicating agreement on the general procedural

category. In the remaining 35.8% of cases (𝑛 = 2231), there was

partial agreement - some methods aligned on the prefix, while

others diverged. Notably, there were no cases in which all meth-

ods assigned entirely different prefixes, suggesting that at least a

minimal level of agreement was always preserved at the category

level.

However, when comparing full OPS codes, agreement dropped

substantially. Only 2.9% of cases (𝑛 = 178) exhibited full consen-

sus across all methods. Most cases (90.1%, 𝑛 = 5613) fell into the

“some same” category, where at least two methods agreed, and

7.1% (𝑛 = 440) showed complete disagreement, with each method

proposing a different code. These results indicate that, while

methods often converge on the general category of a procedure,

they frequently differ in the specific code they assign within that

category.

To further examine how the methods differ in their assign-

ment behaviour, we analysed the distribution of top-1 matched

OPS codes across the six main procedural chapters. As illustrated

in Figure 2, all methods predominantly mapped KTDP expres-

sions to Chapter 5 (surgical procedures), reflecting the procedural

nature of the source data. In contrast, assignments to Chapter

6 (medications) and Chapter 9 (supplementary measures) were

relatively infrequent. This general distribution pattern was con-

sistent across methods, indicating a shared tendency to favour

procedural codes.

Even so, some notable differences were observed. For example,

GatorTron assigned fewer expressions to Chapter 5 compared to

the other methods and exhibited a relatively higher proportion of

matches to Chapter 8 (non-operative therapeutic measures). Man-

ual review of these cases revealed that many of the expressions

lacked a clearly corresponding OPS code, which may have led the

model to prefer broader categories. Still, in the absence of expert

validation, we cannot determine whether such assignments are

more or less accurate.

Figure 2: Distribution of top-1 matched OPS codes across
the six main procedural chapters for each matching
method. Chapter 1 represents diagnostic measures, Chap-
ter 3 imaging diagnostics, Chapter 5 surgical procedures,
Chapter 6 medications, Chapter 8 non-operative therapeu-
tic measures, and Chapter 9 supplementary measures.

To investigate whether certain KTDP procedures are inher-

ently easier to match due to wording or alignment with OPS

terminology, we analysed the standardised match score values

across all methods using a heatmap (Figure 3). The goal was to de-

termine whether consistent scoring patterns could help identify

procedures that are generally easier or more difficult to match,

regardless of the specific method used.

The heatmap displays Z-standardised scores for each method,

with expressions sorted by BioBERT scores. Although we ex-

pected some consistency (i.e., easier expressions receiving higher

scores across all methods and harder ones receiving lower scores),

the results showed considerable variation. In many cases, a pro-

cedure scored higher with one method and lower with another,

suggesting that matching difficulty is method-dependent and

influenced by how each approach interprets textual or structural

similarity.

Notably, BioBERT and the hybrid BioBERT-fuzzy method pro-

duced very similar score profiles. GatorTron and fuzzy approach

showed more divergence, indicating different sensitivities to ter-

minology structure, dataset alignment, or surface-level phrasing.
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This suggests that methods differ not only in which codes they

select, but also in how confidently they make those matches.

Figure 3: Heatmap of Z-standardised MATCH_SCORE_1 values
across all KTDP expressions, sorted by BioBERT scores.
The plot illustrates variation in score strength across meth-
ods, highlighting differences in confidence and matching
behaviour.

After developing a broader understanding of inter-method dif-

ferences through quantitative analyses, we conducted a focused

manual review of selected examples to qualitatively assess the

plausibility of top matches. We examined expressions with both

high and low matching scores across methods to explore whether

any consistent patterns could be observed.

For expressions with high scores and full agreement across

methods, the matches were typically straightforward: the KTDP

expression was either identical or highly similar to an OPS entry,

often requiring no complex interpretation. These cases tended to

represent procedural descriptions that appeared in both datasets

with minimal variation.

In contrast, lower-scoring expressions revealed more complex

challenges. Two main issues emerged during manual inspection.

First, several KTDP procedures had no direct equivalent in the

OPS system because they are typically recorded in other coding

systems (e.g., vaccinations or disease-specific protocols). Second,

many KTDP expressions were written in a general or aggregated

form, often combining multiple procedural steps into a single

description. OPS, on the other hand, is highly granular, with

detailed and precisely defined codes. As a result, some KTDP

expressions may correspond to multiple distinct OPS codes, or

only partially align with available entries.

These observations suggest that performance limitations are

not solely attributable to matching algorithms themselves, but

also to structural mismatches and representational differences

between the source datasets. This highlights a key challenge in

aligning procedural coding systems across countries.

3.1 ChatGPT
Despite leveraging ChatGPT’s capacity for contextual reasoning

by first interpreting the KTDP expression and then performing

the match, the resulting OPS codes were, in most cases, identical

to those produced by previously describedmethods. This suggests

that the added interpretation step did not substantially improve

matching performance. As previously discussed, this outcome

likely reflects the inherent differences in datasets.

4 Conclusion
Our study highlights the considerable challenge of aligning proce-

dural coding systems across countries with different documenta-

tion practices. Despite employing a range of computational meth-

ods (ranging from fuzzy matching and semantic embeddings to

large language models) the observed differences in dataset struc-

ture and content significantly limited matching performance.

In particular, the lack of detail in some KTDP expressions, the

high specificity of OPS codes, and the absence of one-to-one

equivalents all contributed to inconsistent or ambiguous results.

Crucially, no ground truth currently exists to objectively eval-

uate the quality of these matches. Although indirect metrics and

manual inspection provide useful information, they cannot re-

place expert validation. Therefore, the most important next step

is to involve medical professionals in generating a gold standard

reference set. This would enable formal benchmarking of differ-

ent methods and support the development of more reliable and

generalisable code alignment pipelines in the future.

Ultimately, our findings suggest that the key limitation lies

not in the technical capability of the methods themselves, but in

the fundamental heterogeneity of the datasets and the differing

philosophies of procedural encoding. Addressing this mismatch

will be essential for any future efforts to enable international

interoperability of procedural coding systems.
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Abstract  
Dynamic Spectrum Sharing (DSS), as part of Dynamic Spectrum 
Management, is already used in the telecommunication sector 
and is a critical technology for addressing spectrum scarcity in 
next-generation wireless networks, particularly when 
implementing 6G. Legacy statical spectrum management 
(designed for one user exclusively for a certain bandwidth for 
certain services) is no longer fit for purpose, as it does not allow 
the efficient use of the spectrum. By leveraging Artificial 
Intelligence (AI), DSS enables the real-time adaptive allocation 
of radio frequencies, thereby improving spectrum utilization and 
network efficiency. Although the integration of AI into DSS 
introduces complex technical and legal challenges. This paper 
aims to investigate the challenge of dynamic spectrum policy 
when using AI-enabled DSS and answer the question of why a 
flexible and new spectrum policy is desired. Some suggestions 
for refining the regulatory framework are also presented, which 
are long overdue in academic research. Recent research primarily 
focuses on technical issues, rather than specifically on legal ones. 
The closure findings underscore the need for standardized 
protocols, adaptive regulatory policies, and other legal 
frameworks to ensure equitable and efficient spectrum sharing. 

Keywords 
 AI-Enabled Dynamic Spectrum Sharing, AI, spectrum sensing, 
spectrum right, spectrum regulatory framework 

1 Introduction   
The integration of Artificial Intelligence (AI) into Dynamic 
Spectrum Sharing (DSS) introduces technical complexities, such 
as computational demands and algorithm reliability (e.g., 
consistency, robustness, and accuracy), alongside legal 
challenges, including spectrum rights allocation, interference 
management, and dispute resolution. However, governance 

frameworks for AI-enabled DSS remain underdeveloped, 
requiring further exploration. 

The rapid growth of wireless devices and data-intensive 
applications has heightened demand for radio frequency 
spectrum, a finite resource. Traditional static management often 
leads to underutilized frequency bands, with inflexible policies 
exacerbating inefficiencies beyond the spectrum's physical 
scarcity [1]. AI-enhanced DSS addresses this by enabling 
flexible, real-time allocation of resources, adapting to dynamic 
demands and environments while improving spectrum sensing, 
resource allocation, and interference mitigation. 

This study briefly examines the technical and legal 
dimensions of AI-enabled DSS, identifying challenges and gaps 
in research. As an initial exploration, it evaluates significant prior 
work to lay the foundation for future investigations. 

2 Technical Aspects of AI-Driven Dynamic 
Spectrum Sharing 

AI-driven DSS leverage all sort of AI techniques to optimize 
spectrum utilization in dynamic, complex environments. [2, 3, 
4].  

2.1 Spectrum Sensing and Cognitive Radio 
Spectrum sensing is the cornerstone of the DSS, enabling real-
time detection of spectrum occupancy. AI-based techniques, 
such as convolutional neural networks (CNNs) and long short-
term memory (LSTM) models, enhance spectrum sensing by 
analyzing signal patterns and predicting spectrum availability [5, 
6]. CNNs are highlighted for their ability to extract features from 
spectral data, improving detection accuracy in noisy 
environments without relying on prior knowledge of signals. 
LSTMs are emphasized for their ability to handle sequential and 
time-series data.. 

In addition, deep learning-based spectrum sensing achieves 
up to 45% improvement in detection accuracy compared with 
traditional methods, which rely only on basic signal processing 
techniques to identify spectrum occupancy like energy detection  
[5]. Cognitive radio networks (CRNs) powered by AI allow  
users  to opportunistically access unused spectrum bands without 
interfering with other users [3]. The challenges include, among 
others, the computational complexity of real-time processing and 
the need for robust datasets to train AI models. Studies highlight 
that AI models may struggle with unpredictable interference 
patterns, necessitating hybrid approaches that combine 
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interpretable models (e.g., decision trees) with high-performing 
deep learning (DL) models [6]. 

2.2 Interference Management 
Interference management is critical for ensuring reliable 
connectivity in the DSS. AI-driven techniques, such as multi-
agent reinforcement learning (MARL), optimize power 
allocation and beamforming to minimize interference [6]. MARL 
is used for mitigating jamming attacks, where malicious entities 
disrupt spectrum utilization by interfering with communications 
Another example is reconfigurable intelligent surfaces (RIS) 
integrated with AI, which can dynamically adjust signal 
propagation to reduce interference in non-orthogonal CRNs [7]. 
RIS, also known as an Intelligent Reflecting Surface (IRS), is a 
passive, planar metasurface composed of a large array of low-
cost, tunable unit cells that can dynamically manipulate incident 
electromagnetic waves. Unlike active devices like base stations 
or relays, RIS does not generate or amplify signals—it reflects, 
refracts, or absorbs them in a programmable way to shape the 
wireless propagation environment. 

Research has demonstrated that AI-driven interference 
management achieves a spectrum utilization efficiency of up to 
62.4% in urban environments, nearly double the utilization 
efficiency compared to traditional management [5]. Although 
challenges persist, including the scalability of AI models in large 
networks and the risk of unpredictable behavior in edge cases. 
Robust fallback mechanisms are necessary to address 
unpredictable AI behavior in edge cases, while standardized 
interfaces and protocols are essential for enabling seamless 
deployment and integration with existing network infrastructure 
[5]. 

2.3 Resource Allocation 
AI enables dynamic resource allocation by predicting network 
traffic and allocating spectrum based on real-time demands. 
Machine learning algorithms, such as support vector machines 
(SVMs) and deep reinforcement learning (DRL), can forecast 
spectrum occupancy and optimize bandwidth allocation [8]. For 
instance, DRL-assisted virtual network embedding (VNE) in 
satellite networks enhances resource utilization by adapting to 
multiple coverage constraints [4]. Major obstacles include the 
need for energy efficiency and the requirement for real-world 
datasets to enhance prediction accuracy. The absence of 
standardized testbeds and benchmarks further complicates 
performance evaluation [2]. 

3 Regulatory Challenges in AI-Enabled 
Dynamic Spectrum Sharing 

The deployment of AI-driven DSS raises significant regulatory 
challenges that must be addressed. According to recent research, 
regulatory issues arise, particularly in interference management, 
spectrum rights, and dispute resolution. Other legal and 
regulatory questions have, to the best of the author's knowledge, 
been completely overlooked or only superficially discussed. 

