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Abstract
Constrained multiobjective optimisation problems (CMOPs) are

common in real-world optimisation. They often involve expen-

sive solution evaluations and, therefore, it is helpful to know

the best methods to solve them prior to actually solving them.

These problems also tend to be relatively difficult for algorithms

compared to the majority of test problems. This difficulty often

presents itself in the infeasible region, calling for a focus on the

constraint handling technique (CHT). The purpose of this work is

to select the best CHT for problems with difficult constraint func-

tions. This first involves the collection of a set of such problems.

CHT selection is then conducted using problem characterisation

and machine learning. The outcomes are positive in that predic-

tion achieved a high accuracy. Additionally, further insights are

provided into the features that describe CMOPs.

Keywords
constrainedmultiobjective optimisation, algorithm selection, prob-

lem selection, constraint handling techniques

1 Introduction
Real-world optimisation problems very often have multiple ob-

jectives and are subject to one or more constraints. This is the

domain of constrained multiobjective optimisation (CMO). These

problems are generally demanding to solve and have restrictions

to the available computational budget. These restrictions make it

all the more important to know the best method for solving the

problem prior to actually attempting to solve it. This calls for an

algorithm selection methodology.

One approach to algorithm selection, known as landscape-

aware selection, is to first characterise the problem before con-

ducting the algorithm run [2]. Characterisation involves the calcu-

lation of features used to describe the objectives and constraints,

as well as their interaction. This is done using a small set of sam-

pled solutions. Once the problem is characterised, knowledge of

similar problems can be used to determine the best approach to

solving it. This approach is taken in this study and applied to con-

straint handling techniques (CHTs). CHTs are methods designed

to guide optimisation algorithms in dealing with infeasible solu-

tions, by taking as input the problem constraints and candidate

solutions, and producing outputs that either repair, penalize, or

rank these solutions to balance feasibility with optimality.
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There are three primary contributions from this work, all

within the CMO domain. The first is related to the set of prob-

lems used to train the algorithm selection model. Real-world

optimisation problems are often difficult to solve, particularly

when they include constraints. The field requires a methodol-

ogy for selecting a subset of problems with difficult constraint

functions from the larger set of known problems. This is the first

contribution. The CHT selection methodology is then tested on

these problems. This methodology is the second contribution.

Here, problem characterisation and machine learning are used

to predict the best-performing CHT. The final contribution is a

set of insights into the features used. The decision tree output

by the CHT selection methodology provides significant insights

into both which features are useful and what the features reveal

about the problems.

The paper is further structured as follows. In Section 2, CMO

is introduced, providing the required background. Section 3 de-

scribes the two selection methodologies, as well as the validation

method used. Section 4 presents the experimental setup. In Sec-

tion 5, the results from the experiments are presented. Finally, in

Section 6, the work is summarised and future work is outlined.

2 Constrained Multiobjective Optimisation
Constrained multiobjective optimisation (CMO) involves the op-

timisation of two or more objective functions given one or more

constraint functions. The constraints may be of the equality or

inequality forms, however, in this study, only inequality con-

straints are considered. Such a CMO problem (CMOP) may be

formulated as follows:

minimize 𝑓𝑚 (x), 𝑚 = 1, . . . , 𝑀,

subject to 𝑔 𝑗 (x) ≤ 0, 𝑗 = 1, . . . , 𝐽 ,
(1)

where x = (𝑥1, . . . , 𝑥𝐷 ) ∈ R𝐷
is a 𝐷 dimensional solution vector,

𝑓𝑚 (x) are the objective functions, and 𝑔 𝑗 (x) the inequality con-
straint functions.𝑀 is the number of objectives and 𝐽 the number

of inequality constraints.

CMO requires an indicator for assessing the quality of the set of

optimal points. This indicator is ICMOP
. It was proposed in [19] to

handle quality assessment in the three following situations.When

no feasible solutions are found, it uses the minimum constraint

violation.When feasible solutions are found, but these are outside

of the region of interest (ROI) bound by the given reference point

(RP), the distance to the ROI is used. Finally, when solutions are

found within the ROI, it uses the hypervolume (HV). The HV

measures the portion of the objective space dominated by the

set of solutions relative to the RP. ICMOP
was proposed as a value

to be minimised. However, it is commonly maximised based on

the moarchiving package implementation [9]. On top of ICMOP
,

the maximised area under the runtime profile curve is used to
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measure the anytime performance of the algorithm [8]. Here, the

runtime profile is the proportion of performance targets attained

with respect to the evaluation number.

Many methodologies in CMO use an ICMOP
value with nor-

malised function values. For this, the function values of the prob-

lems’ optimal solution set are required. Together, these are known

as the Pareto front. The Pareto front may be obtained empirically,

through knowledge of the problems construction. Often this is

not possible, however, and, therefore, algorithm runs are used to

construct an approximation of the front.

