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Abstract
Passive sensing of pollinator activity is important for biodiversity

monitoring and conservation, yet conventional acoustic or visual

methods produce large amounts of data and face deployment

challenges. In this work, we present initial results on investigat-

ing stem vibration as an alternative signal for detecting pollinator

presence on flowers. Vibration recordings were collected with

a laser vibration instrument from various flower species at mul-

tiple locations in Slovenia, totaling approximately 14 hours, of

which 3 hours were expert-annotated for insect activity. The

task was formulated as a binary classification problem: deter-

mining whether a vibration segment corresponds to a pollinator

physically touching the flower. Using a neural network model,

performance was evaluated with five-fold cross-validation across

three experiments: (i) using a balanced subset, (ii) using the full

dataset, and (iii) using the full dataset with heuristic prediction

smoothing. On the balanced subset, the model achieved an av-

erage F1-score of 0.86 ± 0.06; on the full dataset, 0.62 ± 0.07;

and with heuristic smoothing, 0.69 ± 0.11, demonstrating both

the feasibility of vibration-based detection and the benefits of

post-processing. Beyond binary detection, future work will focus

on species- and activity-level classification. Ultimately, the goal

is to develop lightweight vibration detectors deployable directly

on plants, enabling scalable estimation of pollinator visitation

rates in natural and agricultural environments.
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1 Introduction
Europe supports a rich diversity of wild pollinators among them

2,051 species of bees and 892 species of hoverflies. Collectively,

pollinators provide a wide range of benefits to society including

more than €15 billion per year contribution to the market value of

European crops, pollinating around 78 percent of wild flowering

plants. This pollination service ensures healthy ecosystem func-

tioning and maintains wider biodiversity as well as culturally

important flower-rich landscapes [1]. Many reviews highlight
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the global decline in insects [2], [3] and in particular wild bees

[4], [5]. Internationally, the UN Intergovernmental science-policy

Platform on Biodiversity and Ecosystem Services (IPBES) and the

Convention on Biological Diversity (CBD) highlighted the need

to collect long-term high-quality data on pollinators and pollina-

tion services in order to direct policy and practice responses to

address the decline. There were already some attempts to monitor

pollinators’ activity from sound/soundscapes recordings (e.g. [6]).

Here, we explore for the first time to monitor pollination activity

by using vibroscape recordings [7] from flowering plants which

are visited by different pollinators. We investigated the possibility

of neural networks for automatic detection of pollinator visits

on flowers.

2 Dataset
The dataset comprises vibration waveforms from flowers, which

were used for model training, and auxiliary audio and camera

recordings collected for labeling and species identification. All

recordings were obtained during July and August 2024 at various

locations in Slovenia. The vibrations were measured using a Vi-

broGo (Polytec, Germany) laser vibration instrument, which has

an operational range of up to 30 m and can detect movements

up to 6 m s
−1

at frequencies up to 320 kHz. For this study, mea-

surements were performed at close range, with a frequency span

of 0–24 kHz and a sampling rate of 48 kHz.

For the measurements, the flower stem was fixed to a pole

to minimize large movements, and a small piece of reflective

foil was attached slightly below the flower to enable the laser

vibrometer to capture fine vibrations caused by insect activity.

Our data acquisition setup is shown in Figure 1.

The dataset comprised vibration recordings of up to 10minutes

each, collected from flowers belonging to the genera Calystegia,
Cichorium (the majority of samples), Crepis, Epilobium, Knautia,
Leontodon, Lotus, Pastinaca, and Trifolium. In total, the recordings

amounted to approximately 14 hours, of which 3 hours were

annotated for insect activity. Labeling was performed in Raven

Pro by expert annotators, who used synchronized audio and

video recordings to confirm insect presence and identify species.

Each recording was annotated with time intervals indicating

insect activity, insect species, activity type, and, when relevant,

additional notes. For the purpose of this study, where we are

only interested in binary classification of detecting pollinators,

all intervals with any insect activity which included physically

touching the flower were labeled as 1, and 0 otherwise.

