
Asset-Risk–Weighted Spectral Partitioning to Improve the 
Resilience of Water Distribution Networks

 

 

 

Daniel Kozelj† 
Faculty of Civil and Geodetic 

Engineering 
University of Ljubljana 

Ljubljana, Slovenia 
daniel.kozelj@fgg.uni-lj.si 

 

 

 

 

Abstract 

District Metered Areas (DMAs) are central to leakage control, 
but partitions based only on topology or demand ignore local 
failure risks. We propose an asset risk weighted spectral 
partitioning XGBoost-derived pipe failure probabilities (PFp) 
are integrated into a generalized normalized cut (GNC) 
framework. The pipe level PFp are length-weighted and 
aggregated into nodes to form vertex weights, that guide the 
spectral solver to balance clusters by state risk. Using the 
Ljubljana-Šentvid case, we compare PFp-weighted GNC with a 
demand-balanced baseline across representative edge 
weighting cases (unweighted � , diameter � , length � , 
minimum-cost ���� , and topological case �	 ), identical 
clustering (squared-euclidean). The condition dependent 
balancing favors fewer, more compact DMAs, and concentrates 
pipes networks poor-condition pipes on smaller DMAs. The 
method is reproducible and data-based and embeds PFp directly 
into the partitioning to provide hydraulically coherent, 
operationally tractable, and risk-oriented DMAs for aging 
WDNs. 

Keywords 
Water loss, District Metered Areas, Spectral Graph Partitioning, 
Pipe Failure Probability, XGBoost 

1 Introduction 

Public water supplies are energy-intensive to extract, transport, 
treat and deliver. As a recent comprehensive US analysis 
showed, energy intensity has increased from 2001 to 2020 - by 
12% for large (0.49 kWh/m=), 8% for medium (0.53 kWh/m=), and 
28% for small (0.67 kWh/m=) utilities. Cese trends confirm that 
water supply is becoming increasingly energy intensive, 
underlining the need for sustainable, integrated water–energy 
management [1]. Although utilities cannot control final energy, 
leakages in water distribution systems are an increasingly 
critical problem [2], exacerbated by post-World War II pipes 

that are in poor condition [3]. In Slovenia, annual water 
abstraction for water supply amounts to about 168 million m=, 
with reported losses of about 50 million m=; leakages vary 
widely between utilities (about 20–70%) [4]. Water leaks are 
recognized as one of the driving forces for higher costs, as the 
water is treated and pumped into the distribution network. Ce 
loss of this valuable resource is not only an economic concern 
but is also increasingly jeopardizing water security as droughts 
have become more severe in recent years [5]. Ce main cause of 
inefficiency in water distribution is aging infrastructure, which 
is a key challenge for utilities, municipalities and customers 
alike. 

Scientific and technical literature has established and 
confirmed that one of the most effective measures to identify 
water losses is the establishment of District Metered Areas 
(DMAs) – sub-areas in which inflow and/or outflow are 
measured simultaneously to equalize water volumes [6]. DMAs 
are realized through the installation of flow meters and valves 
and also enable the calculation of the water balance and its 
components for the respective network. As important as DMAs 
are in combating water loss, they require significant investment. 
So while DMAs reduce inefficiencies in the WDN, they are 
themselves prone to inefficiencies in design and investment 
costs, as well as in the insights they can provide through their 
mass balancing. 

As one of the most common approaches to control and 
reduce real water losses for water utilities, DMA design reduces 
unearned water and clarifies hydraulic conditions in the WDN. 
Partitioning the WDN is complex and prone to weighting case 
selection to guide the partitioning method for efficiency and 
expediency [7], [8]. Ce method used in this study employs 
spectral partitioning algorithms, which are classified into three 
coding types, namely the Ratio Cut (RC), the Normalized Cut 
(NC), and the Generalized Normalized Cut (GNC). Ce laMer, 
GNC, decouples the weighting of vertex (balance) and edge 
(cut) and thus enables balanced partitions and flexible 
weighting [9]. Ce GNC method can further control the 
network partition by balancing and controlling the network 
partition objectives such as water loss control and reduction [7], 
[9], [10], [11]. 

Ce probability of pipe bursts and their subsequent impact 
on water loss is a promising proposal to balance the DMA and 
improve the efficiency and effectiveness of leak detection, 
localization and remediation. Recent advances in machine 
learning (ML) have significantly improved pipe failure 
prediction and leak detection capabilities [12], [13], [14], [15], 
[16]. However, ML models for pipeline failures are still 
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constrained by limited data, heterogeneous degradation, utility-
specific calibration, and weak data integration [17], [18]. 

