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Abstract
Life cycle assessment (LCA) data is essential for evaluating the en-

vironmental impacts of products, services, and processes through-

out their life cycle. Its accuracy depends largely on the underly-

ing life cycle inventory. Currently, few tools exist to verify the

integrity of such data. In earlier work, we introduced a novel

approach to this issue by applying Benford’s law as a preliminary

data quality indicator. Benford’s law describes the distribution of

leading digits in naturally occurring numerical datasets. We first

demonstrated that overall LCA datasets conform to Benford’s

law and that substantial differences exist among continents when

analyzed in more detail.

In this study, we examined conformity at the country level to

assess whether certain countries could represent their continents.

All countries showed conformity when data were aggregated.

However, performance varied: for example, Brazil aligned with

the positive trend of its continent, while Switzerland performed

notably worse. Similar patterns were observed when data were

aggregated by compartments (air, water, soil, natural resources)

and by selected elementary flow groups. Brazil again showed the

strongest conformity, followed by the EU.

Our results confirm that country-level LCA data generally

conform to Benford’s law and that some countries can serve as

continental representatives. At the same time, caution is needed

when using data from countries with weaker conformity, as these

datasets may require additional verification.
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1 Introduction
Life-Cycle Assessment (LCA) has established itself as a princi-

pal methodology for quantifying the environmental impacts of

products and processes throughout their entire life cycle [12].

Given its extensive application across industrial sectors and in

policy formulation, the verification of data integrity represents

a critical requirement [5, 13]. The process of data acquisition is

particularly decisive, as it directly conditions the accuracy of LCA

outcomes and thereby determines the robustness and credibility

of subsequent analyses [4]. Data collection is the crucial step in

assuring accuracy of LCA results and it influences all subsequent

steps of the analyses [4]. As there is no universal tool that is

used for this, we aimed to employ Benford’s law, widely known

statistical tool for testing integrity of the underlying data and
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fraud detection [11]. Benford’s law, also known as first-digit law,

describes distribution of the first digits of numbers in naturally

generated datasets. It is widely used in many fields, from finances

and banking to fields such as astronomy [1], election result anal-

ysis [10], and scientific publishing networks [20]. As the general

conformity of LCA data to Benford’s law has been demonstrated

[17], and prior research has also identified differences in confor-

mity across continents and environmental compartments [18],

we extend this analysis by testing several countries to assess

whether conformity can also be expected at the national level.

Furthermore, we investigate whether individual countries can

serve as suitable representatives of their respective continents.

2 Literature review
In our previous research, we examined differences in LCA data

across continents with respect to heavy metals, greenhouse gases,

toxic substances and carbon-based parameters. The results re-

vealed significant intercontinental variation, particularly between

Europe and Africa [18]. Not only did we demonstrate differences

across continents, but we also validated these findings by estab-

lishing a correlation between Benford’s conformity levels and

environmental performance scores for the respective continents.

Building on these results, we aimed to investigate whether similar

patterns could also be observed at the country level.

Beyond our own application of Benford’s law to environmental

datasets, numerous studies have employed the same approach in

related contexts. In the environmental field, Benford’s law has

been used to test ecotoxicological data for anomalies [9], verify

the conformity of large biodiversity datasets [19], and assess

the validity of reported emission reduction claims [6]. These

applications demonstrate the versatility of Benford’s law as a

diagnostic tool for evaluating the integrity of environmental data.

In parallel, several studies have analyzed differences in LCA

results among countries. For instance, one study compared LCA

outcomes for dwellings in Spain, a developed country, and Colom-

bia, a country under development. The results showed substantial

differences driven by electricity mix, climate, and consumption

habits: Spain’s fossil fuel–intensive energy system and higher

household demand produced larger impacts, whereas Colombia’s

reliance on hydropower and distinct usage patterns lowered over-

all burdens [15]. This evidence underscores the importance of

examining LCA data at the national level, rather than relying

solely on continental or global averages.

Finally, research has also pointed to the issue of uneven data

quality across countries. A study from 2019 highlighted that LCA

data coverage and completeness are generally more reliable for

Europe and major economies, whereas many developing coun-

tries suffer from significant uncertainties, often requiring extrap-

olations or proxies [7]. Such discrepancies emphasize the need

for careful validation when comparing national-level LCA data,

and they provide further justification for assessing the integrity

of country-level datasets.
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3 Methodology
The first-digit law describes the characteristic frequency distribu-

tion of leading digits in numerical datasets. It is also referred to as

Newcomb–Benford’s law or simply Benford’s law. According to

Benford’s law [16], the leading digits of many naturally occurring

datasets follow a fixed probability distribution, provided that the

data meet several conditions:

• Values are generated through mathematical combinations

of numbers from multiple distributions.