3.1 Interference Management 
Interference management in DSS requires regulators to ensure 
compliance with technical standards to prevent harmful 

interference. Those standards, when using AI, are missing. An 
example of such AI-driven systems to avoid interference is 
spectrum access systems (SAS) that use geolocation databases 
and sensing to manage the shared spectrum [9]. Simultaneously, 
the complexity of AI algorithms raises concerns about 
transparency and accountability when unwanted interference 
occurs. National regulatory bodies already emphasize the need 
for standardized protocols to ensure equitable access and 
interference mitigation [10, 11]. Regulators must strike a balance 
between innovation and the protection of incumbent users and 
their guaranteed rights to spectrum. 

3.2 Spectrum Rights and Equitable Access 
Regulatory authorities adopt the fixed spectrum access (FSA) 
policy to allocate different parts of the radio spectrum with a 
certain bandwidth to certain services. With such a static and 
exclusive spectrum allocation policy, only the authorized users, 
also known as licensed users, have the right to utilize the 
assigned spectrum, and the other users are forbidden from 
accessing the spectrum, regardless of whether the assigned 
spectrum is busy or not [3]. This could be seen as a direct 
opposition to the efficient use of the spectrum, where the use of 
the spectrum aligns with all available technical possibilities. 
Spectrum rights allocation is a contentious issue in DSS, as AI 
enables dynamic access by multiple users and challenges 
traditional licensing models. Spectrum right allocation is 
traditionally static – one user to a particular broadband.  On the 
other hand, with shared access regimes, such as licensed shared 
access (LSA), regulators allow spectrum users to open spectrum 
bands while protecting incumbent users [12]. However, only a 
few countries have adopted this option, and it comes with 
numerous regulatory restrictions. For explanation, incumbent 
users are historically incumbent telecommunications operators, 
who paid a significant amount of fees for the licence to use the 
spectrum. Therefore, spectrum licenses are important assets for 
incumbent users. Nevertheless, AI-driven DSS raises concerns 
about monopolistic practices because dominant operators may 
leverage advanced algorithms to secure disproportionate 
spectrum access [13, 14. 15]. However, legal frameworks must 
evolve to address equitable access for smaller operators and 
license-exempt users while simultaneously protecting the 
guaranteed rights of incumbent users/operators. The absence of 
clear spectrum rights allocation policies risks exacerbating 
disputes and stifling innovation in the industry. 

3.3 Dispute Resolution 
Dispute resolution in DSS tackles conflicts over interference, 
spectrum access, and user priority. AI systems complicate this 
due to poor interpretability, obscuring decision processes [6]. AI-
driven user prioritization can spark fairness disputes. National 
spectrum strategies propose interagency resolution processes [6, 
10]. Explainable AI models (e.g., XAI) improve transparency, 
aiding dispute resolution [6]. Blockchain-based databases offer 
tamper-proof spectrum usage records, simplifying conflict 
resolution [6]. 
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4 The Need for New AI-Enabled DSS 
Governance, Suggested New framework 

As stated above, traditional regulatory frameworks designed for 
static spectrum licensing are ill-equipped to handle AI’s 
autonomous and data-intensive nature of AI. The proposed 
regulatory framework should impose legal mechanisms to 
address more flexible licensing, privacy and data protection, 
interference management, security, and international 
coordination, ensuring compliance and fostering innovation. The 
objectives of the new framework, in the author's opinion, are: 
Enabling Innovation; Ensuring Compliance: that is, aligning 
with existing laws (e.g. national telecom regulations, Data Act, 
Artificial Intelligence Act etc.); Promoting Fairness, which 
means ensuring equitable spectrum access and accountability in 
AI decisions.; Support Global Harmonization to align with 
international standards (e.g., ITU, 3GPP); Security and 
Cybersecurity; Promoting Regulatory Sandboxes, to enable 
safe testing of AI-driven DSS. 

4.1 Proposed Legal and Regulatory Framework 
4.1.1. Dynamic Licensing Model 
Replacing the current policy of static and exclusive spectrum 
with the Dynamic Licensing Model is a key principle, or, even 
better, the Dynamic Licensing Model should be prioritized. This 
could include a tiered access system (primary, secondary, and 
opportunistic users) managed by AI-driven Spectrum Access 
Systems (SAS) [3, 12, 9]. This means enacting laws defining 
tiered access rights, specifying priority levels, and usage 
conditions. For instance, extending the U.S. Citizens Broadband 
Radio Service (CBRS) model, where SAS dynamically assigns 
spectrum, with legal provisions for AI oversight and auditability.  
 Refinements to the European Electronic Communication Code 
(EECC) [13].  to add AI spectrum management tools are another 
possible example.  First, a definition of DSS should be added and 
represented. (e,g, in Art. 2). DSS can be defined as a primary 
shared use of the radio spectrum, enabling flexible, real-time 
allocation of spectrum bands among multiple users and 
designated services, when appropriate, adding tiered access 
rights. In spectrum management (Art. 45 EECC), the goal should 
also be, by default, to privilege AI-enabled DSS, adding 
appropriate certification. So, spectrum management could be 
flexible enough for new technologies and, at the same time, 
compliant as an exception to the technology and service-neutral 
principle, traditionally anchored in EECC, because general 
interest objectives are at stake and can be clearly justified and 
subject to regular review. From a practical point of view, 
mandating AI-predictive models for real-time allocation in "AI-
harmonized" bands that require shared AI datasets could be 
discussed in future peer reviews. The neutral authorization 
regime for spectrum designation, with some exceptions, should 
move to the explicit inclusion of AI/ML, with possible 
certification for bias-free algorithms and energy metrics in an 
additional separate regulation, such as the Gigabyte 
Infrastructure Act (GIA), intended to simplify access to physical 
infrastructure in this sector. Art. 46 EECC is meant only to 
encourage shared access, while the default AI-driven DSS could 
drive spectrum sharing to another level.  

     The dynamic licensing model can use blockchain-based smart 
contracts to automate spectrum allocation, ensuring transparency 
and enforceability. Regulators should issue guidelines for AI 
algorithms to prioritize licensed users while optimizing 
opportunistic/dynamic access and imposing penalties for non-
compliance. 
 
4.1.2. Privacy and Data Protection 
The goal is to require licensed users to implement privacy-
preserving AI techniques (e.g., Federated Learning and 
differential privacy) to minimize data exposure. Minimal data 
exposure goes beyond personal data and should be extended to 
all processed data sets. AI systems in DSS are designed to 
process only the necessary data for the requested task. 
Memorized data, such as geolocation and traffic patterns, should 
be encrypted. Therefore, developing standards for anonymized 
data processing in DSS, with certification for compliant AI 
systems, is necessary. For instance, blockchain contracts and 
differential privacy could enhance efficiency in dense networks 
and align with the principle of minimizing sensitive data sharing.  
But on the other hand, all the relevant data for enabling AI-
enabled DSS  must be shared. Data Act of the EU could address 
this issue. 
     Privacy and data protection are strongly connected to the 
Right to Explanation (transparency). Therefore, it is necessary to 
mandate transparency in AI-driven spectrum decisions, allowing 
users to challenge allocations [6, 11]. Although the Artificial 
Intelligence Act of the EU requires high-risk AI systems (DSS 
component is legally interpreted as critical infrastructure) to face 
a strong transparency obligation, in the context of DSS, it needs 
to be technically detailed.   
 
4.1.3. Interference Management, Liability and Dispute 
Resolution  
Clear liability rules for AI-induced interference, balancing the 
responsibilities of operators, secondary users, and vendors, must 
be established. A shared liability model could be a solution. 
Operators as primary users could be liable for interference unless 
caused by secondary users or by the vendor/distributor/supplier 
AI errors, verified through forensic logs. The interference 
threshold must be introduced and known at the front. Legal limits 
for acceptable, e.g., signal-to-noise ratio standards, should be 
defined. The requirement for AI systems to maintain tamper-
proof logs of spectrum allocation decisions, accessible when 
needed to stakeholders, is a good way to ensure the transparent 
operation of DSS. These logs can then be used as evidence at 
competent bodies in dispute resolution to resolve interference 
disputes, with AI decisions [5, 10].  
 
4.1.4. International Standardization  
Promoting harmonized standards for AI-driven DSS through 
international bodies like ITU and 3GPP is just one side of the 
remaining challenges, like interoperability. Negotiating bilateral 
and international treaties to align spectrum sharing protocols and 
data sovereignty rules is another issue. For instance, ITU’s World 
Radiocommunication Conference (WRC) could develop model 
laws for national adoption, ensuring compatibility with global 
5G and 6G standards [10, 14, 15]. Cross-border Coordination 
(e.g., Art. 4 EECC) could also be expanded, with the RSPG-led 
cooperation utilizing AI tools for interference resolution.  
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4.1.5. Security and Cybersecurity 
A robust cybersecurity framework for AI-driven DSS systems is 
aimed at preventing attacks such as data poisoning. 
Cybersecurity standards for AI-Enabled DSS must still be 
developed. These standards will include encryption, intrusion 
detection, and regular security audits for AI systems, as well as 
reporting security breaches. Certifying AI systems for 
cybersecurity compliance, with the development of AI-enabled 
DSS [10, 14, 15]. 
 
4.1.6. Regulatory Sandboxes 
Creating controlled environments to test AI-driven DSS without 
full regulatory constraints could be a way to overcome the 
development compliance. Sandbox legislation should define the 
scope, duration (e.g., 1-2 years), and liability exemptions for 
sandbox participants. Launching pilot programs with telecom 
operators and ensuring legal protections for experimental 
deployment are essential for the progress of AI-enabled DSS. 
After the test period, the transition to actual use in the real world 
would be enhanced because of a good testing foundation in a 
technological and regulatory sense. A good example is the Model 
on the UK’s Ofcom sandbox, tailored for AI-driven 6G 
applications [10, 14, 15]. When it comes to regimes for 
authorization (e.g., Art. 47 EECC), introducing "AI-sandbox" 
authorizations for DSS testing accelerates innovation through 
pilots accompanied by authorization. This is also in line with the 
AI Act, where sandboxes represent well-documented risk 
mitigation and, as a result, transparency. 

5 Conclusion 
In this paper, the author examined AI-Enabled DSS from a 
technical and legal governance perspective. This is a notable 
achievement because there is a significant gap in research in this 
field.  
    This paper aimed to highlight some dimensions of the 
interaction between technological perspectives and the 
governance of AI-enabled DSS. After reviewing the adversarial 
and inherited technical challenges, such as resource allocation, 
interference management, and spectrum sensing, the legal issues 
of interference management, spectrum allocation, and equitable 
access, along with dispute resolution, are briefly discussed.  
      Moving into the future, a new possible regulatory framework 
is presented, including a dynamic licensing model, the 
implementation of privacy-preserving AI techniques in DSS, and 
a shared liability approach to interference management that could 
also contribute to dispute resolution. Briefly, the importance of 
international standardization and interoperability, as well as 
cybersecurity threats such as data poisoning and the lack of 
standardization, is mentioned. Lastly, creating regulatory not 

only technical sandboxes as controled testing environments is 
proposed.  
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Abstract
Non-communicable chronic diseases (NCDs), largely driven by

lifestyle factors such as poor nutrition, physical inactivity, and

obesity, account for over 70% of mortality in Europe. While pre-

vention has traditionally focused on adults, growing evidence

highlights the value of early intervention during childhood and

adolescence to establish healthy behaviours and reduce long-term

risk. This paper presents the updated SmartCHANGE platform,

which harmonizes heterogeneous datasets, addresses missing in-

formation through synthetic data generation, and forecasts risk

factors from childhood to adulthood. Forecasts are then applied

to established cardiovascular and diabetes risk models, enabling

long-term risk assessment. To ensure privacy, the platform in-

corporates federated learning for secure model training across

distributed datasets. By combining synthetically generated data,

predictive modelling, privacy-preserving infrastructure, and end-

user applications, the updated SmartCHANGE platform supports

early identification of at-risk youth and enables targeted, data-

driven interventions to help reduce the future burden of NCDs.

Keywords
non-communicable diseases, risk prediction, synthetic data gen-

eration, federated learning, preventive healthcare

1 Introduction
Non-communicable diseases (NCDs), including cardiovascular

disease and diabetes, cause over 70% of deaths in Europe [6]. Their

onset is shaped by modifiable risk factors such as diet, physical

inactivity, obesity, smoking, and alcohol use. While prevention

strategies typically target adults, growing evidence highlights

childhood and adolescence as critical periods for establishing

lifelong health behaviours [5]. Addressing risk early can delay

or prevent NCD onset and promote long-term well-being.