Labeled intervals were cut into clips of one second with 0.1-

second overlap (positive instances), whereas unlabeled portions
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Figure 1: Data acquisition setup for recording vibration
signals, audio, and visual recordings from flowers.

were similarly divided and treated as negative instances. To bal-

ance the dataset, the negative instances were randomly down-

sampled. Some negative instances contained environmental noise,

such as speech, machinery, or wind, and wind noise was occasion-

ally present in positive instances. Examples of vibration signals

from honey bee foraging and from wind are shown in Figures 2

and 3, respectively. The final balanced subset consisted of 7334

positive and 8664 negative instances. The positive data distribu-

tion by insects is given in Table 1.

Figure 2: Honey bee foraging

3 Methodology
The objective of this study was to assess whether stem vibrations

can be used to detect the presence of pollinators on flowers. From

a machine learning perspective, the problem was framed as a

binary classification task: distinguishing between the presence

and absence of insects in physical contact with the flower. The

Figure 3: Light wind blowing

Insect Number of labels Instances

fly 76 4146

honey bee 253 1688

wild bee 98 1307

hoverfly 82 155

bumble bee 14 24

wasp 3 9

moth 1 5

Total 527 7334

Table 1: Number of labels and the corresponding number
of instances by insect.

methodology consisted of initial recoding of waveforms and

labeling, preprocessing the data, selecting the appropriate neural

network architecture, and training and evaluating the model.

3.1 Data Preprocessing
First, the instances that were shorter than one second (in cases

where the expert-labeled interval was shorter than one second)

were padded. After that, all instances were then converted into

Mel spectrograms of size 64x64 using fast Fourier transform with

frequency range 0–3 kHz.

3.2 Model Architecture
For the model, a network of residual blocks in combination with

convolution was used. It is a smaller version of some ResNet

(e.g. ResNet 18) models. Residual blocks offer efficient reuse of

features across the layers. As shown in Figure 4, the input spectro-

gram goes through a 3x3 convolution, followed by three residual

blocks, before final pooling. The residual block, shown in Fig-

ure 5, consists of two 3x3 convolutions to identify features and

residual path only uses stride to match the shape before addition.

Input

1×64×64

Conv 3×3

1→32 + BN + ReLU

Res Block

32→64

Res Block

64→128

Res Block

128→256

Global

AvgPool

Linear out

256 → 1

Figure 4: Model Architecture
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Input

Conv 3×3

stride=2

BN ReLU

Conv 3×3

stride=1

BN

1×1 Conv

stride=2

BN Add

ReLUOutput

Figure 5: Res Block

To prevent overfitting and to enable extended training, dropout

of 0.5 was used, which improved performance more than data

augmentation (and was also computationally more efficient).

3.3 Model Training Settings
The model was trained by using the binary cross-entropy loss.

Optimization was performed with Adam optimizer with learning

rate 10
−4

and weight decay 10
−5

. A batch size of 16 and an epoch

number of 30 were used.

4 Evaluation Metrics
We used standard performance evaluation metrics: accuracy, pre-

cision, recall and F1-score, which were computed from the num-

ber of true positives (TP), true negatives (TN), false positives (FP)

and false negatives (FN) as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

(1)

Precision =
TP

TP + FP

(2)

Recall =
TP

TP + FN

(3)

F1-score =
2 · Precision · Recall
Precision + Recall

(4)

In confusion matrices, we used relative numbers samples in-

stead of absolute, because there was much more negatives than

positives in detection test. Relative shares are based on true labels

(e.g. fraction of FN among all negatively labeled).

4.1 Experiments
The model was evaluated in three experimental settings, all us-

ing 5-fold cross-validation. Instances originating from the same

recording were always assigned to the same fold to better reflect

real-world variability. Training and testing were repeated five

times, each with a different fold held out for testing and the re-

maining folds used for training. Reported results are averages

across the five folds.

4.1.1 Balanced labeled subset. In the first experiment, only the

manually labeled subset of the dataset was used. This consisted

of the 7334 positive and 8664 negative instances as described

above. These were treated as balanced binary classification data

and evaluated directly.

