
MetaConfigurator: A Schema-Aware GUI Tool
for Editing YAML/JSON Configuration Files

Santosh Kumar

santoshkuidev@gmail.com

Abstract. This paper presents MetaConfigurator, a tool designed to
generate customizable graphical user interfaces (GUIs) for editing YAML
and JSON configuration files based on a provided data schema. By lever-
aging the expressiveness of the JSON Schema (draft 2020-12), MetaCon-
figurator offers users a flexible and efficient way to edit configuration
files while maintaining the speed and control of traditional code edi-
tors. The tool removes the need for bespoke GUIs tailored to specific
schemas, streamlining workflows for developers and non-technical users
alike. MetaConfigurator’s key features include schema-based data re-
trieval, file modification, and schema editing. Although it currently sup-
ports JSON Schema 2020-12, potential improvements include extending
support to other schema drafts, integrating code generation, and enhanc-
ing support for YAML and comment preservation. User feedback from
a study indicates that MetaConfigurator effectively addresses practical
tasks, suggesting its applicability in real-world scenarios. Further refine-
ments such as desktop integration, interactive tutorials, and expanded
format support are proposed to enhance the user experience.

1 Introduction

Literary arrangements to structure information, like JSON, XML and YAML,
are frequently utilized for setup records or to structure estimation or on the
other hand research information, since they can be perused and kept up with by
people, as well as deserialized and utilized by PC programs. The organization
of information designs can be characterized by purported constructions, which
characterize the standards the information needs to adjust to. Given an outline, it
very well may be approved whether a specific document affirms to that blueprint.
For effortlessness, we will call all record examples utilizing such organizations
configuration files. Contingent upon the space of such configuration files, they
can be intricate and tedious to alter and keep up with. Tooling, like graphical
UIs, can essentially decrease manual endeavors and help the client in altering
the documents. Those graphical UIs (GUIs), in any case, require starting work
to be created, as well as nonstop exertion in being kept up with and refreshed
when the fundamental information blueprint changes. We tackle this issue by
fostering a web application that naturally creates such helping GUIs, in view of
the given information blueprint. Our methodology varies from other blueprint
to-UI approaches in following:

2 S.K

The device joins the help of a GUI with the adaptability and speed of a code
proofreader by giving both in one view. This code proofreader is a word
processor that helps with normal elements, for example, grammar featuring,
auto-consummation, and blunder featuring. The composition can be altered
utilizing a similar device and sort of view. We utilize a similar method to
produce a GUI utilizing the meta schema of the diagram language. The meta
diagram is the composition that characterizes the construction language it-
self. In this manner, the client is given a comparable view for altering the
pattern with respect to altering the configuration files. We support more
perplexing mapping highlights, like circumstances and requirements.

In section 2, we talk about related work and existing diagram designs, as
well as pattern to-gui draws near. In section ??, we assess existing composition
dialects to track down the most appropriate one for this work. Section 4 portrays
the plan and presents the design of MetaConfigurator . Then, in section 5, we
cover the execution of MetaConfigurator . This incorporates a definite portrayal
of the diagram preprocessing steps, which are important to help a portion of
the high level pattern highlights. To accumulate criticism and check whether the
device would be able and will be utilized in reality, we directed a client study,
which is depicted in section 6. We examine the ramifications of the outcomes in
section 7. At long last, we finish up our work in section 8.

2 Related Work

This segment covers existing pattern dialects and existing ways to deal with
create UIs from them.

As our exploration is of a commonsense sort, we likewise consider dim writing
like details of constructions or sites.

2.1 Schema Languages

Schema languages are formal dialects that determine the design, requirements,
and connections of information, for instance in a data set or organized informa-
tion designs.

As this work is worried about creating a GUI in light of a composition, we
really want to pick a reasonable diagram language. The accompanying areas
portray existing composition dialects. We will analyze them in section ?? to
figure out which is the most appropriate one for this work.

JSON schema JSON is a typical information trade design for trading infor-
mation with web administrations, yet additionally for putting away reports in
NoSQL data sets, like MongoDB [33]. In view of the notoriety of JSON, there
is likewise an interest for a pattern language for JSON. One such language is
JSON schema [1, 40]. Listing ?? shows an illustration of a JSON outline and
listing 1.2 shows an illustration of a JSON report that adjusts to the mapping.

Title Suppressed Due to Excessive Length 3

JSON pattern has advanced to being the true standard diagram language
for JSON documents [12]. Patterns for some famous configuration file types ex-
ist. JSON mapping store [29] is a site that gives north of 600 JSON pattern
records for different use cases. The upheld document types incorporate for in-
stance Docker create or OpenAPI records.

We comment that JSON pattern and other outline dialects for JSON can
likewise be applied to YAML as JSON and YAML reports are of a comparative
construction (JSON is a subset of YAML). A few linguistic subtleties of YAML
can, be that as it may, not be communicated with JSON diagram.

{
"$id": "https :// example.com

/person.schema.json",

"$schema": "https ://json -schema.org

/draft /2020 -12/ schema",

"title": "Person",

"type": "object",

"properties": {
"firstName": {

"type": "string",

"description": "first name."

},
"lastName": {

"type": "string",

"description": "last name."