• The dataset spans a wide numerical range (e.g., including

values in the hundreds, thousands, tens of thousands, etc.).

• The dataset is sufficiently large, with at least 50–100 ob-

servations as a general guideline [14].

• The data are right-skewed, with the mean exceeding the

median and a long right tail rather than a symmetric dis-

tribution.

• The dataset lacks a strict upper or lower bound, aside from

a minimum of zero.

The equation for the distribution of the first digits of observed

data is given in Equation 1.

𝑃 (𝑑) = 𝑙𝑜𝑔10 (𝑑 + 1) − 𝑙𝑜𝑔10 (𝑑) = 𝑙𝑜𝑔10 (1 +
1

𝑑
) (1)

One important aspect that needs to be decided when using

Benford’s law is minimal sample size. Although Benford’s Law

can be applied to relatively small samples (50 ≤ 𝑁 ≤ 100)
[14], recent studies recommend employing Monte Carlo simu-

lations for more robust evaluation of sample size adequacy [8,

2]. One study suggests that conformity tests are most reliable

when 𝑁 ≥ 200[2], while for 𝑁 < 1000, researchers should allow

for larger deviations before inferring non-conformity, consistent

with Nigrini’s recommendations [8].

In our previous continent-level study [18], we applied Monte

Carlo sampling of the ecoinvent database to determine an appro-

priate sample size. We showed that conformity rates rise with

sample size up to about 𝑁 = 500, after which the results stabilize

with more than 95% of samples conforming. Based on this, we

established 𝑁 = 500 as the threshold for analysis, consistent with

recent recommendations [8], and we adopt the same threshold

in the present country-level research.

The dataset employed in this study was ecoinvent version

3.10 (cut-off cumulative LCI), which is available under a paid

license.We conducted the analysis in R using the benford.analysis

package [3]. Zero values were automatically excluded, and we

adapted the Benford function to handle negative numbers. From

the 2654 columns in the ecoinvent dataset, 2648 numeric columns

were used, representing 1190 distinct chemical substances. These

were classified into five categories based on place of disposal: Air,

Water, Soil, Natural Resources, and Inventory Indicator.

For this study, we focused on four groups of elementary flows

from ecoinvent: carbon-based flows, heavy metals, toxic sub-

stances, and greenhouse gases. These groups were analyzed only

for countries with sufficient observations (≥ 500), which included

China, India, Switzerland, the USA, Canada, and Brazil. In addi-

tion, all EU member states were combined and reported under a

single ’EU’ category.

4 Results
The results for overall conformity across the countries align

closely with those for the continents [18]. All examined countries

demonstrated close conformity when their data were aggregated.

All MAD values were less than 0.001, and all p-values were either

0 or extremely close to it (see Table 1).

Upon individually evaluating each elementary flow, the dis-

crepancies are clearly visible. Brazil is clearly the superior per-

former, with less than 30% of elementary flows classified as non-

conforming and over 40% exhibiting acceptable conformity. It is

the only country that have multiple close conforming columns.

It is succeeded by the EU, however it already exhibits a majority

of non-conforming columns. India and China have less than 2%

of conforming columns in total (Table 2). It is noteworthy that

Switzerland exhibits poor results despite ecoinvent being based

in the country.

After evaluating the selected categories of elementary flows,

a consistent pattern emerged in the performance of individ-

ual countries. Notably, Brazil was the only nation to exhibit

’close conformity’ for any elementary flows within these specific

subgroups. Throughout the analysis, Brazil consistently demon-

strated the highest level of conformity, whereas China and India

consistently ranked the lowest, with their elementary flows being

almost entirely non-conforming (see Table 3).

In the analysis of carbon-based flows, Brazil is the most promi-

nent performer, with approximately 22% of its elementary flows

classified as non-conforming. The performance of Canadamatched

that of the EU, showing one fewer non-conforming column. In

contrast, China, India, and Switzerland did not have conform-

ing columns at all. Notably, four elementary flows were non-

conforming across all tested countries: fossil carbon-dioxide in

the lower stratosphere and upper troposphere (X=1), non-fossil

carbon dioxide in the air (X=9), carbon dioxide in the soil (X=12),

and fossil carbon monoxide in the lower stratosphere and upper

troposphere (X=17) (Figure 1).
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Figure 1: Conformity to Benford’s law for carbon-based
elementary flows across selected countries in the ecoinvent
database.

A similar situation is present in the results for toxic substances.