In [4], there are 13 benchmark suites listed, consisting of 139

test problems. These test problems can be instantiated in vari-

ous numbers of dimensions and objectives. This then allows for

a substantially larger number of test problem instances to be

generated based on these 139 base test problems.

Problem characterisation is conducted using exploratory land-

scape analysis (ELA) features [16]. Work done in [1] has listed 80

such features for CMO. These come from three landscapes: the

multiobjective, violation and multiobjective-violation landscapes.

The features can be computed via sampling or random walks.

There are several constraint handling techniques. Four of

these are considered in our study. The first is the constrained-

domination principle (CDP), proposed along with the NSGA-II

algorithm [5]. This is a feasibility first approach, where feasible

solutions are preferred over infeasible ones. The penalty CHT is

a classic method and applies a penalty value to the objective val-

ues [20], either statically or dynamically. The Improved-Epsilon

(I-Epsilon) CHT was designed to work with the MOEA/D algo-

rithm [7]. It dynamically adjusts the 𝜖 value based on the number

of feasible solutions. Solutions are considered feasible if they

are less than the 𝜖 value. Finally, stochastic ranking (SR) uses a

probability value to switch between comparing solutions based

on objectives or constraints [18].

3 Methodology
This section presents the methodologies used in the study. First,

the methodology for selecting the hard test problems is presented,

followed by the methodology for selecting the appropriate CHT

and the means for testing the model.

3.1 Difficult Problem Selection
Testing the CHT selection methodology requires test problems.

Test problems with too easy constraint functions are less likely to

show differences among the CHTs, as algorithms will spend less

time dealing with infeasible solutions. More difficult constraint

functions, on the other hand, will force the algorithm to deal with

infeasible solutions longer and, therefore, give the CHTs time to

show their differences. Test problems with difficult constraint

functions are then desired for our testing.

As mentioned in Section 2, anytime performance is measured

using the area under the runtime profile curve (AUC), with the

maximised ICMOP
as the indicator. In this study, difficulty is deter-

mined based on the anytime performance of a set of algorithms,

A. Each of the algorithms is run on the problem 𝑅 times and

the average AUC is taken. This is to ensure robustness. It should

be noted that when recording the runs, an archive of all non-

dominated solutions is kept and the ICMOP
value from this archive

is recorded at each solution evaluation. The budget must also be

chosen, with budgets allowing algorithm convergence preferred.

The maximum average AUC is then used as the problem difficulty,

with lower values signifying harder problems. This is formulated

as follows:

Difficulty(𝑝) = 1 − max

𝑎∈A

(
1

𝑅

𝑅∑︁
𝑟=1

AUC(𝑝, 𝑎, 𝑟 )
)

(2)

This problem difficulty is calculated for each of the problems in

the set of problems, P.

Within the current selection, there will still be cases where all

CHTs perform roughly the same on the problem. These problems

are removed using statistical and practical threshold tests on the

final ICMOP
values from the 30 runs. Given a normal distribution

cannot be ensured in the 30 values from each of the algorithm

runs, the Kruskal-Wallis test is used [11]. It determines if indepen-

dent samples come from the same distribution. However, this still

leaves problems with no practical differences in their scores. To

filter these out, the mean scores are tested for if they vary more

or less than a small delta and those that vary less are removed.

Following the filtering out of problems where no meaningful

differences are observed, the N most difficult problems from

the remaining set are selected. This leaves one with a suite of

difficult problems upon which at least one of the algorithms from

A performs differently.

3.2 Constraint Handling Technique Selection
The general concept for CHT selection is as follows. First, a

machine learning model is trained using the features from each

problem in the training set. The labels are the best-performing

CHTs on each problem. At inference time, features are calculated

on the problem in question (note: this consumes a portion of

the available budget). These features are used as input to the

machine learning algorithm. The resulting model then predicts

the best-performing CHT for use during the run.

Each step will now be described in more detail. The first step is

to choose a base algorithm and a set of algorithm-relevant CHTs.

The preferred approach would be to select the most appropriate

algorithm for the problem to be solved at inference time.

The second step is generating the training data for themachine

learning model. First, the features for each of the problems in

the training set are gathered. The labels must then be computed,

which requires algorithm runs; 30 for each CHT. For this, the

budget must be selected carefully. The model, at inference, can be

expected to work well only if the budget is the same as it was in

training. The average final values from the 30 runs are then taken

for each CHT. In CMO, these are the average final ICMOP
values,

which are being maximised. The CHT with the highest value is

then selected as the best-performing CHT. This is used as the

label. Once this has been done for each of the problems in the

training set, the training data is complete.

