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Abstract
Root canal treatment is a medical procedure aimed at preventing or

treating apical periodontitis, which is an inflammation around the

apex of a tooth root. In this study, we analyzed a dataset collected

by an experienced practitioner over the course of several years,

and developed a forecasting model, based on the XGBoost algo-

rithm, to predict the outcome of the treatment. The trained models

achieved a mean area under the receiver-operating-characteristic

curve (AUROC) of 0.92 and average precision (AP) of 0.77. We dis-

cuss the importance of individual features in view of expert dental

knowledge. To assist the practitioner in daily practice, we devel-

oped a web-based application to provide an assessment of treatment

outcomes.

Keywords
root canal treatment outcome, feature importance, gradient boost-

ing machines

1 Introduction
Apical periodontitis is an inflammation of tissues around the apex

of a tooth. It is a major health burden in the general population,

with 6% of all teeth showing signs of this condition. Root canal

treatment (RCT) is aimed to either prevent the onset of apical

periodontitis or to help the tissue to heal if it is already present [13].

Predicting treatment outcomes in RTC is of high interest both to

the patients and the dentists, as well as to the insurance companies,

as information about the likelihood of successful treatment can

lead to better allocation of resources and avoid potentially more

invasive procedures, such as tooth removal and its replacement

with an implant.

Machine learning has previously been used to study some as-

pects of the root canal treatment, including association between

patient-, tooth- and treatment-level factors and root canal treat-

ment failure [10], predicting root fracture after root canal treatment

and crown installation [6], and non-surgical root canal treatment

prognosis [2]. In this study, we analyze the data collected by Jurič

et al. [13]. This dataset is of special interest since it relies on the
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RCT patient data obtained by a single experienced practitioner (en-

suring a high level of consistency in the treatment approach), as

opposed to studies where numerous dentists were treating patients

and different choices between them could have resulted in a less

representative dataset. The aim of the study was to develop and

evaluate an algorithm that predicts the outcome of the RCT, as well

as to analyze how robust the algorithm is and which features influ-

ence the outcome the most. This study goes hand-in-hand with the

study by Jurič et al. [13] where the analysis was conducted solely

using statistical methods.

2 Related Work
To our knowledge, utilization of machine learning in endodontics

is still relatively unresearched, specifically when predicting treat-

ment outcome only using tabular data. Among the related papers,

[10] employs XGBoost to explore the association between patient-,

tooth- and treatment-level factors and root canal treatment fail-

ure, while [2] used Random Forests (RF), K Nearest Neighbours

(KNNs), Logistic Regression (LR) and Naive-Bayes (NB) to predict

the outcome of non-surgical root canal treatments, similarly to

this study. Paper [8] explores the prediction of treatment longevity

using Support Vector Machines (SVMs), LR and NB, while [14]

investigates the relation between root canal morphology and root

canal treatment using both statistical and machine learning meth-

ods, specifically, using RF, SVMs and Gradient Boosting Machines

(GBMs). Moreover, papers [19, 18] investigate the prediction of

case difficulty and prognosis of endodontic microsurgery, while [6,

9] explore the prediction of root fracture and postoperative pain

after root canal treatment. Additionally, multiple papers have been

found to investigate root canal treatment outcome or related factors

using deep learning (DL) on X-ray images, specifically panoramic

or periapical radiographs, such as [3, 22, 11, 1, 5].

3 Data
The dataset analyzed in this study contains treatment details, clin-

ical and radiographic data regarding primary or secondary root

canal treatment of mature permanent teeth collected and curated

in [13]. Three different types of outcome were determined - clinical,

radiographic, and combined, for which both a strict (no clinical or

radiographical sign of disease) and loose (only negligible sign of

disease) assessment criteria were used. In this paper, only strict

assessments were considered and used as prediction targets. All

assessments were binary, with 1 representing successfull and 0



Information Society 2025, 6–10 October 2025, Ljubljana, Slovenia Jelenc et al.

representing unsuccessfull treatment outcome. The dataset was

fairly imbalanced, with 88% of all cases representing successfull

radiographic outcome, 92% successfull clinical outcome and 83%

successfull combined outcome. The study cohort consisted of 740

patients and 1264 teeth, resulting in 3153 root canal treatment cases

and 84 features in total. The majority of features represented either

categorical or binary values, such as variables representing gender,

tooth type, root canal etc., while variables such as age and working

length were treated as continous.

4 Methods
This section outlines the methods used for ranking feature impor-

tance and finally training baseline models that can be used as a tool

for prediction of root canal treatment outcome.