In this paper, we described an updated pipeline for predicting

NCD risk in young people, building on our previous paper [4].
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The new version introduces three advances: (i) broader harmo-

nization of European cohort datasets through refined syntactic

and semantic alignment; (ii) improved synthetic data generation

that addresses heterogeneity of the datasets; and (iii) evaluation

of advanced RNN-based architectures alongside conventional

ML models. While the pipeline in the previous paper powered a

simple demo, this one is integrated into the SmartCHANGE pro-

totype that enables early identification of at-risk youth and sup-

ports the development of tailored preventive strategies. By com-

bining harmonized datasets, predictive modelling, and privacy-

preserving methods, it represents a step toward proactive, data-

driven public health focused on youth as a critical stage for pre-

vention. In addition, explainable AI was used to generate counter-

factuals that support understanding of risk factors, and both web

and mobile applications were developed to deliver these insights

directly to healthcare professionals, adolescents, and families.

2 Baseline Predictive Approach
The models for forecasting risk factors are trained on seven

heterogeneous datasets, none of which contain all the variables

needed for risk prediction. The baseline predictive approach

includes synthetic data generation and forecasting of individual

risk factors from young to older age using various established

machine-learning models. These forecast risk factors are then

fed into established risk-prediction models to estimate the risk

of cardiovascular disease and diabetes.

2.1 Synthetic Data Generation
The synthetic data generation was used to improve data com-

pleteness, enhance cross-dataset comparability, and support more

robust forecasting and predictive modeling.

2.1.1 Generation of Diet Scores. The risk models required full

dietary information, but none of the project datasets contained

all the variables needed for diet scores. We therefore used the

EUMenu dataset, which includes the complete set of dietary vari-

ables. Scores were first calculated for all EUMenu individuals.

For project datasets with overlapping dietary or related features,

we trained predictive models on EUMenu using only shared vari-

ables and generated synthetic diet scores accordingly. Given the

task’s simplicity and data structure, linear models were applied.
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2.1.2 Generation of Other Data. We generated synthetic values

for missing variables by constructing targeted sub-datasets and

generating data with supervised learning. Each sub-dataset re-

quired core demographics (sex, age, weight, height); rowsmissing

these were discarded to ensure stable baselines. A greedy search

selected predictor sets that maximized coverage of missing en-

tries, informativeness beyond demographics, and training sample

size. Candidate sets were ranked by Score = 𝑈 ×𝑉 ×
√
𝐾, where

𝑈 is the number of missing instances covered, 𝑉 the number of

predictors, and 𝐾 the number of training rows.

For each sub-dataset, Gradient Boosting, Random Forest, and

Linear Regressionmodels were trainedwith k-fold cross-validation

and grid search. Validation was assessed with Root Relative

Squared Error (RRSE; where RRSE = 0 for perfect predictions,

RRSE = 1 for baseline), and the best model generated the missing

values. Overlaps were resolved by keeping predictions from the

model with a lower RRSE. This process was repeated across vari-

ables to expand coveragewhile minimizing error. Data generation

proceeded iteratively: after each pass, synthetic variables were

evaluated with RRSE. Variables below a threshold were accepted

and treated as ground truth in the next pass, with sub-datasets

and models recomputed accordingly. The procedure terminated

once no further variables met inclusion or performance plateaued,

yielding a consistent. The mean RRSE of synthetic values in the

final dataset was 0.795.

2.2 Risk Factor Forecasting
Having generated synthetic data, we constructed amerged dataset

with no missing values. This dataset was used to train machine

learning (ML) models to forecast health-related risk factors from

childhood into adulthood. The predicted values were then ap-

plied as inputs to publicly available risk models to estimate the

risk of developing NCDs.

We implemented a neural network (NN) with two dense layers

(512 and 128 neurons) to capture non-linear patterns. Training

used MSE loss, the Adam optimizer, ReLU activations, dropout

(0.2), and early stopping. A single NN forecasted all risk factors

simultaneously. Training and test data were prepared by generat-

ing all younger-to-older age pairs per individual. Inputs included

gender, input and target age, and risk factors at the input age;

targets were the same risk factors at the target age. This design

enabled the model to learn age-progressive changes.

Input–output pairs were split into training, validation, and test

sets, with each individual assigned to only one partition to avoid

leakage. Stratification by dataset preserved source representation.

Features were standardized with scikit-learn’s StandardScaler.

For comparison, we trained traditional ML models separately per

variable: Linear Regression, Ridge Regression, Random Forest,

and LightGBM (the latter via the lightgbm library). All mod-

els used default parameters and were trained/tested on the same

pairs as the NN. Performance was measured with MAE and RRSE.

Training used both real and synthetic data, but evaluation was

restricted to real data. Input ages ranged from 6–18 years, and

target ages from 18–55 years, matching the SmartCHANGE fore-

casting scope. The mean RRSE of the forecast values was 0.829.

2.3 Risk Models
We focused on twomodels: the HealthyHeart Score (HHS) for car-

diovascular disease and Test2Prevent (T2P) for diabetes risk. Both

include lifestyle factors such as physical activity and diet—essential

for assessing younger populations and behavioural change—aligning

with our goal of early prevention through modifiable risk factors.

Using both models balanced clinical reliability with behavioural

relevance, enabling a more comprehensive NCD risk assessment.

Our initial approach applied the models at age 55, the max-

imum forecastable age. This yielded inconsistent outputs: T2P

produced 10-year risks (55–65), while HHS produced a 20-year

risk (55–75). To resolve this, we instead reported cumulative risks

to age 65, the most suitable endpoint given our data. Two strate-

gies were evaluated: non-overlapping intervals and overlapping

(hazard-averaging) intervals.

3 Advanced Unified Predictive Approaches
This section introduces advanced forecasting methods designed

to work directly on heterogeneous datasets without requiring

prior synthetic data generation. Despite their greater sophistica-

tion, their accuracy lags behind the more straightforward method

that relies on synthetic data generation.

Synthetic data generation and forecasting are trained jointly

within a single model, enabling the sharing of representations

and feedback. Early layers provide initial estimates for both tasks,

while later stages refine them by capturing complex temporal

dependencies. Although SmartCHANGE uses only single-year

inputs per user, the training dataset includes multi-year records,

which reveal broader behavioural patterns.

Before entering the network, variables are normalized using

training set statistics. Synthetic values are first generated in a

linear block conditioned on age, gender, and BMI. This block

consists of two fully connected layers (128 neurons + ReLU, then

21 neurons without activation). Forecasting then adds current

age, future age, and gender, and predicts 21 risk factors across

ages 6–55. The forecasting block differs by including an addi-

tional 128-neuron ReLU layer and more inputs. Forecasting is

performed separately for each input year, and if multiple years

exist, trajectories are averaged across target ages (e.g., data at 7,

9, and 12 yield three trajectories averaged per year).

This produces a time series of shape (50, 21). Appending masks

for observed/synthetic values and gender gives (50, 43). Risk fac-

tor trajectories are then refined via a GRU block with bidirec-

tional layers (128 or 21 hidden units) and a final 21-neuron linear

layer. Predictions are finally de-normalized back to the original

scale. The overall loss is the mean of two MAE terms: imputation

and forecasting, with the latter computed only on ground-truth

variables in the recorded output year.

The model was evaluated the same way as the one in Section

2.2, with the mean RRSE being 0.907. This is less than the RRSE

from Section 2.2, indicating the need for further refinement of

the unified approach.

4 Privacy Preservation and Explainability
Privacy Preservation. Within the SmartCHANGE project, health

datasets are distributed across multiple countries and institutions.

These sensitive data fall under strict regulations (e.g., GDPR),

which prohibit cross-border sharing, and new pilot data remain

stored locally, reinforcing isolation. Federated Learning (FL) ad-

dresses this by enabling collaborative training without moving

raw data [3]. Two main challenges arise in deployment: pro-

nounced heterogeneity across sites and residual privacy risks,

since shared gradients can still leak information. To mitigate

these, we developed distribution-aware, privacy-preserving FL

strategies tailored to real-world healthcare [2]. Instead of a single

global model, our approach builds compact, differentially private
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descriptors of each client’s data distribution, clustering similar

clients to train specialized models. This improves robustness

to variability and temporal drift while ensuring fairer predic-

tions, including for underrepresented groups. On the privacy

side, model partitioning and communication-efficient aggrega-

tion reduce leakage without heavy cryptography by fragmenting

gradients and distributing aggregation. Together, these strategies

enable scalable, robust, and privacy-preserving FL pipelines for

health risk prediction.

Explainability. Beyond predictive accuracy, effective NCD risk

assessment must also provide transparent explanations and ac-

tionable guidance. For this, we adapt the Counterfactual Concept

Bottleneck Model (CF-CBM) [1] to early-life health data. Instead

of relying on predefined concepts—often unavailable or inconsis-

tently annotated—our model learns patient feature distributions

via a variational autoencoder (VAE), ensuring the latent space

captures key generative factors of early-life trajectories. Counter-

factuals are then generated following CF-CBM principles: given

a patient profile and its predicted risk, the system proposes min-

imally altered, realistic configurations that would change the

outcome. For example, if a child is predicted at high diabetes

risk, the model may suggest plausible counterfactual profiles

where lifestyle or physiological factors are adjusted to reduce

risk. By embedding counterfactual reasoning directly into the

pipeline, this approach goes beyond post-hoc interpretability. It

both explains which factors drive predictions and identifies how

risk can be reduced, offering clinicians and families actionable,

personalized strategies for early prevention.

5 Architecture and User Applications
Architecture. The SmartCHANGE platform (Figure 1) is a mod-

ular, microservices-based system for AI-driven health interven-

tions in children and adolescents. It integrates the developed

predictive pipeline described in the previous sections with secure,

scalable, and privacy-preserving technologies, with emphasis on

GDPR compliance and explainable AI. Two main client interfaces

are provided: the HappyPlant mobile app for families and youth,

and a web application for healthcare professionals (HCPs).

Authentication and authorization are handled through the

OpenID Connect (OIDC) protocol, with role-based access con-

trol and single sign-on. Additional safeguards include encrypted

communication, pseudonymization, and immutable audit log-

ging. Together, the SmartCHANGE platform, HappyPlant, and

the HCP web interface form an integrated ecosystem for pre-

ventive healthcare, uniting advanced technical architecture with

user-centered design to deliver effective, scalable, and personal-

ized interventions.

Web Application. The web application for HCPs serves as a clini-

cal dashboard, enabling them to access patient data, assess long-

term risk for metabolic diseases (currently diabetes and CVD,

although it can be scaled to integrate additional prediction mod-

els), and support behaviour change strategies. The interface is

structured around a clinically aligned workflow — Consultation,

Assessment, and Intervention — mirroring real-world practices.

Mobile Application. While intelligent risk predictions support

HCPs in guiding clients, evidence and co-creation results show

that simply communicating risks is insufficient for sustainable

behaviour change in adolescents and families. The HappyPlant

app was designed to address this gap. Rather than focusing on

risks, it adopts a playful plant-growth analogy: users care for

a virtual plant by completing daily and weekly personalized

challenges linked to long-term health goals set by the HCP. The

app nudges users towards the most suitable challenges but leaves

the final choice to them, supporting autonomy and agency.

To foster long-term engagement, fully grown plants can be

placed in the user’s Goal Garden, which both showcases past

achievements and acts as a reinforcement mechanism. In today’s

reward-driven context, the Goal Garden also enables saving to-

wards real-life rewards set by parents, further motivating users.

The app’s design emerged from an extensive co-creation process

and iterative validation with users, who responded positively to

the analogy, challenge, and reward structure, as well as the aes-

thetics. Development was kept flexible, with adjustments made

to align the app with other SmartCHANGE components.

6 Conclusion
This paper provides a concise description of the SmartCHANGE

pipeline, which integrates harmonized datasets, synthetic data

generation, federated learning, and explainable AI into a secure

platform for early NCD risk prediction and prevention. Through

the HappyPlant app and professional interface, these methods

are translated into user-centered interventions that support sus-

tainable behaviour change in youth. Detailed descriptions of the

individual components will be published separately.
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Figure 1: Logical Architecture of the SmartCHANGE Platform, including the mobile app (HappyPlant) and the web-app for
healthcare professionals, connected to a central FHIR-compliant repository and featuring a Trustworthy AI Framework
with federated learning, explainability, and secure communication via the XCDS Engine.