Greater integration of various infrastructure data has shown 
improvements in quantifying the probability of pipeline failure 
and subsequent condition assessment for strategic planning and 
proactive asset management. Kozelj and Abert Fernández [19] 
have shown that ML models are very effective when they 
incorporate a multidimensional approach to quantitatively 
assess non-WSS features (i.e., neighboring infrastructure 
systems) in the prediction of pipeline failures, such as 
construction activity, operational loads from nearby 
transportation infrastructure, and environmental impacts from 
neighboring utilities. Ce multi-system interdependency of 
buried supply infrastructures can restructure the occurrence of 
water losses and operational prioritization. 

As Slovenian utilities report high water losses (~20-70% in 
NRW), budgets are limited and assets are outdated, the limited 
investment in monitoring and analysis must provide the 
greatest benefit to the goal of combating water losses. Cerefore, 
our study focuses on whether condition-based vertex weighting 
– using ML-based pipe break probabilities (PFp) – can make 
spectral partitioning and DMA design more feasible by 
prioritizing high-risk zones without compromising hydraulic 
performance or increasing implementation costs. Embedding 
PFp as vertex weights in the GNC formulation and comparison 
with on- demand GNC in the same case of Ljubljana [9]. 

2 Spectral Graph Partitioning – GNC method 

A WDN strongly resembles the structure of a graph � = 
�, ��, 
where � is a set of � vertices and � is a set of undirected edges 

between these �  vertices. Ce constat nodes and pipes 
correspond to vertices and edges, respectively. In this study, 

spectral graph partitioning is used to partition graph �  into 
subgraphs �	, ��, … , ��  where � ≤ � . In a subgraph �� =

�� , ��� , where � = 1, … , � , all the edges connecting the 

vertices ��  are referred to as intracluster �� , while edges 
connecting vertices from different subgraphs are referred to as 

intercluster edges � , which represent links between different 
subgraphs. A complete partition is therefore referred to as [9]: 

 

� ∶= ��	, ��, … , ���. (1) 

 
To achieve a more balanced partitioning, we can use 

different objective functions for our partitioning problem. Our 
research uses the generalized normalized cut (GNC) since it 

balances the sum of vertex weights (�! ) within each cluster 
while minimizing the sum of intercluster edge weights (�!!"). 
For a partition � ∶= ��	, ��, … , ���  the objective therefore is 

[9]: 

#
�� ∶= min'(,'),…,'*
+ vol/0
���1

vol
���
�

�2	
, (2) 

 

 

where vol/0
���1  is the sum of the weights of all 

intercluster edges in 0
��� ; and vol
���  is the sum of the 

weights of the vertices in �� [9]: 
 

vol/0
���1 = + �3!
!!"∈5
'6�

, 

vol
��� = + �!
!∈'6

. 
 (3) 

 

   
Ce corresponding generalized eigenvalue problem is 

wriMen as follows: 
 

78 = 987, (4) 

 

where 7 is the Laplacian matrix; 8 is the eigenvector matrix; 
and 9 = :' is the diagonal matrix of vertex weights: 

 

:';< ∶= =�!; , > = ?,
0, sicer  (5) 

 

with >, ? = 1, … , � [9]. By solving equation (4) we obtain the 
�  smallest eigenvalues and their corresponding eigenvectors, 

which are then clustered by rows into � clusters using the �-
means++ clustering algorithm, where the cosine or squared 
Euclidean distance is used to determine the cluster centroids 
[20]. Ce clustering algorithm assigns each node to a 
corresponding DMA. AWer partitioning the spectral graph, the 
characteristics of each established DMA can be extracted. Ce 
determined subgraphs �	, ��, … , �� are then interconnected by 

any combination of the edges from the intercluster set �  to 
obtain the final graph. 

Ce efficiency of connecting subgraphs is ensured by using 
spanning trees, which identify all topologically valid 

possibilities for connecting subgraphs from the partition � 
with the smallest possible number of edges [9]. A connected 

unweighted multigraph E = 
�F, �F� is constructed, where �F 
are vertices representing one of the subgraphs ��, and �F are 

the intercluster edges in �. Ce spanning tree method over �-
shortest weighted (hydraulic resistances) paths prioritizes the 
identified water mains, reduces the combinatorial space, and 
simultaneously preserves hydraulic sufficiency [9]. 

As described in the previous subsection, the spectral graph 
partitioning algorithms provide balanced partitions with the 
lowest cut values, i.e., the sums of the intercluster edge weights. 
Ce GNC partitioning method uses two different sets of weights, 

i.e., edge (cut) weights for the weighted Laplacian matrix 7, and 
an independent set of vertex (balancing) weighting for the 

matrix :!. Ce weight cases are as follows: 

 Laplacian matrix 7 : unweighted (� ), pipe diameter 
(�), pipe length (�), minimum edge costs (��), and a 

topological weighting (�1) which includes additional 
topological characteristics (i.e., gate valves, bridges in 
the graph, and water mains). 