4.1 Data preprocessing
First, data regarding second visits was removed, to ensure consis-

tency among cases. Next, features directly dependent or derived

from a specific feature were excluded from the dataset to minimize

the dimensionality of the data, as well as any post-operative factors

that were directly used to determine the treatment outcome. The

dataset was further reduced by removing redundant features, which

can only have one value or their value is missing for more than 50%

of all cases. Similarly, cases for which more than 50% of features are

missing were excluded, resulting in 3153 cases and 84 features in

total. Lastly, the dataset was preprocessed using label encoding and

evenly split into training (80%) and testing (20%) sets. Furthermore,

the training set was split into training (80%) and validation (20%)

sets when ranking feature importance, to avoid overfitting.

4.2 Model architecture
For the underlying model, gradient boosting machines were used,

specifically the XGBoost algorithm [7], as it remains widely re-

garded as the state-of-the-art and preferred choice for tabular data

tasks, over the more and more popular deep learning algorithms, as

shown in [4, 12, 20]. Furthermore, algorithms based on transparent

methods, such as decision trees, are strongly preferred for applica-

tions in medicine when compared to the "black box" approaches

typically associated with deep learning.

4.3 Metrics
Due to the dataset’s high imbalance between negative ( 87%) and

positive ( 13%) cases, standard classification metrics such as ac-

curacy or area under the receiver-operating-characteristic curve

(AUROC) can be highly misleading, therefore average precision

(AP) was chosen as the key metric for estimating model’s perfor-

mance and ability to produce quality predictions, specifically using

the formula:

𝐴𝑃 =

𝑛∑︁
𝑖=2

(𝑅𝑖 − 𝑅𝑖−1) · 𝑃𝑖

where 𝑅𝑖 and 𝑃𝑖 are recall and precision at the 𝑖-th threshold when

testing on 𝑛 samples [17], while AUROC was only used to provide

additional insight when interpreting results.

4.4 Grid search
To obtain reasonable starting training hyperparameters and a base-

line model that utilizes all available information, we performed

cross-validated grid-search over a simple manually defined param-

eter grid, using the scikit-learn library [17].

4.5 Correlation clustering
When a subset of features in a dataset is highly correlated, standard

methods such as feature permutation importance or performing an

ablation study often produce inaccurate results, since the model

can highly depend only on a specific feature and discard correlated

features. Similarly, methods such as SHapley Additive exPlanations

(SHAP) [16] or XGBoost’s built-in feature importances only account

for the contribution of a specific feature to the model’s prediction,

which can again be misleadingly low due to the feature’s correlation

to another.

To address this problem, clustering was performed based on the

correlation between features. Let 𝑋 ∈ R𝑚×𝑛
represent the dataset

with 𝑚 cases and 𝑛 features. By calculating the Spearman rank

correlation coefficient [15, 17, 23] on 𝑋 , a symmetric feature cor-

relation matrix 𝐶 ∈ R𝑛×𝑛
was obtained and transformed into a

distance matrix 𝐷 ∈ R𝑛×𝑛
. To group correlated features, hierarchi-

cal clustering using Ward’s method [17, 21] was performed on 𝐷 to

obtain a hierarchical clustering tree, which was then flattened into

discrete clusters containing features with high absolute correlation.

4.6 Ranking feature importance
To determine the significance of a specific feature 𝑓 , a separate

XGBoost model𝑀𝑓 was trained and evaluated on a reduced dataset

𝑋𝑓 to obtain baseline results. Next, permutation testing was con-

ducted by permuting the feature 𝑓 in the testing set and calculating

the drop in performance of 𝑀𝑓 compared to the baseline results.

Each feature was tested 20 times. Lastly, a mean drop and p-value

were calculated on the observed performance drops by performing

a t-test, where a high mean drop represented high feature impor-

tance and a low p-value represented a low chance that the observed

drop in performance was caused by an outside factor and not by

the random distribution of 𝑓 in the test set. To ensure that the fea-

ture’s importance estimation was not corrupted by any correlated

features and at the same time account for the feature’s possible

non-linear connections with other features, while also minimizing

the computational cost as much as possible, the reduced dataset 𝑋𝑓

was determined as follows.