Figure 2: HappyPlant app screens: the home, challenge and goal garden screens.
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Abstract
We present a two-stream graph framework for climate similarity
that fuses geographywith long-term dynamics. A globe-spanning
Voronoi network links cities whose cells share a boundary, while
per-city temporal graphs encode decades of daily temperatures
in 1000 cities over 40 years. We learn (i) temporal embeddings
via a GNN graph-classification model on city–year graphs and
(ii) spatial embeddings via a GNN link-prediction model on the
Voronoi backbone, using either raw climatology vectors or the
learned temporal embeddings as inputs. Treating cosine similar-
ity as edge weights (using 1-cosine) enables graph-mining views:
closeness maps highlight dense climate belts, and betweenness
maps surface long-range "bridges" connecting distant regions.
The fused approach uncovers patterns that simple averages miss,
including nearby cities with low similarity (microclimates, urban
form, or data aliasing) and far-apart cities with high similarity
(shared seasonal regimes/latitude bands). We also incorporate
the Delaunay triangulation - the dual of Voronoi - to provide a
geometrically well-posed neighbor network that stabilizes these
patterns. The method is scalable and reproducible, and the same
template - spatial adjacency + temporal history + GNN fusion -
extends beyond temperature to additional variables and to urban
and infrastructure applications.

Keywords
graph neural networks, spatiotemporal modeling, climate analy-
sis, Voronoi tessellation, Delaunay triangulation

1 Introduction
Understanding global climate patterns is critical to the climate–
change challenge. In this study, we explore a graph-based frame-
work that integrates geographic layout with long-term temporal
behavior.

As a data source, we use climate records for 1,000 of the world’s
most populated cities with 40 years of daily temperatures. This
dataset (Kaggle [7]) provides geolocations and multi-decade time
series, allowing us to combine spatial and temporal perspectives.

Our spatial backbone is a Voronoi graph: from city coordinates,
each city receives a Voronoi cell (the region closer to that city
than to any other), and two cities are connected when their cells
share a border—an interpretable, globally consistent notion of
proximity. Alongside Voronoi, we also construct the Delaunay
triangulation over the same points. Delaunay provides a com-
plementary, dual view of neighborhood structure and enables

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
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Figure 1: Node feature types for climate similarity.

triangle-based analyses; we use it as a robustness check to ensure
results are not tied to a single choice of spatial adjacency.

For temporal behavior, each city is represented by a graph
whose nodes are city–year pairs with daily-temperature profiles
as features. Years are linked when their profiles exceed a cosine-
similarity threshold. We add a virtual node so that each city graph
forms a single connected component.

To analyze climate across space and time, we use basic vectors
and pre-final vectors from Graph Neural Network (GNN) models.
Figure 1 illustrates four representations used throughout the
paper:

• Average — climatology vectors (365-day averages) per city;
• Temporal — embedded city graphs: pre-final vectors from
a GNN graph classification model on per-city year graphs;

• Spatial — embedded Voronoi nodes: pre-final vectors from
a GNN link-prediction model on the Voronoi graph with
average vectors as inputs;

• Spatial+Temporal — re-embedded nodes: pre-final vectors
from a GNN link-prediction model on the Voronoi graph
using temporal embeddings as inputs.

We previously introduced the use of pre-final vectors from
a GNN graph classification model on city temporal graphs [17]
and applied linear-algebra analyses to those outputs.

In this study we contribute:

• Construction of a globe-spanning Voronoi spatial graph
and its Delaunay triangulation as complementary spatial
backbones;

• Comparisons across input climatology vectors, output city-
graph embeddings, and spatial node embeddings from link
prediction;

• Graph-mining analyses on induced graphs from each vec-
tor type, highlighting agreements and differences across
spatial and temporal representations.
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2 Related Work
In 2012, two milestones reshaped AI: AlexNet’s convolutional
neural network set a new benchmark in large-scale image clas-
sification, far surpassing prior methods [9, 12], and Google’s
Knowledge Graph operationalized entity–relationship under-
standing at web-scale, transforming data integration, search, and
management [15].

These lines of work initially evolved in parallel—CNNs ex-
celled on grid-structured data, while graph methods targeted
relational structure. The emergence of graph neural networks
(GNNs) in the late 2010s bridged this gap by combining deep
learning with graph computation to model complex dependen-
cies [2]. Despite the rise of large language models (LLMs) since
2022, GNNs remain essential for tasks grounded in explicitly
graph-structured data.

GNNs are now standard for classification and link prediction
on graph-structured data [14, 1]. At web scale, industrial recom-
mender systems adopt scalable inductive variants such as Pin-
Sage [20], while temporal/dynamic settings leverage trajectory-
predictive embeddings like JODIE [10]. Community benchmarks
have further standardized evaluation for large graph learning
(e.g., OGB) [5]. In geophysics, recent studies demonstrate the
effectiveness of GNNs for medium-range global weather forecast-
ing [11], global atmospheric prediction [8], and spatiotemporal
hydrology and geoscience tasks such as groundwater dynamics
[19] and frost-event forecasting with attention mechanisms [13],
supporting the view that graph-based inductive biases are well
suited to environmental systems with strong spatial and temporal
structure.

Voronoi tessellations provide natural adjacency via shared
cell boundaries and have a long history in climate and global
modeling [6]. Recent applications use Voronoi-induced graphs
for urban risk modeling and natural hazards: Gan et al. propose
a Voronoi-based spatiotemporal GCN for traffic crash prediction
[3], while Razavi-Termeh et al. leverage Voronoi entropy in flood
susceptibility mapping [16]. Our work synthesizes these ideas
by constructing a global Voronoi-based spatial graph of cities
enriched with long-term temperature signals and combining it
with per-city temporal graphs encoded by GNNs.

3 Methods
3.1 Graph Construction
We construct a global spatial graph by computing a planar Voronoi
diagram on Web Mercator (EPSG:3857) city coordinates; two
cities are adjacent if their cells touch. The Voronoi/Delaunay is
used only to define adjacency (not distances/areas), yielding a
simple, interpretable map of city neighborhoods worldwide.

We evaluate four alternative node-feature sets:

(1) 365-day climatology vectors — for each city, a 365-
value day-of-year climatology averaged across all available
years.

(2) Temporal vectors — pre-final embeddings from GNN
graph-classification model on each city’s year-by-year
graph (years linked when their daily profiles exceed a
cosine-similarity threshold).

(3) Link-prediction vectors (from averages) — pre-final
embeddings from a GNN link-prediction model on the
Voronoi graph using the 365-day climatology vectors as
inputs.

Figure 2: Voronoi edge between distant cities: Québec and
Porto are neighbors because their cells meet across the
Atlantic.

Figure 3: Largest Voronoi triangle: Wellington–Port Eliz-
abeth–Mar del Plata illustrates long edges formed in
sparsely populated regions.

(4) Link-prediction vectors (from temporal vectors) —
the same GNN link-prediction setup, but with temporal
GNN embeddings as inputs.

This design allows direct comparison of spatial, temporal, and
hybrid representations within a single framework; see Figure 1.

3.2 GNN Graph Classification Model
We apply a GNN graph classification model (PyTorch Geometric)
to per-city temporal graphs. Each graph has one node per year,
with that year’s daily-temperature profile as the node features.
We add a virtual node to each graph and connect it to ensure every
city graph is a single connected component. For supervision, we
split cities into two equal groups by absolute latitude (closer
vs. farther from the equator) and train the model to classify the
graphs. We then use the pre-final vector as the city’s temporal
embedding for downstream analysis.

3.3 GNN Link Prediction Model
We apply a GNN link prediction model (Deep Graph Library), us-
ing the GraphSAGE aggregator [4], to the Voronoi spatial graph
of cities. Unlike the GNN graph classification model, which pro-
duces one embedding per city graph, link prediction runs on
the global spatial graph and refines each city’s node representa-
tion using both adjacency and input features. We evaluate two
node-feature variants: (i) 365-day climatology vectors (averaged
across years) and (ii) temporal embeddings from the classification
model. After training, we extract pre-final node embeddings as
enhanced city feature vectors for downstream analysis.

Notes and code are provided on our technical blog [18].

4 Experiments
4.1 Voronoi Graph Construction
We build the spatial graph from city coordinates with a Voronoi
tessellation: each city gets a cell, and two cities are linked when
their cells touch. This gives a clear, globe-spanning picture of
who is naturally close, without picking an arbitrary distance
cutoff. Alongside this, we also use the Delaunay triangulation
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Figure 4: Voronoi area (normalized): green=low, yel-
low=mid, red=high.

on the same points—the dual view that connects cities exactly
when their Voronoi cells meet and highlights triangle-based local
structure.

Sometimes this setup links places that are far apart because
there are few large cities between them. For example, Québec
(Canada) and Porto (Portugal) become neighbors across the At-
lantic when their cells meet (Figure 2). Larger patterns show up
in the Delaunay view as well: the largest triangle—Wellington
(New Zealand), Port Elizabeth (South Africa), and Mar del Plata
(Argentina)—illustrates how isolated regions can still form direct
connections (Figure 3).

To show spatial density, we color each city by Voronoi cell
size (Figure 4). Small cells (green) mark tight clusters—for exam-
ple, parts of eastern China and northern India—while large cells
(red) indicate sparse areas such as interior Australia or northern
Canada. Dense hubs shorten edges and raise local connectivity;
sparse zones create longer links that act as bridges.

4.2 GNN Models
Across both GNNs (temporal graph classification and spatial link
prediction), we use only pre-final embeddings for downstream
analysis; we do not report task metrics (edge AUC/AP or classi-
fication accuracy) because our goal is weighted-path/centrality
analysis on a geometric prior.

4.3 How Similar Are Distant or Nearby Cities?
This section examines climate similarity for both distant and
neighboring city pairs using the four representations (Average,
Temporal, Spatial, Spatial+Temporal). Tables 1 and 2 highlight
highlight representative examples: one for geographically distant
pairs and one for nearby pairs.

Many distant pairs show very high similarity, especially when
temporal history and spatial context are both considered. For ex-
ample, Wellington (New Zealand) and Mar del Plata (Argentina),
though thousands of kilometers apart, score highly across all four
metrics—suggesting that similar seasonal regimes and latitude
can outweigh raw distance.

Nearby pairs typically agree across metrics as well. In the sec-
ond table, examples such as Barranquilla–Soledad and Barcelona–
Puerto La Cruz show consistently high similarity, reflecting shared
local climate.

There are exceptions. New York and Brooklyn, despite being
only a few kilometers apart, score low on the Spatial and Spa-
tial+Temporal measures. This may reflect microclimates, urban
effects, or dataset/aliasing issues (e.g., borough vs. city records).
Such cases show that short geographic distances can mask mean-
ingful environmental differences, underscoring the value of com-
bining temporal and spatial modeling.

Figure 5: Closeness centrality across four vector types; red
= high, yellow = mid, green = low.

Figure 6: Betweenness centrality across four vector types;
red = high, yellow = mid, green = low.

4.4 Centrality and Betweenness Patterns
Across Vector Types

Throughout, climate similarity means cosine similarity between
the indicated vectors; for path-based metrics we use edge weights
𝑤 = 1− cosine. Each set of maps uses the same spatial backbone:
edges come from the Voronoi graph, where two cities are adja-
cent if their cells share a border. What changes across panels
is the edge weight, derived from cosine similarity computed
from one of four representations (Average, Temporal, Spatial,
Spatial+Temporal), with vectors normalized prior to cosine. The
topology stays fixed; the weights—and therefore any shortest-
path–based measures—change with the chosen vectors. Smaller
weights mean higher climate similarity.

In the closeness centrality maps (Figure 5), cities with high
closeness are, on average, at short weighted distance from many
others—i.e., they are similar to many cities. Dense climate regions
such as Europe and East Asia typically stand out. Differences
between panels reveal how each representation defines “similar,”
shifting which cities appear most central.

In the betweenness maps (Figure 6), different weightings em-
phasize different connectors: high-betweenness cities lie onmany
shortest routes. The Spatial+Temporal view surfaces more long-
range intermediaries than Average (notably in Africa, South
America, and the Pacific). We also observe slight polarization in
Spatial and Spatial+Temporal; the reason for this requires further
research.