The third step is to train the model. A decision tree is preferred

for its explainability properties. To enhance the explainability of

the model, the depth of the tree should be kept at a minimum.

Testing is described in the next subsection. Once complete, i.e.

trained with all training data, the model is available for inference.

3.3 Cross-Validation Testing
Testing the model involves a leave-one-problem-out cross-vali-

dation approach. Here, a problem is taken out of the training set

and left as the test problem. The model is then trained on the data

from the remaining problems in the training set. To predict the

best-performing CHT, the features from the test problem are used

as input to the model. The model then makes a prediction for the

best-performing CHT. This is compared to the actual result.
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The methodology makes allowances for when two or more

CHTs perform similarly well on the same problem. The predic-

tion made by the algorithm is then correct if it selects any of

these. Determining if two or more CHTs are statistically the same

is achieved through the use of a statistical test, which in this case

was the Mann-Whitney U test [15]. Again, this test was chosen

because a normal distribution cannot be ensured in the resulting

final values from the runs. The process is as follows. The CHT

with the best mean score is selected, then each of the other CHTs

are tested individually against the best-performing CHT to deter-

mine if they are equivalent, forming the set of best-performing

CHTs. If the predicted label is within this set, it is considered

correct. This process is conducted for all problems in the training

set and a final percentage of correct predictions is given.

4 Experimental Setup
In this section, the inputs to the methodologies are described,

along with the packages used throughout.

There are several inputs to the difficult problem selection

methodology. First, there is the set of problems, P. The dimen-

sions chosen were 2, 3, 5, 10 and 30, with only biobjective prob-

lems considered. This resulted in 375 problem instances. The

problems were translated from Matlab by hand or taken from

pymoo [3].

For A, i.e. the set of algorithms, the natural choice was to

choose a base algorithm with different constraint handling tech-

niques. The base algorithm chosen was NSGA-II [5]. This was

used for its versatility with regards to adding various CHTs. Re-

garding CHTs, CDP, penalty, I-Epsilon and SR were chosen for

their compatibility with NSGA-II. CDP was provided as default

with NSGA-II by pymoo. The others were implemented by hand.

The penalty value selected was a static 100, while the settings

for all others were the proposed defaults. 𝑅 was set at 30.

The number of difficult problems selected, N , was set at 20.

This number is adequate to test the methodology while still being

small enough to manage. The budget selected was the one to be

used throughout the study, i.e. 10,000 · 𝐷 . The delta value for

detecting practical differences was set at 0.001.

For the CHT selection methodology, the choice of training

problems was the set of difficult problems derived from the

setup above. The base algorithm and CHTs were the same as

those selected above. The model selected was a decision tree

(scikit-learn [17]). The tree depth parameter was the only pa-

rameter tuned. This tuning was done manually, decreasing from

10 to 3, until the performance began to reduce. Finally, the prob-

lem features used were the 80 features described in [1]. These

were calculated with a sample size of 1,000 ·𝐷 . The random walks

were simulated using these same samples.

5 Results
In this section, the results from carrying out the methodologies

are described. First, the construction of the set of difficult prob-

lems is discussed. Then, the experimental results are presented.

Finally, the resulting decision tree is discussed.

The difficulty of each problem was calculated as described in

Section 3. The results were heavily skewed towards the easy prob-

lem side. With the N parameter set to 20, that many problems

were selected. The difficulties of these ranged from 0.202 to 0.976.

The selected problems are listed in Table 1 in order of descend-

ing difficulty. They include 5, 10 and 30 dimensional problems,

with 2 and 3 dimensional problems clearly being easier to solve.

Table 1: The results from cross-validation testing using
the leave-one-problem out methodology. The first column
lists the test problems in order of difficulty (descending). 𝐷
indicates the dimensionality. All problems are biobjective.
Themodels were trained on all problems in the list, bar the
test problem in question. ‘Actual’ lists the best-performing
CHT labels, while the prediction column shows the pre-
dicted label. If the predicted label is in the actual labels list,
the prediction is considered correct. The CHT labels 0, 1, 2
and 3 are CDP, penalty, I-Epsilon and SR, respectively.