 Diagonal matrix :! : considers the pipe failure 
probabilities (PFp). 

 
Ce selected weight cases are compared with the published 

results of Zevnik et al. [9]. Ce most important comparison is 
the introduction of pipe failure probabilities (PFp) as balancing 
weights to make spectral partitioning more suitable for its 
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primary purpose of efficiently detecting and reducing water 
losses. 

2.1 Pipe failure probability (PFp) modeling 

Ce PFp weights come from a recent study by Kozelj and Abert 
Fernández [19], which are obtained by training an ML 
algorithm with data from the Ljubljana WSS (Ljubljana, 
Slovenia). Cree datasets were used for the study, namely 52,605 
records of pipe sections from the national utility cadastre 
managed by GURS [21], a register of 2,281 documented pipe 
bursts from the utility for the period from 2010 to 2025 [22], and 
several cross-utility infrastructure networks that showed 
meaningful predictive power for pipe burst risk [21]. Ce ML 
model was built using the XGBoost algorithm and validated by 
stratified K-fold cross-validation, and achieved high 
performance (ROC AUC: 0.9102; recall: 0.7750; accuracy: 0.8750; 
F1 score: 0.2261; and LogLoss: 0.2500), confirming its reliability 
[19]. 

Ce XGBoost algorithm [23] was validated by stratified five-
fold cross-validation[24], which yields out-of-fold PFp for each 

pipe, which were later grouped into five classes [ 0 G 0.2 ], 
(0.2 G 0.4 ], (0.4 G 0.6 ], (0.6 G 0.8 ], and (0.8 G 1 ] (Figure 1). 
Ce metric of feature importance showed that the most 
influential predictors of the model were pipe material, 
installation year, and pipe diameter, but also influential gains 
from adjacent infrastructure systems, such as electricity grids, 
sewage systems, and roads. 

 

 

Figure 1: Pipe failure probabilities (PFp) and heatmap the 
spatial distribution of historical failures 

In addition, to the spatial representation of the probabilistic 
results generated by the XGBoost algorithm (Figure 1), we can 
view the pipeline segments in a statistical analysis by looking 
at the distribution of pipe-specific characteristics, such as 
material and diameter, in the classes of failure probability. 
Figure 2 illustrates the probability of pipe failure as a function 
of pipe and age. 

 

Figure 2: Heat map of pipe failure probabilities (PFp - leak) as 
a function of pipe material and age 

Ce assignment of PFps for the GNC method was carried out 
by embedding the condition risk in the weighting term of GNC, 

whereby the PFp probabilities of the pipes �LM ∈ N0,1O  were 

transferred to the vertex weights �!  via an incident pipe 
aggregation: 

 

�! = Agg_S ∈ T
U�
�LM ⋅ �M�
Agg_S ∈ T
U�
�M� , (6) 

 

where T
U� is the set of pipes belonging to vertex (node) U, 

�M is edge (pipe) length, and Agg is the (length-weighted) mean 
value. Cis concentrates the compensation probabilities for 
possible current or future water losses in areas with many or 

long high-risk pipes. Ce edge-weighted cases (� , � , � , ���� , 

and �	) remain unchanged from the baseline [9]. 

3 Results and discussion of the GNC Spectral 
Graph Partitioning 

Following the baseline study of Zevnik et al. [9] the 

computation � -means++ clustering was performed using 
squared Euclidean distance [20], although the cosine distance 
was also investigated, but yielded poorer results compared to 
the squared Euclidean distance, as noted in the previous study. 

Each partition � was subjected to: (i) an intrernal connectivity 
testing; (ii) efficient connection selection using spanning trees,  
and (iii) hydraulic screening using the generalized resilience 

index WX [25] and tank-flow. Ce final alternatives are evaluated 
using the six-criteria model and the journalistic weights 
mentioned above [9]. Ce values of the selected criteria are 
normalized according to Liu and Han [26] considering a positive 
or negative influence. Ce final score of each partition is 
calculated as a weighted sum of the scores for a particular 
criterion. Ce higher the values of the final score, the beMer the 
alternatives of the DMA design. 

Ce evaluation of the PFp-balanced GNC, i.e, vertex weights 

corresponding to the aggregated PFp risk of the node, �! 
(length-weighted), was evaluated over the same five 
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representative cases of weighting: unweighted ( � ), pipe 
diameter (�), pipe length (�), minimum edge costs (����), and a 

topological weight case (�	). Clustering by squared Euclidean 
distance was performed for � = 2, … ,20 , with summaries of 

performance, best- � , and evaluation criteria (final score) 
provided for each case. 