Brazil retains the top position, closely followed by the EU in this

instance. At the bottom of the list, China and India again show

100% non-conforming flows, whereas Switzerland now exhibits

more than 17% conforming columns. Only one flow, Lead-210 in

urban air close to the ground (X=14), did not conform for any

country. It is also interesting to note that Lead II in surface water

(X=13) only marginally conforms for Switzerland (Figure 2).

With respect to the elementary flows of greenhouse gases, a

consistent trend was observed. China and India demonstrated the

lowest conformity. However, India presented one conforming el-

ementary flow, specifically trifluoromethane in urban air close to

the ground (X=48). This particular flow exhibited acceptable con-

formity for both India and Brazil, which were the sole countries to

conform for this elementary flow. Conversely, trifluoromethane
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Table 1: Statistical tests on Benford’s conformity for all observations in the selected LCI database by country.

Country ChiSq ChiSq(P) MantissaArc MantissaArc(P) MADConformity MAD Observations
Switzerland 266.6629 0.0000 0.0000 0.0000 Close conformity 0.0006 4,828,955

European Union 71.5715 0.0000 0.0000 0.0000 Close conformity 0.0004 4,700,559

Brazil 7.6982 0.4635 0.0000 0.1694 Close conformity 0.0002 1,658,861

China 69.9057 0.0000 0.0000 0.5208 Close conformity 0.0005 1,936,686

Canada 23.3071 0.0030 0.0000 0.2541 Close conformity 0.0003 1,719,686

India 88.8233 0.0000 0.0000 0.0371 Close conformity 0.0006 1,200,466

USA 33.5820 0.0000 0.0000 0.1689 Close conformity 0.0004 1,240,267

Table 2: MAD Conformity counts and percentages by coun-
try, sorted in increasing order by number of nonconform-
ing values, where CC = Close conformity, AC = Acceptable
conformity, MAC = Marginally acceptable conformity, and
NC = Non-conformity

Country CC (%) AC (%) MAC (%) NC (%) Dataset
Brazil 41 (1.87%) 900 (41.1%) 620 (28.31%) 629 (28.72%) ecoinvent

EU 9 (0.41%) 400 (18.26%) 464 (21.19%) 1317 (60.14%) ecoinvent

Canada 1 (0.05%) 125 (5.71%) 287 (13.11%) 1777 (81.14%) ecoinvent

USA 1 (0.05%) 114 (5.21%) 262 (11.96%) 1813 (82.79%) ecoinvent

Switzerland 0 (0.0%) 38 (1.74%) 117 (5.34%) 2035 (92.92%) ecoinvent

China 0 (0.0%) 7 (0.32%) 27 (1.23%) 2156 (98.45%) ecoinvent

India 0 (0.0%) 5 (0.23%) 25 (1.14%) 2159 (98.63%) ecoinvent

Table 3: MAD Conformity counts per country, where
CC = Close conformity, AC = Acceptable conformity,
MAC = Marginally acceptable conformity, and NC = Non-
conformity

Country CC (%) AC (%) MAC (%) NC (%) Data
Brazil 0 (0.0%) 18 (37.5%) 13 (27.08%) 17 (35.42%) Green house gases