First, using the model trained on all features (see 4.4), SHAP

values [17, 16] were calculated to determine the most contributing

feature inside of each cluster. Let 𝐹 = {𝑓1, . . . , 𝑓𝑛} represent the set
of all features and 𝑆 : 𝐹 → R𝑚 the transformation that returns

SHAP values for a specific feature. The most contributing feature

inside of the 𝑖-th correlation cluster𝐶𝑖 = {𝑓𝑗 | 𝑗 ∈ 𝐼𝑖 } was calculated
by taking the feature with the highest mean absolute SHAP value

i.e. such 𝑓 ∗ ∈ 𝐶𝑖 that ∀𝑗 ∈ 𝐼𝑖 : |𝑆 (𝑓𝑗 ) | ≤ |𝑆 (𝑓 ∗) |.
The reduced dataset 𝑋 ∗ ∈ R𝑚×𝑟

, containing only representative

features, was then transformed into 𝑋𝑓 for a feature 𝑓 ∈ 𝐶𝑖 by

replacing 𝑓 ∗
𝑖
by 𝑓 in 𝑋 ∗

. Such approach allows eliminating features

highly correlated to 𝑓 and reduces computational cost by only

utilizing the most contributing feature within each cluster, while
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still accounting for any non-linear connections between 𝑓 and

features in other clusters. The procedure is visualized in Figure 1.

Figure 1: The hierarchical correlation tree is first flattened
into clusters 𝐶1, . . . ,𝐶𝑟 , for which representative features
𝑓 ∗
1
, . . . , 𝑓 ∗𝑟 define the base dataset 𝑋 ∗, from which we get 𝑋𝑓

for 𝑓 ∈ 𝐶𝑖 by replacing 𝑓 ∗
𝑖
by 𝑓 .

4.7 Evaluation
After obtaining feature importances, features with p-value < 0.05

were deemed as significant. Next, a model using starting parameters

found in 4.4 was trained on features belonging in the 𝑘-th percentile

in terms of feature importance, for 𝑘 in 1%, 5%, 10%, 25%, 50%, 75%,

and 100% (the latter corresponding to all significant features).

5 Results
Figures 2 show the comparison of performances in terms of AP of

models trained on different percentiles. The highest performance

was achieved when utilizing the entire preprocessed dataset consist-

ing of 84 distinct features in total, achieving AUROC of 0.90 and AP

of 0.70 when predicting radiographic outcome, AUROC of 0.94 and

AP of 0.86 when predicting clinical outcome and finally AUROC of

0.91 and AP of 0.77 when predicting combined outcome. Out of the

84 chosen features, our method deemed 39 of them significant for

radiographic assessment, 54 significant for clinical assessment, and

65 for combined assessment, which produced AUROC of 0.88, 0.85,

0.87 and AP of 0.66, 0.75 and 0.70 respectively.

6 Discussion and Conclusion
Achieving high performance, our paper shows promise in using ma-

chine learning techniques for predicting the outcome of endodontic

treatments. Moreover, we developed a web application, which al-

lows predicting the outcome of root canal treatments using the

models trained on different subsets of data, serving as a tool to

assist in assessing the quality and success of a treatment, as well as

to give insight for possible further patient care.

Furthermore, all the statistically significant factors found in the

original study [13], are found as significant by our method as well.

Specifically, "lesion diameter" was found to be the most relevant

factor, with "root PAI" and "canal code" being in the top 5%, "tooth

type" ("tooth group" and "canal number") in the top 10%, "type of

sealer" and "quality of coronal restoration" in the top 25%, "tender-

ness to periapical palpation" and "quality of root filling" in the top

50% and lastly "injury history" in the top 100% of all significant

features. Here, we exclude factors such as "number of visits" and

"number of canals per root", since they were not used in this study.

Moreover, among the most important factors that this study found

and were not accounted for or found as insignificant in [13], are

"age" as the second most important factor, "cumulative time" being

in the top 5% and "alergic disorders", "working length", "treatment

type", "obturation", "PD local", "vertical percussion", "fistulation"

and "pain bite" being in the top 25%. Such results suggest that ma-

chine learning techniques can perhaps be a better or alternative

approach for ranking feature significance in comparison with stan-

dard statistical methods such as logistic regression models, since

they better account for possible non-linear relationships between

different factors and the treatment outcome.

To further refine our approach of selecting significant features,

we plan to test different p-values, as the models trained on only

significant features achieved a lower performance than the models

trained on the entire dataset, with a 5% drop in AUROC and a 7%

drop in AP on average, suggesting that there are features which our

method deemed insignificant despite enhancing the models’ ability

to learn and produce accurate results. Future work will also involve

analysis of third-party datasets to investigate whether the results

obtained in this study are generalizable and to what degree the data

collected by a single experienced practitioner is different to a dataset

that is typically collected over a course of several years by a number

of dentists-in-training. Additionally, we wish to incorporate various

explainability techniques, to better justify the models’ predictions,

in turn giving a deeper insight into how specific factors affect the

outcome of root canal treatments as well as better assist a doctor

in understanding and interpreting the predicted outcome.
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