 

 

Figure 3: The final scores of the PFp- balancing GNC 
partitioning for all edge weights 

As you can see from Figure 3, the best-�  under the PFp-
balancing GNC reached peak scores close to 7(and occasionally 

� = 4 or � = 6) for many weight classes. Averaging the final 
scores over �  for each edge weighting case shows that PFp-
balanced GNC produces a stable topological clustering with 
hydraulically viable solutions, as indicated by the hydraulically 
sound solutions found. Figure 3 shows the final scores for all 

edge weighting cases, with length edge weighting (�) leading 
( Y�  = 0.731), followed by ����  (0.704) and unweighted ( � ) 

(0.696), while diameter (� ) lags behind (0.611). Ce maxima 

reinforce this hierarchy: ����  achieves the best overall score 
(Z[\ = 0.864 at � = 9), with � almost on a par (0.861 at � = 11). 

Ce supplementary design metrics for �  and ���� . Case �]M^_ 
explain these paMerns. Ce weighting case �  produces the 
strongest mean value and almost the best maximum, albeit at 

the highest cost (€45,363), with a good balance (Ỳabc = 7.43; 
de  = 4,003.8). ����  combines a balanced performance with 
moderate cost (€31,494) and a solid hydraulic performance of 

quantities Ỳabc  = 8.82; de  = 4,982.2 (Table 1, �  = 9). Overall, 

���� and � define the efficient frontier of the best alternatives 
among the graph partitions found, with ���� offering the most 
balanced compromise. 

Table 1: Best solution of PFp-balanced GNC spectral 
partitioning (p=9) 

�  
Ir  
[G] 

Cost 

[€] 
Ỳabc  
[l/s] 

de  
[Z] 

Score 

[G] 

9 0.832 31,494 8.82 4,982.2 0.864 
 

In the solution, ����, � = 9 solution (Figure 4), the stacked 
risk–length profiles show that the PFp-balanced segmentation 
has effectively concentrated pipes with poorer condition 

(orange/red, � > 0.6) in smaller DMAs, while larger DMAs are 
comparatively dominated by lower-risk classes (green/yellow, 

� < 0.4). Compact districts such as DMA-2, DMA-4, and DMA-
9 have a high percentage of orange/red segments despite their 
modest overall pipe length, suggesting deliberately carved 
‘maintenance cells’ where targeted leak detection and renewal 
can be efficiently staggered. In contrast, DMA-5, DMA-6, and 
DMA-8 have a much greater absolute length, but also a 
significantly higher proportion of green/yellow, segments. Cis 
indicates more homogeneous, lower-risk operating zones that 
are more suitable for monitoring rather than immediate 
rehabilitation. 

 

 

Figure 4: Length of pipes classified by DMA and pipe failure 
probabilities 

A notable caveat is DMA-1, which combines a large overall 
length with a sizable red component, making it as a priority 
corridor where incremantal renewal or boundary secondary 
refinement may be warranted. Overall, the distribution 
confirms the intended behavior of risk-weighted vertex 
balancing: it locates high-risk assets in smaller, more 
manageable DMAs, while retaining hydraulically coherent, 
lower-risk areas at a larger scale. In this way, operational 
monitoring is aligned with condition-based maintenance and 
CAPEX/OPEX is concentrated where the expected returns are 
highest. 

 

Figure 5: Heat map of the pipe failure probabilities (PFp - leak) 
depending on the pipe material and age 
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Ce map in Figure 5 shows the DMA layout of Ljubljana-
Šentvid (DMAs 1–9) with symbols (open/closed points and 
bridge-MQ). Ce pipe segments are color-coded by PFp: green 
(≤0.2) to magenta (≥0.8), indicating higher-risk corridors around 
DMAs 1 and 6 and generally lower-risk networks in areas such 
as DMAs 3, 5, and 9. A red colored background heatmap shows 
the spatial distribution of historical failures (2010-2025). 

4 Conclusions 

Cis paper, presents a unified framework that incorporates 
predictive failure risk into spectral DMA segmentation by using 
ML-based failure probabilities for pipes. PFps were mapped 
from pipes to node weights using an XGBoost model and a 
generalized normalized cut (GNC) over standard edge weight 
cases were solved as vertex weights within the GNC spectral 
partitioning method. In the case of Šentvid Ljubljana, the risk-
weighted formulation resulted in superior composite scores 
compared to the demand-balanced baselines of Zevnik et al. [9]. 

Ce preferred solution – ����. Weighting at � = 9 – achieved a 
composite score ~0.864, with moderate implementation costs 

(~€31.5k), and reasonable spatial uniformity ( de  ≈ 5 km). In 
practice, the split equalizes pipe failure probabilities (PFp) and 
concentrates pipes in poor condition on actionable DMAs, 
while reserving larger, lower-risk zones for routine monitoring. 
On a system scale, the approach strengthens proactive asset 
management, accelerates leak reduction in aging WDNs, and 
supports energy and emissions savings through avoided 
production and pumping operations. 
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