Our centrality and betweenness maps are only a starting point,
with extended graph experiments expected to uncover additional
structures and recurring pathways.
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Table 1: Climate similarity between distant city pairs

City 1 City 2 Distance (km) Average Temporal Spatial Spatial+Temporal

Wellington, NZ Mar del Plata, AR 25870.97 0.9922 1.0000 1.0000 1.0000
Port Elizabeth, ZA Wellington, NZ 16639.04 0.9982 0.9963 0.9999 1.0000
Melbourne, AU Port Elizabeth, ZA 13299.30 0.9916 0.9958 0.9872 0.9993
Reykjavik, IS Krasnoyarsk, RU 12911.14 0.7375 0.7482 0.9861 0.9338
Nuku’alofa, TO Concepcion, CL 11549.31 0.9838 0.9882 0.9995 0.9997

Table 2: Climate similarity between nearby city pairs

City 1 City 2 Distance (km) Average Temporal Spatial Spatial+Temporal

Jerusalem, IL Al Quds, PS 2.27 1.0000 1.0000 0.9998 1.0000
Barranquilla, CO Soledad, CO 5.63 1.0000 0.9585 0.9999 0.9999
Barcelona, VE Puerto La Cruz, VE 6.32 1.0000 1.0000 1.0000 1.0000
Khartoum, SD Omdurman, SD 6.88 1.0000 0.8749 0.9590 0.9988
New York, US Brooklyn, US 7.05 1.0000 0.5220 0.0857 0.0878

5 Conclusion
In conclusion, the novelty of this work is the explicit fusion of a
Voronoi spatial graph with temporal GNN embeddings to reveal
climate “neighborhoods” that traditional, single-view methods
tend to miss. By running a GNN graph-classification model on
per-city year graphs and a GNN link-prediction model on the
global Voronoi backbone, we combine geography with long-term
dynamics. We compare simple average-by-day climatology vec-
tors against pre-final vectors from both GNN models and then
use these vectors for downstream analysis.

This fusion surfaces informative outliers: nearby cities with
low cosine similarity—consistent with microclimates, urban form,
or data aliasing—and distant city pairs with high similarity, sug-
gesting long-distance climate links. Using these vectors as edge
weights enables graph-mining views: closeness maps highlight
dense climate belts, while betweenness maps elevate long-range
“bridges.” Adding the Delaunay triangulation—the dual of the
Voronoi diagram—provides a geometrically well-posed neighbor
network that stabilizes these patterns.

While this study centers on climate and temperature, the dual
Voronoi–Delaunay framework with GNN fusion is broadly ap-
plicable. The same geometric scaffold can analyze urban connec-
tivity and infrastructure networks, surface social or economic
linkages in dense regions, and support practical tasks like traf-
fic management and siting of schools, parks, or grocery stores.
It offers a stable way to reason about spatial relationships be-
yond climate. The approach is also a starting point for continued
work: enrich node features, adopt spherical/geodesic tessellations,
learn the graph via contrastive or metric objectives, and explore
dynamic temporal GNNs with attribution, counterfactuals, and
uncertainty.
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Abstract
Biodiversity monitoring in forests requires scalable, automated

tools for detecting ecological anomalies across time and space.

This paper reports on a three-month pilot deployment (April

1 to June 30, 2025) in Dyrehaven, an 11 km
2
forest park near

Copenhagen, Denmark, where acoustic data from 10 distributed

AudioMoth sensors and vegetation indices from Sentinel-2 im-

agery were collected. We trained separate variational autoen-

coder (VAE) models on each modality to test the technical feasibil-

ity of learning ecological baselines. Since no ecological anomalies

occurred during the observation period, evaluation focused on

reconstruction errors, which indicate how well VAEs can capture

typical site-specific ecological patterns (i.e., baseline modeling).

Both acoustic and satellite pipelines achieved low reconstruc-

tion errors, demonstrating that VAEs can reliably model normal

ecological dynamics. This establishes the foundation for future

studies on anomaly detection, which will require larger datasets

containing true ecological anomalies identified and labeled by

experts. Ongoing work focuses on extending data collection to

additional forest sites, while future anomaly detection will re-

quire expert-labeled anomalies to calibrate baselines and validate

model performance for robust, multimodal biodiversity monitor-

ing.

Keywords
biodiversity, anomaly detection, variational autoencoder, ma-

chine learning, passive acoustic monitoring, satellite imagery

1 Introduction
Forests are complex, dynamic ecosystems increasingly affected by

environmental stressors such as pests, diseases, invasive species,

and climate-related disturbances [1]. Effective biodiversity mon-

itoring is essential to detect these stressors early and support
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adaptive, science-based forest management [2, 3]. However, ex-

isting monitoring tools are often limited in scope, fragmented

across disciplines, and costly to implement at scale [4].

This paper presents the technical foundation of the biodi-

versity assessment tool (BAT), a modular, scalable system that

integrates ecoacoustics, satellite remote sensing, and machine

learning (ML) to enable automated biodiversity monitoring in

forested landscapes. BAT is designed to detect anomalies in eco-

logical baselines, providing early warning signals of ecosystem

degradation [5]. It combines two complementary remote sensing

modalities: passive acoustic monitoring (PAM), which captures

localized, high-frequency biological activity such as insect or

bird calls [6, 7], and satellite Earth observation (EO), which offers

broader, lower-frequency indicators of landscape-level change,

including vegetation health and canopy dynamics [8].

The presence of pests or other stressors often leads to a reduc-

tion in biodiversity, which can first be detected acoustically as

diminished biotic sound activity, and later (typically with a lag of

several days) becomes visible in EO data as decreased vegetation

greenness. BAT is designed to leverage this temporal and spatial

complementarity by developing independent anomaly detection

pipelines for each modality, which in future iterations may sup-

port joint multimodal detection of ecological disturbances.

This study reports on a pilot deployment in Dyrehaven, a

human-managed park-forest in Denmark, where time-series data

from distributed acoustic sensors and Sentinel-2 satellite im-

agery were collected between April and June 2025. Separate

variational autoencoders (VAEs) were trained on each modality

to test whether robust baseline models can be learned. Ecological

anomalies are inherently rare and cannot be guaranteed within

a limited three-month window, and none occurred during this

period. As a result, evaluation focused on baseline reconstruction

performance rather than anomaly detection accuracy. Demon-

strating that VAEs can successfully capture “normal” ecological

patterns is a necessary prerequisite for future anomaly detection.

Ecological baselines are inherently site-specific, differing across

forest types, microhabitats, and even within single forests (e.g.,

wetter zones near ponds vs drier uplands). Accordingly, this work

should be understood as a technical feasibility study, with the

longer-term goal of enabling multimodal detection of ecological

disturbances such as pest outbreaks, supported by expert-labeled

events and extended deployment across diverse forests.
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2 Data
Our study area was Dyrehaven, a human-managed forest park

north of Copenhagen, Denmark (55.8024°N, 12.5685°E), covering

11 km
2
(see Figure 1). The site includes 10 structured microhab-

itats across woodland, meadow, and modified forest areas. Its

ecological diversity and relative stability make it suitable for test-

ing acoustic and satellite-based monitoring methods. Data were

collected between April 1 and June 30, 2025.

Figure 1: Study area in Dyrehaven, Denmark with Au-
dioMoth recording locations (red pins) and Sentinel-2 satel-
lite bounding box (blue).

2.1 Audio
Passive acoustic data were collected using 10 AudioMoth record-

ing devices deployed across Dyrehaven’s microhabitats. Devices

were positioned to maximize spatial heterogeneity, minimize

acoustic overlap, and ensure temporal consistency. Each unit

recorded 45-second mono-channel clips every five minutes at

a 48 kHz sampling rate. All devices were weatherproofed and

mounted on trees for continuous outdoor operation. A recording

gap occurred between April 20 and April 29 due to memory card

failure. A total of 203078 recordings were generated during the

study period. After removing corrupted or incomplete files (309

clips, 0.15%), 202769 valid recordings remained.

2.2 Visual
Satellite imagery was sourced from the Sentinel-2 mission [9],

covering a 1.48 km × 5.86 km bounding box encompassing 9 of

the 10 AudioMoth locations. Out of 53 total available snapshots

during our study period, 18 cloud-free scenes (≤50% cloud cover)

were selected for analysis to ensure index reliability.

Normalized difference vegetation index (NDVI) and Normal-

ized difference moisture index (NDMI) were computed for each

selected image as

NDVI =
NIR − red

NIR + red

and

NDMI =
NIR − SWIR

NIR + SWIR

,

where, NIR, SWIR, and red are near-infrared, shortwave-infrared,

and visible red bands, respectively.

NDVI was calculated at 10 m resolution, and NDMI at 20 m.

Each index map was divided into fixed-size patches. NDVI maps

produced 396 patches (11 × 36 grid), while NDMI produced 108

patches (6×18 grid), reflecting their respective spatial resolutions.

3 Methodology
3.1 Extraction of Acoustic Indices
10 standard ecoacoustic indices [10] (list in Table 1) were ex-

tracted from each 45-second recording, capturing patterns from

both time-domain and time-frequency analyses. These indices

reflect aspects such as spectral entropy, acoustic complexity, tem-

poral dynamics, and frequency distribution, offering proxies for

ecological features like species richness, biophonic activity, and

anthropogenic disturbance. All indices were independently nor-

malized to the [0, 1] range using their dataset-wide minimum

and maximum values.

Table 1: Acoustic indices used in this study and their eco-
logical interpretation.

Index Use

ACI Detects dynamic biotic sounds (e.g., bird choruses).

AEI Identifies dominance vs. diversity in acoustic commu-

nities.

EAS Differentiates uniform noise vs. structured signals.

ECU Indicates unpredictability and complexity of sound-

scapes.

ECV Captures temporal structure (e.g., insect or bird

rhythms).

EPS Distinguishes tonal vs. noisy sound environments.

ADI Proxy for acoustic diversity or species richness.

NDSI Separates natural from human-made noise.

Ht Detects continuous vs. discrete acoustic events.

ARI Estimates overall acoustic richness.

3.2 Preprocessing of Satellite Imagery
To ensure patch-level data quality, we applied the scene classifi-

cation layer (SCL) after resampling. Patches containing cloudy or

unreliable pixels (SCL classes 3, 8, 9, or 10) were excluded. This

preprocessing pipeline produced curated spatiotemporal datasets

of 4436 NDVI patches and 1226 NDMI patches, which served as

input for training and evaluating the VAE models.

3.3 Variational Autoencoder and Evaluation
Metrics

A variational autoencoder (VAE) learns to compress input data

into a latent representation and reconstruct it via encoder and

decoder as per Figure 2.

The encoder maps each input to a latent mean, 𝜇1 and log-

variance, 𝑙𝑜𝑔(𝜎2
1
), from which a latent vector 𝑧 is sampled via the

reparameterization trick: 𝑧 = 𝜇1 + 𝜎1 · 𝜖 , where 𝜖 ∼ N(0, 1) and
𝜎1 = exp(0.5 · log(𝜎2

1
)).

The decoder reconstructs the input from 𝑧, producing a mean

𝜇2 and log-variance log(𝜎2
2
) of the output distribution. Training

minimizes the total loss:

LVAE = Lrecon +𝑤KL · LKL
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Figure 2: Architecture of VAE for anomaly detection using
reconstruction probability.

where Lrecon is the negative log-likelihood of the input under

the decoder’s Gaussian output:

Lrecon = −
𝐷∑︁
𝑖=1

logN(𝑥𝑖 | 𝜇2,𝑖 , 𝜎22,𝑖 )

and LKL is the Kullback–Leibler divergence between the approx-

imate posterior 𝑞(𝑧 |𝑥) and the prior 𝑝 (𝑧) = N(0, 1):

LKL = −1

2

𝑑∑︁
𝑗=1

(
1 + log(𝜎2

1, 𝑗 ) − 𝜇2
1, 𝑗 − 𝜎2

1, 𝑗

)
with 𝐷 and 𝑑 representing the input and latent dimensions, re-

spectively.

In an operational anomaly detection setting, the decoder’s

negative log-likelihood (often referred to as reconstruction like-

lihood) would serve as the anomaly score, with higher values

indicating more anomalous inputs. However, since no ecological

anomalies occurred during our three-month observation window,

this pilot study evaluates baseline modeling rather than anomaly

detection accuracy. Specifically, we report reconstruction errors:

mean squared error (MSE) and mean absolute error (MAE) for

acoustic indices, and overall mean absolute error (averaged across

all pixels in each patch) for NDVI and NDMI patches, computed

only on non-cloudy patches after SCL masking.

3.4 Experimental Setup
The general pipeline of the BAT system is shown in Figure 3. It

consists of independent audio and visual pipelines designed to

operate separately but eventually integrate into a unified decision-

support framework.

Figure 3: The general pipeline of the BAT system.

In a full anomaly detection setting, the pipelines would use

reconstruction likelihoods as anomaly scores and combine them

across modalities. In this pilot, since no anomalies occurred, we

only assess baseline modeling by training and evaluating the

acoustic and satellite VAEs independently, reporting reconstruc-

tion errors as indicators of model performance.

3.4.1 Audio Pipeline. The audio VAE uses a 10-dimensional in-

put, with an encoder and decoder each containing one hidden

layer of size 8 and ReLU activation. The latent space has di-

mension 4. The decoder outputs the reconstructed mean and

log-variance of size 10.