4.1.2 Full dataset with raw labeling. In the second experiment,

the entire dataset was included by segmenting recordings into

1.0 s windows with a step size of 0.1 s. Expert annotations were

then used to assign labels to these windows, yielding a much

larger evaluation set. However, such raw labeling frequently

introduced short, isolated positive or negative events that were

likely erroneous. When the model predicted such isolated events,

performance metrics were underestimated, as the evaluation

framework treated them as genuine labels. This motivated the

introduction of a heuristic smoothing procedure.

4.1.3 Full dataset with heuristic labeling. The third experiment

used the same sliding-window segmentation as raw labeling ex-

periment, but applied a heuristic smoothing procedure to adjust

labels. The aim was to reduce the influence of short, likely er-

roneous events while preserving longer, fragmented signals as

single detections. Two rules were applied:

• If the model predicted at least 10 consecutive positive win-

dows (equivalent to 1.0 s), the entire interval was relabeled

as positive.

• If at least 82% of 50 consecutive windows (equivalent to

5.0 s) were predicted as positive, the entire interval was

relabeled as positive.

These empirically determined thresholds suppressed short

false positives while ensuring that extended pollinator events

with intermittent weak signals were still detected as continuous

segments. Finally, because the sliding window (1.0 s) exceeded

the step size (0.1 s), prediction timestamps were shifted backward

by 0.5 s to align the window centers with the expert annotations.

5 Results and Discussion
The results of all three experiments are shown in Table 2 along

with the confusion matrices in Figure 6.

Table 2: Results of all experiments. The numbers represent
the average ± standard deviation across five folds in the
cross-validation.

Subset Full data (raw) Full data (heuristics)

Accuracy 0.87 ± 0.03 0.80 ± 0.02 0.86 ± 0.05

Precision 0.85 ± 0.09 0.54 ± 0.11 0.68 ± 0.15

Recall 0.87 ± 0.04 0.75 ± 0.11 0.73 ± 0.13

F1-score 0.86 ± 0.06 0.62 ± 0.07 0.69 ± 0.11

Subset

6409

0.87

925

0.13

1095

0.13

7569

0.87

Predicted

P N

A
c
t
u
a
l P

N

Detect. (raw)

85k

0.74

29k

0.26

72k

0.18

322k

0.82

Predicted

P N

A
c
t
u
a
l P

N

Detect. (heur.)

82k

0.72

32k

0.28

40k

0.10

354k

0.90

Predicted

P N

A
c
t
u
a
l P

N

Figure 6: Confusion matrices
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Figure 7: Output example: (blue) model prediction, (green)
heuristic filter, (yellow) expert labels.

The results show that there was a significant reduction in

performance when we switched from using the balanced subset

to recordings from the full dataset. There are several possible

sources of error: labels are annotated on waveform and samples

are extracted in the way that the whole non-padded (therefore

non-silent) part is either positive either negative, furthermore,

prediction for a specific time 𝑡 is generated based on the window,

beginning at 𝑡 and ending at 𝑡 + 1 s, which might lead to inaccu-

racies at edges of labels although we shifted the time to match it

as good as possible. There are also no other insects or activities

in samples, which occur in full recordings and are sometimes

falsely positive. Figure 7 shows how heuristics helped the model

by smoothing out the short erroneous predictions, resulting in

improved performance. To improve model performance even

further, additional heuristic filters may be added.

6 Conclusion
We presented initial results on the feasibility of detecting polli-

nator presence on flowers from stem vibration recordings using

machine learning methods. We evaluated models under three

experimental settings: a balanced labeled subset, the full dataset

with raw expert annotations, and the full dataset with heuristic

label smoothing. The results demonstrate that pollinator activity

can be reliably inferred from vibration signals, with heuristic

post-processing substantially reducing the impact of isolated er-

roneous predictions and improving the robustness of detection.

Future work will focus on extending the models beyond bi-

nary detection towards classification of pollinator species and

potentially of behavioral activities. From an applied perspective,

the long-term goal is to develop lightweight vibration detectors

that can be mounted directly on plants to automatically register

pollinator visits. Deploying a small number of such sensors in a

field or meadow would enable scalable estimation of pollinator

abundance and activity, providing a valuable tool for biodiversity

monitoring and conservation studies.
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