Problem 𝐷 Diffic. Pred. Actual Correct

DC2-DTLZ3 30 0.976 2 [2] Yes

DC2-DTLZ1 30 0.965 2 [2] Yes

DC2-DTLZ1 10 0.541 2 [2] Yes

DC2-DTLZ3 10 0.528 2 [2] Yes

NCTP7 30 0.489 0 [0, 3] Yes

NCTP8 10 0.355 3 [0, 1, 3] Yes

NCTP15 10 0.339 3 [0, 1, 3] Yes

DOC3 10 0.330 1 [0, 1, 3] Yes

NCTP2 10 0.284 3 [0, 1] No
NCTP1 10 0.279 3 [0, 1, 3] Yes

NCTP7 10 0.269 3 [0, 3] Yes

CTP6 30 0.257 1 [0, 1, 2] Yes

CTP8 30 0.249 0 [0, 1, 2] Yes

C1-DTLZ3 30 0.240 2 [0, 1, 2] Yes

DC2-DTLZ1 5 0.230 2 [2] Yes

CTP8 10 0.227 0 [0, 1, 2] Yes

DC2-DTLZ3 5 0.219 2 [2] Yes

DC3-DTLZ1 30 0.214 2 [2] Yes

NCTP17 10 0.203 0 [0, 1, 2] Yes

NCTP10 10 0.202 1 [0, 1, 2] Yes

samples = 5
value = [1, 4, 0, 0]

class = Penalty

samples = 3
value = [0, 0, 0, 3]

class = SR

samples = 4
value = [4, 0, 0, 0]

class = CDP

corr_cobj_max <= 0.62
samples = 8

value = [1, 4, 0, 3]
class = Penalty

samples = 8
value = [0, 0, 8, 0]
class = I-Epsilon

True  

lnd_avg_rws <= 0.19
samples = 12

value = [5, 4, 0, 3]
class = CDP

  False

f_range_coeff <= 10.96
samples = 20

value = [5, 4, 8, 3]
class = I-Epsilon

Figure 1: The decision tree built on all the training data. It is
used to predict the four CHTs. The indices of the values in
the value lists, indicating the number of instances, signify
CDP, penalty, I-Epsilon and SR, respectively.

The problems come from the following suites: DC-DTLZ [13],

NCTP [12], DOC [14], CTP [6] and C-DTLZ [10].

Table 1 additionally shows the results from the cross-validation

testing phase of the experiments. As described in Section 3, each

problem was given its turn as the test problem, while the others

acted as training problems. For 95% of these, the model predicted

correctly from the set of actual best-performing CHTs.
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Figure 1 shows the decision tree that resulted from training on

all of the available data. As it can be seen, the decision tree leaf

nodes are nearly pure, meaning it achieved near 100% accuracy

on the training data. Due to its high accuracy on the test data

and the low tree depth, this is not believed to be overfit.

Only 3 of the 80 supplied features were included in the model,

indicating their importance in identifying appropriate CHTs.

The first of these, separating out I-Epsilon, was f_range_coeff

(difference between the maximum and minimum of the absolute

value of the linear regression model coefficients, where the model

is fitted between the decision variables and the unconstrained

ranks). This is a multiobjective landscape feature, focusing on

variable scaling. The second feature, separating out CDP, was

lnd_avg_rws (average proportion of locally non-dominated solu-

tions in the neighbourhood). This is a multiobjective-violation

landscape feature, focusing on evolvability, i.e. the degree to

which the problem landscape facilitates evolutionary improve-

ment. The final feature, distinguishing between penalty and SR,

was corr_cobj_max (the maximum of the constraints and objec-

tives correlation). This is also a multiobjective-violation land-

scape feature, focusing on evolvability. It should be noted that

the features are not all related to the violation landscape, but also

deal with the objective functions.

6 Conclusion
In this study, the focus was on the needs of real-world CMOPs.

These problems are often difficult for algorithms to solve and

require expensive solution evaluations. Given the cost of these

evaluations, it is helpful to know the best method for solving

the problem prior to actually solving it. To address this, the

study focused on selecting the most appropriate CHT, a crucial

component of any algorithm operating in CMO. For this selection

task, it was critical to test on problems with difficult constraint

functions. These problems elicit the most variation among CHTs.

The proposition was made for a methodology that selects

problems with difficult constraint functions from a larger set,

with the end goal of conducting CHT selection. This methodology

involved first collecting a large set of CMOPs, then running a

set of algorithms on them to determine their difficulty. Problems

that were easy to solve or showed no variation in algorithm

performance were discarded, as they provide no value in future

CHT selection tasks. The methodology finally produced a set of

N problems.

This set of difficult problems was used in the second methodol-

ogy proposed, i.e. selecting CHTs using problem characterisation

and machine learning. Four CHTs were chosen and added to the

NSGA-II algorithm. These were CDP, penalty, I-Epsilon and SR.

The goal of the selection task was to select the best-performing

CHT on a given problem, noting that several CHTs can perform

best. The methodology was evaluated using cross-validation,

with the leave-one-problem-out method. The findings from test-

ing were positive and indicate that it is possible to select the

most appropriate CHT for a given difficult problem. Further, the

final decision tree trained on all the considered difficult problems

provides insights into the features characterising CMOPs.

In future work, the plans are to extend the CHT selection

methodology to the broader domain of algorithm selection.
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