Model evaluation used 5-fold cross-validation with folds de-

fined by spatially clustered AudioMoth devices (∼ 850 m mini-

mum separation) to reduce data leakage. Models were trained for

30 epochs with a batch size of 512 using the Adam optimizer and

a one-cycle learning rate schedule.

3.4.2 Visual Pipeline. The satellite VAE takes a 16×16 pixel in-

put (NDVI or NDMI) and uses three convolutional layers (32,

64, 128 filters) with ReLU activation in the encoder. The output

is flattened and mapped to a latent space of dimension 4. The

decoder upsamples using three transposed convolutional layers

with ReLU, reconstructing the mean and log-variance patches of

size 16×16.

Separate VAE models were trained for NDVI and NDMI using

an 80/20 train-test split. Each model was trained for 20 epochs

with a batch size of 32 using the Adam optimizer. The loss was

computed only over non-cloudy pixels.

4 Results and Discussion
To examine temporal patterns, all indices were plotted over the

study period as seen in Figure 4. Acoustic indices were aver-

aged between 9AM and 3PM across all 10 AudioMoth devices to

avoid nighttime inactivity and minimize dawn/dusk transitions.

A 10-day smoothing window was applied to reduce day/night

fluctuations. The indices remained relatively stable long-term,

showing little trend and suggesting no major ecological disrup-

tions and reflecting the stability of the forest soundscape over

the study period.

Visual indices were averaged across all patches for each date.

Both indices exhibit a gradual increase from early April to late

June, consistent with seasonal greening. NDVI shows a smooth

and consistent rise, indicating widespread vegetation growth.

NDMI, while generally increasing, displays more irregular varia-

tion, particularly early in the season, likely reflecting transient

moisture conditions. NDVI primarily tracks canopy structure

and greenness, while NDMI is more sensitive to vegetation and

soil moisture.

The audio pipeline VAE was evaluated using reconstruction

MSE and MAE. Since all indices were normalized to the [0,1]

range, errors are directly comparable. As shown in Figure 5,

reconstruction errors are generally low, indicating that the model

effectively captures the underlying structure of the acoustic data.

EPS and Ht showed the highest reconstruction error variability.

This suggests they are more difficult to model but may provide

sensitive signals of ecological change in future anomaly detection

settings. Indices with consistently low reconstruction errors, on

the other hand, indicate stable features that can serve as robust

components of ecological baselines. These patterns highlight

differences in how well various indices represent typical acous-

tic dynamics, which is central to establishing reliable baseline

models.
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Figure 4: Index values over the study period.

Figure 5: Reconstruction errors for acoustic indices.

The visual pipeline VAEs were evaluated using overall MAE

per patch. As expected, errors were fairly uniform across pixels,

indicating that the models reconstruct spatial patterns consis-

tently without localized distortions. The average patch-levelMAE

(average across all 16 × 16 = 256 pixels across all images) was

7.17 ± 0.11 for NDVI and 9.65 ± 0.26 for NDMI. Given the [0, 1]

normalization range of each pixel, the errors are relatively small

and therefore reflect accurate reconstruction of vegetation and

moisture dynamics.

The selected VAE models for both the acoustic and visual

pipelines demonstrate strong reconstruction performance, with

consistently low errors across acoustic indices and Sentinel-

derived NDVI/NDMI patches. This confirms that the models

effectively capture typical ecological patterns, which is the in-

tended outcome of this pilot study.While further hyperparameter

tuning could potentially reduce errors, the key result is that ro-

bust ecological baselines can be modeled. Anomaly detection

itself will require expert-labeled events in future deployments,

but these results provide the necessary technical foundation.

5 Conclusion
This work demonstrates the technical feasibility of using VAEs

to model baseline ecological patterns from acoustic and satellite

time series in a forested landscape. As a pilot study, it does not

evaluate anomaly detection directly, since no anomalies occurred

during the observation period. Instead, it establishes that robust

models can be trained on available data, providing a foundation

for future multimodal monitoring.

A critical next step is the collection of additional data over

longer time frames and across multiple forest types, since actual

ecological anomalies are rare and cannot be guaranteed within a

short observation window. Detecting and validating anomalies

will require expert labeling of such events once they occur. To

this end, we are continuing data collection at Dyrehaven and

planning expansions to other Danish forests (e.g., Thy, Amager,

Lillebælt) to capture a wider range of ecological contexts and im-

prove model generalization. Further development will also focus

on refining acoustic preprocessing through time-window aver-

aging or time-aware features and enhancing the visual pipeline

with seasonal baselines, sequential models, and zone-specific

approaches that account for spatial heterogeneity.

With expert input, longer-term recordings, and broader de-

ployment, the BAT system can evolve frommodeling site-specific

baselines into a robust anomaly detection tool supporting scalable

and long-term biodiversity monitoring.
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Abstract
Passive acoustic monitoring is increasingly applied in studies
of pollinators, both for biodiversity assessment and for the
conservation of endangered species. A major challenge is that
continuous recording generates large volumes of audio data,
making centralized processing impractical. Edge computing
offers a promising alternative, provided that the models are
optimized for resource constraints of edge devices while main-
taining acceptable performance and efficiency. In this work,
which is our initial study of the edge computing approach,
we developed and evaluated compact classifiers for detecting
buzzes of solitary bees, extending previous work on acoustic
monitoring. We systematically apply pruning and quantization
to multiple models, exploring a range of compression settings.
Performance is assessed in terms of mean F1-score and on-disk
size under both cross-validation and leave-one-location-out
protocols. Results indicate that substantial reductions in model
size can be achieved with a minimal loss of performance, and
that the optimal trade-offs depend on the evaluation setting;
for example, in cross-validation, a 25.2MiB baseline reaches
96.2% F1, while a 0.062 MiB model attains 92.5%, achieving
an approximately 400-fold reduction in size with less than
a 4-percentage-point drop. By analyzing the Pareto front of
F1 vs. model size trade-offs, we identify configurations that
balance robustness and resource constraints. Our early findings
demonstrate the feasibility of deploying edge-ready acoustic
models for scalable pollinator monitoring.

Keywords
edge deployment, lightweight model, pruning, quantization,
bees

1 Introduction
Bees are widely recognized as major pollinators - animal polli-
nators including honey bees contribute to yield in 75% of key
crop species and an estimated 35% of global crop production [1].
This indicates the importance of pollinator monitoring and pro-
tection.
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tributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
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Passive acoustic monitoring (PAM) is a non-invasive ap-
proach that continuously records environmental sound with
deployed microphones to monitor animal activity. Because it
reduces manual surveys and can operate continuously across
space and time―even at night and under inclement weather―it
has gained attention as a cost-effective biodiversity monitoring
technology. PAM has been widely adopted for multiple taxa
such as birds and bats; in ornithology, for example, the deep-
learning system BirdNET [2] is already used operationally to
identify species from passively collected field recordings. PAM
is also applied to bee behavior monitoring: in social bees (such
as honeybees or bumblebees), microphones and accelerometers
placed inside or outside hives enable non-invasive, continuous
surveillance of queen presence, swarming cues, and robbing [3].
For solitary bees, recordings at the entrance of nesting boxes
are used to detect buzzing and to characterize presence/absence
and activity rhythms [4].

In acoustic approaches for bee state monitoring, machine
learning has been widely used to automatically determine
activity and behavioral states from audio recordings. Prior
work includes both classical machine-learning pipelines and
deep-learning methods. Classical approaches such as SVM,
k-NN, and Random Forests have been shown to be practical
and effective [5, 6]. Meanwhile, several studies suggest that
CNN-based deep learning models achieve superior performance
compared with traditional machine-learning methods [7, 8].

However, if all long-term, continuous PAM recordings are
uploaded to the cloud, features such as mel spectrograms and
MFCCs are extracted there, and then analyzed using machine
learning or deep learning models, the resulting data volumes
become extremely large, which, in a centralized cloud-only
workflow, (i) inflates communication cost by requiring all
long-duration audio to be uploaded [9], (ii) raises privacy con-
cerns as incidental human speech can accumulate in the cloud
[10], (iii) introduces round-trip latency for feature extraction
and inference that impedes timely detection, and (iv) exposes
scalability limits as storage and compute demands grow with
multi-site, long-term deployments. To address these issues, we
developed a high-accuracy, lightweight deep model designed
for edge deployment, capable of on-device preprocessing and
inference for recorded audio. Here, the term lightweight refers
to memory (both RAM and storage), but in a broader view it
also refers to CPU/GPU requirements, latency requirements,
and even battery constraints, which is beyond the scope of this
paper. In our intended operation, audio is processed on-device
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and only the result is sent to the cloud, enabling multi-site,
long-term monitoring with reduced storage cost and latency,
while preserving privacy and power efficiency.

As a first step toward edge-based bee monitoring with PAM,
we designed and evaluated a lightweight CNN specialized for
solitary-bee buzz detection (binary classifier distinguishing
between buzz and no-buzz). To compress the model, we applied
compression techniques such as structured pruning and int8
post-training quantization when appropriate, and we quantified
the size–accuracy trade-offs under edge-oriented constraints.

2 Methodology
2.1 Dataset
We used the dataset collected for the purpose of the study
by Susič et al. [4]. This dataset comprises acoustic recordings
from nesting boxes of solitary bees (predominantly Osmia
spp.) collected through a citizen-science project carried out
in the Bela Krajina region in the southeastern Slovenia. The
recordings were gathered from March 15 to May 26, 2023,
resulting in 62 long recordings across seven sites, with a mean
duration of 6± 2.5 hours per recording. For the purpose of this
study, three recordings in total were randomly selected from
different locations.

The recordings were converted to mono-channel audio, seg-
mented into 4 s windows with 2 s overlap, transformed into Mel
spectrograms (128× 128) configured to cover 50–1450 Hz, and
standardized using the mean and standard deviation across the
dataset. For labeling, two annotators inspected the spectrograms
and assigned buzz=1 or no-buzz=0.

2.2 Neural Network Architecture
We addressed binary detection of solitary-bee buzzing fromMel
spectrograms. With memory-constrained edge deployment,
we evaluate four lighter CNNs compared to the ResNet-9 used
in [4]. Specifically, we consider MobileNetV2 [11] and three
custom lightweight architectures named BeeNet1, BeeNet2, and
BeeNet3, that adopt a depthwise separable convolutional design
similar to MobileNetV1 [12]. Model sizes and parameter counts
are summarized in Table 1 and the architectural details of the
BeeNet variants are provided in Table 2. In all architectures,
each convolutional layer is followed by batch normalization,
BatchNorm, and ReLU activation, whereas dw stands for
depthwise convolution. For MobileNetV2, we use the standard
backbone and adapt it to spectrograms by converting the first
convolution to a 1-channel input and replacing the final linear
layer with a 1280→ 2 classifier. All other layers remain identical
to the original MobileNetV2.

While the ResNet-9 approach achieves an F1-score exceed-
ing 95% under five-fold cross-validation on the dataset [4], its
25.2 MiB size renders its deployment on a memory-limited edge
devices impractical. Accordingly, we designed and configured
compact CNNs (MobileNetV2 and the BeeNet family) and, as de-
tailed below, applied quantization and pruning to systematically
evaluate the accuracy–model-size trade-off.

The aim of this study is to clarify accuracy as a function of
model size and the effects of lightweighting techniques under
strict model-size constraints assuming deployment on MCUs.
Accordingly, we adopt a lightweight and relatively simple ar-
chitecture, with the smallest model containing approximately 6k
parameters.

Table 1: Parameter counts and model sizes of the models
used in this study

ResNet-9 Mobilenetv2 Beenet 1 Beenet 2 Beenet 3

Parameters (k) 6585.5 2225.9 50.2 17.6 6.4
Model size (MiB) 25.2 8.7 0.215 0.084 0.036

2.3 Model Compression Methods
Deploying deep neural networks on memory-constrained edge
devices necessitates model compression.We examined two com-
plementary techniques: quantization and pruning.

2.3.1 Quantization. Quantization maps floating-point weights
and activations to low-bit integers, thereby reducing model size
and computation at inference. Here, we adopted post-training
quantization (PTQ) and converted the trained network to int8
without additional training. We used the QNNPACK backend in
PyTorch for ARM targets. Tominimize both saturation (clipping)
and rounding error under the 8-bit representation and mitigate
accuracy degradation, we performed calibration with up to 300
batches of representative inputs to estimate the scale and zero-
point.