European Union 0 (0.0%) 8 (16.67%) 8 (16.67%) 32 (66.67%) Green house gases

Canada 0 (0.0%) 3 (6.25%) 5 (10.42%) 40 (83.33%) Green house gases

Switzerland 0 (0.0%) 0 (0.0%) 2 (4.17%) 46 (95.83%) Green house gases

USA 0 (0.0%) 1 (2.08%) 1 (2.08%) 46 (95.83%) Green house gases

India 0 (0.0%) 1 (2.08%) 0 (0.0%) 47 (97.92%) Green house gases

China 0 (0.0%) 0 (0.0%) 0 (0.0%) 48 (100.0%) Green house gases

Brazil 4 (0.02%) 56 (34.15%) 47 (28.65%) 57 (34.75%) Heavy metals

European Union 0 (0.0%) 34 (20.73%) 39 (23.78%) 91 (55.49%) Heavy metals

Canada 0 (0.0%) 7 (4.27%) 23 (14.02%) 134 (81.71%) Heavy metals

Switzerland 0 (0.0%) 6 (3.66%) 19 (11.59%) 139 (84.76%) Heavy metals

USA 0 (0.0%) 3 (1.83%) 10 (6.1%) 151 (92.07%) Heavy metals

India 0 (0.0%) 0 (0.0%) 3 (1.84%) 160 (98.16%) Heavy metals

China 0 (0.0%) 2 (1.22%) 1 (0.61%) 161 (98.17%) Heavy metals

Brazil 0 (0.0%) 10 (37.04%) 11 (40.74%) 6 (22.22%) Carbon

Canada 0 (0.0%) 5 (18.52%) 5 (18.52%) 17 (62.96%) Carbon

European Union 0 (0.0%) 4 (14.81%) 5 (18.52%) 18 (66.67%) Carbon

USA 0 (0.0%) 2 (7.41%) 2 (7.41%) 23 (85.19%) Carbon

China 0 (0.0%) 0 (0.0%) 0 (0.0%) 27 (100.0%) Carbon

India 0 (0.0%) 0 (0.0%) 0 (0.0%) 27 (100.0%) Carbon

Switzerland 0 (0.0%) 0 (0.0%) 0 (0.0%) 27 (100.0%) Carbon

Brazil 0 (0.0%) 11 (47.83%) 5 (21.74%) 7 (30.43%) Toxic substances

European Union 0 (0.0%) 8 (34.78%) 6 (26.09%) 9 (39.13%) Toxic substances

Canada 0 (0.0%) 1 (4.35%) 6 (26.09%) 16 (69.57%) Toxic substances

Switzerland 0 (0.0%) 2 (8.7%) 2 (8.7%) 19 (82.61%) Toxic substances

USA 0 (0.0%) 0 (0.0%) 1 (4.35%) 22 (95.65%) Toxic substances

China 0 (0.0%) 0 (0.0%) 0 (0.0%) 23 (100.0%) Toxic substances

India 0 (0.0%) 0 (0.0%) 0 (0.0%) 23 (100.0%) Toxic substances

in non-urban the air or from high stacks (X=47) conformed exclu-

sively in the European Union, although marginally. Furthermore,

ten elementary flows were identified as non-conforming across

all analyzed countries. (see Figure 3). Regarding heavy metal

elementary flows, the observed trend remained consistent. Brazil

continued to exhibit the lowest proportion of non-conforming

columns, approximately 35%. Notably, Brazil demonstrated close

conformity for four elementary flows: Chromium III in surface

water (X=38), long-term Mercury II in ground water (X=130),

Nickel II in soil (X=143), and Zinc II in surface water (X=160).

For the first time, China exhibited conforming elementary flows.
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Figure 2: Conformity to Benford’s law for toxic substances-
based elementary flows across selected countries in the
ecoinvent database.

Specifically, conformity was observed for long-term Iron ion in

air in low population density (X=71), Lead II in ground water

(X=94), and Manganese II in water (X=117). China was the sole

country to conform for Lead II in the ground water. India also

demonstrated conformity for three elementary flows. Similar

to China, India conformed for long-term Iron ion in air in low

population density, though only marginally. The other two con-

forming flows were Mercury II in lower stratosphere and upper

troposphere (X=122) and Nickel II in lower stratosphere and up-

per troposphere (X=136). It is important to note that for Nickel II

in agricultural soil (X=140), insufficient data prevented calcula-

tion due to high incidence of missing values. Furthermore, a total

of 27 elementary flows were non-conforming across all analyzed

countries. (Figure 4).

5 Conclusion and Discussion
When testing the conformity of countries with sufficient data

(N ≥ 500 observations), the results clearly revealed which na-

tions were driving continental patterns. China and India consis-

tently exhibited non-conformity across nearly all elementary

flows, aligning with the broader Asian trend. The European

Union demonstrated moderate performance, while Switzerland

frequently ranked among the poorest performers alongside China

and India. Notably, none of these selected countries achieved

conformity levels comparable to the overall European results,

suggesting that Europe’s superior performance may be attributed

to non-EU European countries not individually analyzed in this

study.

Particularly interesting was Switzerland’s poor performance

despite ecoinvent being a Swiss-based database. This unexpected

finding challenges assumptions about the relationship between

database origin and data quality for specific geographical regions.
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Figure 3: Conformity to Benford’s law for greenhouse gases-based elementary flows across selected countries in the
ecoinvent database.
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Figure 4: Conformity to Benford’s law for heavy metal-based elementary flows across selected countries in the ecoinvent
database.

Conversely, Brazil emerged as the clear standout performer, con-

tributing substantially to South America’s strong overall confor-

mity results. Canada and the United States demonstrated similar

performance levels, maintaining consistent middle-tier position-

ing relative to other countries, which aligned well with North

America’s intermediate continental ranking.

These country-specific results provide valuable insights into

the regional variations observed at the continental level and

highlight the importance of examining data quality at multiple

geographical scales when assessing LCA database integrity.
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