2.3.2 Pruning. Pruning reduces model complexity by deleting
parameters deemed unimportant, thereby decreasing memory
and compute complexity without retraining from scratch.
Pruning can be categorized into structured and unstructured
approaches. We adopted structured pruning to realize memory
savings and speed-ups on commodity hardware, as unstructured
sparsity typically requires specialized hardware or software
support to translate sparsity into acceleration [13].

Our pruning pipeline followed Han et al. [14]: (1) train, (2)
prune, and (3) retrain (fine-tune). For filter (i.e., output-channel)
selection, we followed the idea of Li et al. [15], ranking convolu-
tional filters by the L1 norm of their weights and removing those
with the smallest scores. We implemented this using PyTorch’s
torch-pruning, configuring the MagnitudePruner with L1-based
importance. The selection of filters pruned was performed glob-
ally across layers. The target was controlled by a pruning ratio 𝑝;
under channel-wise pruning, the resulting parameter-reduction
rate was approximately 1 − (1 − 𝑝)2 [16, 17].

2.4 Experimental Setup
2.4.1 Model Performance Evaluation Metrics. Because we were
dealing with a class-imbalanced dataset (more no-buzz than
buzz), we used the F1-score as the primary metric. F1 is the
harmonic mean of precision and recall, enabling balanced
assessment under imbalance.

2.4.2 Evaluation Protocols. We evaluated the buzz-detecting
models using two protocols, following [4]: cross-validation
(CV) and leave-one-location-out (LOLO). The first approach is
a standard test in machine-learning studies whereas the second
one shows how well the model generalizes to the data coming
from a previously unseen location with potentially different
background noise. For CV, annotated segments (4 s windows)
were partitioned into five folds; models were trained on four
folds and evaluated on the remaining fold, and we reported
the mean F1 across folds. Stratification ensures balanced dis-
tributions of the buzz/no-buzz classes and the three locations.
To mitigate temporal leakage, we performed a time-aware data
split.
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Table 2: The architectures of BeeNet1, BeeNet2, BeeNet3

BeeNet1 BeeNet2 BeeNet3

Type / Stride Filter Shape Input Size Type / Stride Filter Shape Input Size Type / Stride Filter Shape Input Size

Conv / s1 3 × 3 × 1 × 32 128 × 128 × 1 Conv / s1 3 × 3 × 1 × 32 128 × 128 × 1 Conv / s1 3 × 3 × 1 × 32 128 × 128 × 1
MaxPool / s2 Pool 2 × 2 128 × 128 × 32 MaxPool / s2 Pool 2 × 2 128 × 128 × 32 MaxPool / s2 Pool 2 × 2 128 × 128 × 32
Conv dw / s1 3 × 3 × 32 dw 64 × 64 × 32 Conv dw / s1 3 × 3 × 32 dw 64 × 64 × 32 Conv dw / s1 3 × 3 × 32 dw 64 × 64 × 32
Conv / s1 1 × 1 × 32 × 32 64 × 64 × 32 Conv / s1 1 × 1 × 32 × 32 64 × 64 × 32 Conv / s1 1 × 1 × 32 × 32 64 × 64 × 32

MaxPool / s2 Pool 2 × 2 64 × 64 × 32 MaxPool / s2 Pool 2 × 2 64 × 64 × 32 MaxPool / s2 Pool 2 × 2 64 × 64 × 32
Conv dw / s1 3 × 3 × 32 dw 32 × 32 × 32 Conv dw / s1 3 × 3 × 32 dw 32 × 32 × 32 Conv dw / s1 3 × 3 × 32 dw 32 × 32 × 32
Conv / s1 1 × 1 × 32 × 64 32 × 32 × 32 Conv / s1 1 × 1 × 32 × 64 32 × 32 × 32 Conv / s1 1 × 1 × 32 × 64 32 × 32 × 32

MaxPool / s2 Pool 2 × 2 32 × 32 × 64 MaxPool / s2 Pool 2 × 2 32 × 32 × 64 MaxPool / s8 Pool 8 × 8 32 × 32 × 64
Conv dw / s1 3 × 3 × 64 dw 16 × 16 × 64 Conv dw / s1 3 × 3 × 64 dw 16 × 16 × 64 FC / s1 1024 × 2 4 × 4 × 64
Conv / s1 1 × 1 × 64 × 128 16 × 16 × 64 Conv / s1 1 × 1 × 64 × 128 16 × 16 × 64 Softmax / s1 Classifier 1 × 1 × 2

MaxPool / s2 Pool 2 × 2 16 × 16 × 128 MaxPool / s4 Pool 4 × 4 16 × 16 × 128
Conv dw / s1 3 × 3 × 128 dw 8 × 8 × 128 FC / s1 2048 × 2 4 × 4 × 128
Conv / s1 1 × 1 × 128 × 256 8 × 8 × 128 Softmax / s1 Classifier 1 × 1 × 2

MaxPool / s4 Pool 4 × 4 8 × 8 × 256
FC / s1 1024 × 2 2 × 2 × 256

Softmax / s1 Classifier 1 × 1 × 2

LOLO assessed generalization across sites: models were
trained on data from two of the three locations and evaluated
on the held-out location, reporting the mean F1 across the three
possible holds.

2.4.3 Hyperparameters. We trained the models with cross-
entropy loss and the Adam optimizer, using a 1-cycle learning-
rate schedule (maximum LR = 0.001), gradient clipping at 0.1,
batch size 64, and 20 epochs. Compared to [4], the only change
was increasing the number of epochs from 10 to 20. For pruning
fine-tuning, we trained for 10 epochs with a fixed learning rate
of 0.0001 and no scheduler. We compared the pruning ratios 𝑝
of 0% (no pruning), 20%, 30%, and 50%.

3 Results
3.1 F1 vs. Model Size
For each model, we trained and evaluated a variety of combi-
nations of pruning ratios and quantizations. Table 3 reports the
mean F1 and on-disk model size (in MiB) for each setting. Fig-
ure 1 shows the plot of all configurations in the F1 – model-
size plane for CV and LOLO, respectively, with the global Pareto
front indicating the best trade-offs between model performance
and its size denoted by a dashed line.

Even under tight memory budgets (< 100 KiB), competitive
accuracy is achievable. For example, BeeNet1 (int8, 𝑝=0) attains
0.062MiB with CV F1 of 92.5% and LOLO F1 of 85.7%. Relative to
ResNet-9 (float32, 𝑝=0), this represents an ∼ 400× reduction in
model size while keeping F1 within 4 percentage points in both
protocols, which is really promising for future edge deployment.

Performance degradation from int8 quantization is small:
across many settings the F1 drop is about 1 percentage point
(pp). With pruning, larger models exhibit smaller accuracy
losses as 𝑝 increases. For example, at 𝑝=50% ResNet-9 (float32)
decreases only from 96.2% to 95.1% in CV and from 89.5% to
87.6% in LOLO, a decline of ≈ 2 percentage points in total.
By contrast, the more compact BeeNet family is more sensi-
tive: accuracy degrades markedly with 𝑝 , and at 𝑝=50% most
configurations lose ≥ 4 pp.

Inspection of the global Pareto front shows that many fron-
tier points correspond to unpruned float32 or int8 models. At
a fixed memory budget, lightly pruned or unpruned lightweight

architectures often achieve higher accuracy than heavily pruned
larger networks, indicating that purpose-built small models are
preferable to aggressive pruning under the same size constraint.

A note on MobileNetV2 at 𝑝=30%: the trained model degen-
erated to predicting no-buzz for almost all inputs. This behavior
may stem from a strong structured reduction under class imbal-
ance and warrants further investigation.

4 Conclusions
We addressed buzz detection in acoustic recordings from
solitary-bee nesting boxes, aiming to develop deep-learning
models suitable for memory-constrained edge deployment. We
designed or selected five CNN architectures and systematically
measured the performance vs. model-size trade-offs under
quantization and structured pruning. As a result, we obtained
sub-100 KiB models achieving F1 scores of at least 92% in CV
and 85% in LOLO experiments, indicating the feasibility and
strong potential of accurate on-device inference.

For future work, we plan to train the models on additional
datasets that we have collected to improve robustness and to de-
ploy the models on real edge devices. Because our compression
pipeline relied on simple techniques, we anticipate further gains
by adopting a broader set of compression methods, such as
knowledge distillation [18], quantization-aware training (QAT)
[19], and neural architecture search (NAS) [20] to optimize
model architectures under memory constraints, including
number and sizes of the filters.
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Abstract  

Intraoperative hypotension following intubation is a clinically 

significant event associated with increased morbidity and 

mortality. This study presents an interpretable predictive 

clustering tree (PCT) model designed for multi-target prediction 

of hypotensive outcomes, including the prediction of minimum 

and maximum mean arterial pressure (MAP) values during 

hypotension in the post-induction period. The multi-target 

regression trees (MTRT) were evaluated using 10-fold cross-

validation, and feature importance was assessed via a random 

forest model. Compared to the original tree, the pruned model 

demonstrated improved generalization and reduced complexity, 

with fewer nodes and enhanced interpretability. The pruned tree 

structure enabled clear decision thresholds based on modifiable 

variables such as MAP_after_5min, MAP_basal, and Propofol 

dose. While the random forest achieved the highest performance 

and had high complexity, its feature importance ranking analysis 

supported the relevance of the attributes retained in the pruned 

model and provided complementary insights, highlighting 

globally relevant features, such as SBP_after_5min, that were not 

prioritized in the single trees. These findings support the use of 

interpretable models in clinical decision-support to anticipate 

and potentially modify the occurrence of post-intubation 

hypotension. 

 

Keywords 

multi-target prediction, interpretable machine learning, decision 

tree pruning, feature importance, post-intubation, intraoperative 

hypotension 

1 Introduction 

Intubation is a common procedure in emergency departments and 

operating rooms, typically performed immediately after the 

administration of induction agents. These agents have been 

associated with hemodynamic instability and post-induction 

hypotension (PIH), frequently defined as mean arterial pressure 

(MAP) <65 mmHg[1]. Particularly, in perioperative medicine, 

PIH has been related to worse postoperative outcomes, increased 

comorbidity, and mortality[2,3]. PIH occurrence is limited to the 

first 30 minutes post-induction, as this period is directly affected 

by anesthesia effects, and is usually not related to complex 

factors due to surgery[4]. Regarding the risk factors, a post hoc 

analysis in a surgical population of patients at risk of aspiration 

of gastric content identified different risk factors associated with 

it in the multivariate analysis: age, a higher baseline heart rate, 

bowel occlusion requiring nasogastric tube placement before 

intubation, and the use of remifentanil. A prospective multicenter 

study found that in the group with hypotension, the dose (mg/kg) 

of Propofol was significantly higher at 5 and 10 minutes after 

induction[5]. On the other hand, the following protective factors 

have been described: low doses of ketamine and basal systolic 

blood pressure (SBP)[2].  

     Previous studies have employed traditional multivariate 

analysis to identify risk factors and have focused on predicting a 

single target: the presence of hypotension[2,4,5]. However, 

predicting multiple outcomes simultaneously can capture 

complex interactions and provide more informative insights, 

aiding clinical decision-making and support. Therefore, the 

hypothesis of this study is that predicting multiple outcomes of 

PIH simultaneously can effectively identify which variables are 

most influential in predicting PIH. Overall, this study contributes 

to the prediction of PIH, which can help anesthesiologists to 

make better decisions during induction, potentially improving 

patient outcomes.  

2 Methods 

Predictive clustering trees (PCT) are a machine learning 

framework that unifies clustering and prediction tasks. In this 

framework, the node at the roof (the top node or root node) 

corresponds to the cluster that contains all the data, and each 

subsequent split partitions the data to minimize intra-cluster 

variance. CLUS is a free software that implements this 

framework and supports multi-target prediction.  In a multi-

target regression tree (MTRT), the obtained tree is more reliable 

in explaining the dependencies between variables, and the 

prediction is a vector of values of the target attributes[6,7]. For this 

reason, CLUS version 2.12.8 was chosen as the software for this 

retrospective analysis. The documentation and latest version can 

be found at: https://github.com/knowledge-

technologies/clus/tree/main. 

     Data was sourced from the subset SIS of the MOVER 

database (https://mover.ics.uci.edu/) —a public database of 

anonymized patients undergoing various types of surgery[8].  

     The inclusion and exclusion criteria were the following: 
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   - Inclusion criteria: 1) patients who underwent major surgery 

procedures with documented application and dose of one of the 

next medications during induction of general anesthesia: 

'Midazolam', 'Propofol', 'Fentanyl', 'Succinylcholine', 'Ketamine', 

'Cisatracurium', 'Etomidate', 'Vecuronium', and 'Rocuronium', 2) 

high temporal resolution vital signs of systolic blood pressure 

(SBP), diastolic blood pressure (DBP), and mean arterial 

pressure (MAP) measured from the radial arterial line, registered 

before the time of intubation and 30 minutes after it, with at least 

one measure of MAP < 65mmHg during the post-intubation 

period.  

   -Exclusion criteria: Patients with vital signs out of 

physiological ranges (MAP <30mmHg and MAP > 200mmHg), 

and patients who do not meet the inclusion criteria. 

      As descriptive and target attributes of the learning problem 

(see Table 1), the following variables were calculated:  

1) MAP_basal: average of MAP measures before intubation, 2) 

SBP_basal: average of SBP measures before intubation, 3) 

DBP_basal: average of DBP measures before intubation, 4) 

MAP_after_5min: average of MAP measurements taken after 

intubation, over a 5-minute period, 5) SBP_after_5min: average 

of SBP measurements taken after intubation, over a 5-minute 

period, 6) DBP_after_5min: average of DBP measurements 

taken after intubation, over a 5-minute period, 7) Min_MAP<65: 

Minimum MAP <65 mmHg registered from the intubation up to 

30 minutes after, 8) Max_MAP<65: Maximum MAP <65 mmHg 

registered from the intubation up to 30 minutes after, 9) 

MAP<65_count: Counts of registered measurements <65mmHg 

over the 30 minutes interval after intubation, 10) 

MAP_mean_after_30min: average of MAP measures over 30 

minutes interval after intubation, 11) SBP_mean_after_30min: 

average of SBP measures over 30 minutes interval after 

intubation, 12) MAP<65_mean_after_30_min: average of MAP 

measures <65 mmHg over 30 minutes interval after intubation, 

and 13) Body mass index (BMI): weight / ((height / 100)2). 

      During data preparation, missing values of the height 

attribute were replaced with the mean value of the attribute. 

 

Table 1: Descriptive and target attributes  

Descriptive attributes (20) Target attributes (6) 

MAP_basal Min_MAP<65 

SBP_basal Max_MAP<65 

DBP_basal MAP<65_count 

MAP_after_5min MAP<65_mean_after_30_min 

SBP_after_5min MAP_mean_after_30min 

DBP_after_5min SBP_mean_after_30min 

Age  

Gender  

Height  

Weight  

BMI  

Midazolam (cumulative 

dose) 

 

Propofol (cum. dose)  

Fentanyl (cum. dose)  

Succinylcholine (cum. 

dose) 

 

Ketamine (cum. dose)  

Cisatracurium (cum. dose)  

Etomidate (cum. dose)  

Vecuronium (cum. dose)  

Rocuronium (cum. dose)  

        

 After defining the descriptive and target attributes, the entire 

dataset of 340 patients was split into training and test sets using 

the sklearn library and the train_test_split function: 80% of the 

dataset was used for training (272 patients) and 20% for testing 

(68 patients). To run CLUS, the training and test sets were 

converted to ARFF format. Corresponding settings file (.s) were 

created to define the model parameters for the MTRT tasks. Both 

single-tree and ensemble models were trained, as summarized in 

Table 2. 

 

Table 2: Tree and ensemble specifications for each 

respective MTRT. 

Model  Predictive 

clustering tree 

(PCT)  

Random forest 

Heuristic  Variance 

Reduction 

Variance 

Reduction 

Pruning Method M5Multi - 

Ensemble Method 

 

- RForest 

Feature Ranking - Genie3 

 

As an alternative to the train/test split, when running CLUS, 

the -xval command-line option was used to perform cross-

validation on all 340 examples. The number of folds (n = 10) was 

previously specified in the settings file.  

Model performance was evaluated using the following 

metrics: Mean Absolute Error (MAE), Mean Squared Error 

(MSE), Root Relative Squared Error (RRMSE), and Pearson 

correlation coefficient (r²), computed on both training and test 

sets. 

3 Results  
After applying the exclusion criteria, we were left with 340 

patients. Figure 1 illustrates the flow chart for patient selection, 

and Table 3 shows their demographic characteristics. 

 

Table 3: Data set population characteristics 

 

Age, years, mean (SD) 58.9 (18.9) 

Gender (male), count 201 

Weight, kg, mean (SD) 78.6 (23.1) 

Height, cm, mean (SD) 168.4 (11.1) 

BMI, kg/m2, mean (SD) 1.5 (6.8) 

 

3.1 Complexity of the Models and Structure 

The induction time for the pruned model was significantly 

shorter (0.032 seconds) compared to the original model (1.622 

seconds), reflecting its reduced complexity. Structurally, the 

original tree consisted of 241 nodes, 121 leaves, and a depth of 

17, whereas the pruned tree was noticeably simpler, with only 19 

nodes, 10 leaves, and a depth of 6.  

     Additionally, the ensemble random forest model, composed 

of 100 trees, contained a total of 21,050 nodes and 10,575 leaves, 
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with an average tree depth of 154, indicating a significantly 

higher complexity and capacity for capturing intricate patterns in 

the data. 

 

Figure 1: Overview of sample population included in this 

study. 

3.2 Model Performance 
The forest with 100 trees exhibits the best performance overall. 

However, pruning significantly simplified the original model 

while retaining, and even improving, its predictive power, with 

lower testing errors for MAE, MSE, RMSE, and RRMSE 

compared to the original tree (See Table 4). 

Table 4: Metrics for training and testing errors (Train/Test) 

Metric Default 
Original 

(Unpruned) 
Pruned 

Forest (100 

trees) 

MAE 7.27 / 7.30 2.58 / 7.55 5.41 / 6.18 2.93 / 5.22 

MSE 109.35 / 110.12 17.77 / 120.54 61.39 / 83.03 18.41 / 51.05 

RMSE 9.41 / 9.45 3.81 / 10.15 7.09 / 8.33 3.96 / 6.76 

RRMSE 1.00 / 1.00 0.42 / 1.13 0.76 / 0.91 0.44 / 0.86 

Pearson r² – / 0.04 0.82 / 0.14 0.42 / 0.21 0.89 / 0.26 

3.3 Cross-Validation Results 

The 10-fold cross-validation was conducted using all 340 

examples, with an induction time of 0.26 sec for the single tree 

and of 9.747 sec for the ensemble random forest. The mean 

number of tests for the original model was 267, for the pruned 

model 39.2, and for the random forest 100. 

      As shown in Table 5, the absolute error metrics (MAE, MSE, 

RMSE) were higher when using a train/test split, however the 

cross-validation approach yielded lower testing errors for 

RRMSE and higher Pearson r² values. 

Table 5: Cross-validation metrics for training and testing 

errors (Train / Test) 

Metric Default  
Original 

(Unpruned) 
Pruned  

Forest (100 

trees) 

MAE 13.62 / 13.69 1.80 / 10.49 5.78 / 9.28 2.82 / 5.6 

MSE 300.15 / 302.3 9.22 / 193.3 64.2 / 150.5 16.83 / 63.15 

Metric Default  
Original 

(Unpruned) 
Pruned  

Forest (100 

trees) 

RMSE 17.32 / 17.39 3.04 / 13.90 8.01 / 12.27 3.81 / 7.41 

RRMSE 1.00 / 1.00 0.18 / 0.80 0.46 / 0.70 0.43 / 0.84 

Pearson r² 0.0003 / 0.02 0.97 / 0.45 0.79 / 0.52 0.89 / 0.28 

     Note that cross-validation yields more realistic estimates of 

error on unseen examples as compared to a single train-test split. 

3.4 Original Model 

As stated in section 3.1, the original model contains 241 nodes 

and 121 leaves. MAP_after_5min is at the root node, followed 

by MAP_basal, these two variables repeat along the tree on more 

than one occasion. Except for cisatracurium, ketamine, and 

etomidate, in the remaining nodes, the rest of the descriptive 

attributes appear at least once, showing different thresholds.  

3.5 Pruned Model 

In the pruned model, the descriptive attributes retained for multi-

target prediction were MAP_after_5min, MAP_basal, BMI, 

SBP_basal, DBP_after_5min, and Propofol dose. Compared to 

the original tree, the pruned model demonstrated improved 

generalization and interpretability, with a significantly reduced 

number of nodes, as illustrated in Figure 2.  

     The highest predicted values for the target attributes—97.9 

mmHg for MAP_mean_after_30min and 149.8 mmHg for 

SBP_mean_after_30min—were observed when 

MAP_after_5min exceeded 93 mmHg and SBP_basal was 

greater than 181 mmHg.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Pruned tree, predicting min_MAP<65, 

max_MAP<65, MAP<65_count, 

MAP<65_mean_after_30_min, MAP_mean_after_30min, 

and SBP_mean_after_30min. Leaves display predictions in 

orange. 
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     On the other hand, the lowest predicted values of these target 

variables—50.4 and 58.2 mmHg— were derived from the 

following nodes: MAP_after_5min below 56 mmHg, BMI < 34.5 

kg/m2, and the Propofol dose >150 mg.  Additionally, the leaf 

node corresponding to BMI >34.5 kg/m2 yielded the deepest 

value for min_MAP <65, at 26.3 mmHg. 

Other notably low predictions related to hypotension included 

max_MAP<65 at 43.7 mmHg and 

MAP<65_mean_after_30_min at 43.3 mmHg, both derived from 

the node where MAP_basal was below 51 mmHg.  

3.6 Forest and Feature Ranking  

Despite the complexity of the forest with 100 trees, the feature 

ranking, where feature importance was assessed using the 

Genie3 score, helps to understand the descriptive attributes that 

mainly contributed to the final multi-target prediction. Figure 3 

lists the first eleven descriptive attributes, ranked by their 

corresponding importance score. MAP_after_5min and 

SBP_after_5min are clearly the most influential features in the 

model; MAP_basal and SBP_basal also contribute significantly, 

closely following in importance. 

 

Figure 3: Descriptive attributes contributing most to the 

random forest’s prediction, sorted by importance score. 

4 Discussion & Conclusion 

The advantages of using a predictive clustering method for multi-

target prediction include the ability to capture complex 

interactions between descriptive attributes and the simultaneous 

prediction of multiple outcomes [6,7]. A key novelty of this study 

is its focus on predicting multiple outcomes related to 

hypotension. This multi-target approach provides a more 

comprehensive overview and enhances clinical decision-support. 

In clinical practice, anesthesiologists need to anticipate and often 

ask themselves: How low will MAP values drop? How will MAP 

evolve throughout the procedure? This is highly relevant because 

deeper and longer hypotensive episodes increase the presence of 

adverse events associated with intraoperative hypotension[3,4].  

In this study, the pruned model included among the most 

important variables for the multi-target prediction 

MAP_after_5min and MAP_basal. Previous studies have 

significantly associated PIH with the basal or pre-induction 

MAP[2,4,5], and our results confirm this observation: In the node 

root, the MAP value was the most relevant when calculated 

immediately 5 minutes after intubation, specifically with a 

decisive threshold of 67 mmHg. To diminish the impact of the 

basal blood pressure values in the occurrence of PIH episodes, 

some proposals include discontinuing renin–angiotensin–

aldosterone system antagonists the day of the surgery and 

proactive measures to elevate preoperative values to relieve the 

effect of the anesthetic medications, which could prevent the 

appearance of PIH [3,4].  

The obtained pruned predictive clustering tree model showed 

lower testing errors across all metrics compared to the original 

tree, with improved performance, interpretability, and 

generalization. Nevertheless, the random forest model performed 

the best. Regardless of the complexity of the ensemble model, 

the feature ranking provided valuable insights into the 

contribution of each attribute to the final prediction; some of 

these top-ranked features also appear along the nodes of the 

unpruned and pruned trees. By aggregating importance across 

multiple trees, random forests can highlight globally relevant 

features that may not dominate early decision paths in a single 

tree. For example, SBP_after_5min was ranked second in 

importance, but it did not appear in the top splits of the unpruned 

tree. In the pruned tree, BMI and Propofol dose are included, but 

SBP_after_5min, age, and DBP_basal, which ranked higher than 

BMI and Propofol dose, are not incorporated in the pruned tree. 

The association between higher age and PIH has been noted in 

the past [2,5], and it is a variable usually considered during risk 

evaluation; however, it is not a modifiable attribute.  

In sum, this study demonstrates that interpretable models, 

such as pruned trees, when supported by feature importance from 

high-performing models, can validate and offer clear, decisive 

thresholds of modifiable and actionable variables that impact 

MAP values in the post-induction period, thereby reducing PIH-

related comorbidity and mortality. This highlights its potential 

utility as a decision support tool in clinical settings. 
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