},
"age": {

"description": "Age",

"type": "integer",

"minimum": 0

}
}

}

Listing 1.1: JSON schema example

{
"firstName": "John",

"lastName": "Doe",

"age": 21

}

Listing 1.2: JSON example for the schema in listing 1.1

4 S.K

XSD and DTD For XML the two true standard construction dialects are
Record Type Definition (DTD) [15] and XML Pattern Definition (XSD) [20].
XSD is the fresher and more expressive organization and in huge parts replaces
and overrides the more restricted design DTD [14]. It is suggested by W3C
as a diagram language for XML documents [20]. Numerous other construction
dialects have been proposed and grown yet are generally obscure contrasted with
XSD [31,34].

Other schema languages We likewise think about the accompanying pattern
dialects:

(a) Signal (Design, Bring together, Execute) [9] is an information approval and
setup language, which can be utilized with different information designs,
like JSON and YAML (it is a superset of both). It has a few use cases,
particularly in setup and information approval.

(b) Apache Avro [3] is an open-source project that gives information serializa-
tion and information trade administrations for Apache Hadoop. It utilizes a
JSON-based mapping language.

(c) JSON Type Definition (JTD) [17] is a mapping language for JSON records,
which is fundamentally easier than JSON blueprint.

(d) Type Schema [28] is a diagram language for JSON reports, like JSON Type
Definition yet utilizing an alternate punctuation.

(e) GraphQL diagram language [23] is a pattern language for GraphQL APIs.
(f) Convention Buffers [4] is a language for information serialization by Google.

We think about no graphical displaying dialects, for example, UML or trama
center charts, as they are not text-based. In spite of the fact that they can be
switched over completely to message based designs, their principal object is to
demonstrate information designs and connections between them. We likewise
think about no metaphysics dialects, like OWL or RDF Pattern, as they are not
expected for information approval yet rather for information portrayal. Future
work could explore in the event that such dialects are likewise helpful for our
utilization case. At last, we think about no programming dialects as composition
dialects. In fact, programming dialects can be utilized to characterize informa-
tion designs and limitations, however they are not planned for this reason, and
creating a GUI from them would very challenge.

2.2 Existing Approaches

Our work focuses on assisting users in creating and maintaining configuration
files so that they are valid and adhere to a predefined schema.

There exist techniques to validate configuration files against a schema [10,11,
13]. Usually, schema validation is done only internally, e.g., by web services or
libraries. However, there exist also approaches that use the schema to assist the
user in creating and maintaining configuration files. IDEs, such as Visual Studio

Title Suppressed Due to Excessive Length 5

Code or IntelliJ IDEA, can validate configuration files against a schema and pro-
vide the user with error messages. Those IDEs also provide other features, such
as auto-completion, syntax highlighting, and tooltips. However, they typically
do not provide a graphical user interface (GUI) for editing the configuration files
based on the schema.

Form generation Connected with our work are approaches that produce a
GUI from a blueprint. This part covers structure generators, i.e., approaches
that create a web structure from a mapping. Such structures can help the client
in a huge number of ways, for example, by tooltips, auto-culmination (Figure 1)
and dropdown menus (Figure 2). By innately sticking to the blueprint struc-
ture (generally speaking), altering information with such GUIs fundamentally
diminishes arrangement botches brought about by the client. Clients who are
not exceptionally acquainted with the arrangement construction benefit most
from the GUI help, yet even experienced clients benefit from it.

Fig. 1: Auto-Completion

Fig. 2: Choice Selection

There exist different methodologies that produce web structures from a pat-
tern, for various frontend systems, e.g., React JSON Composition Form [39], An-

6 S.K

gular Outline Form [26], Vue Structure Generator [25], JSON Forms [35], JSON
Editor [27], and JSON Form [46]. Those approaches are undeniably founded
on JSON pattern and create a structure that can be finished up by the client
and the subsequent JSON report is approved against the diagram. On the off
chance that the client enters invalid information, the structure shows a mistake
message. The produced frames normally have a particular part for each kind of
information, e.g. a text field for strings or a number field for numbers, like our
methodology. Figure 3 shows an illustration of a produced structure utilizing
JSON Structures.

Those strategies, nonetheless, just give the GUI to altering the information,
however not a text-based supervisor. A text-based manager is helpful, particu-
larly for experienced clients, who like to straightforwardly alter the information.
Likewise, these procedures don’t give a method for editting the actual diagram,
yet just the information. The main impediment of all with the exception of the
last two of the given methodologies is that they likewise require a ”UI diagram”
notwithstanding the JSON pattern, which is utilized to design the created struc-
ture. While these designs can be utilized to redo the produced structure, they
likewise should be made and kept up with by the outline creator. Thusly, those
approaches can’t be utilized to produce a GUI for any erratic construction, yet
manual exertion is expected to make the UI mapping.

Fig. 3: JSON Forms, example for a generated form

Adamant [43] is a JSON-mapping based structure generator explicitly in-
tended for logical information. It produces a GUI from a JSON mapping, per-
mits altering and making JSON outline records furthermore, separates between
a mapping alter mode and an information alter mode. It upholds a subset of
JSON mapping, which is adequate for the overwhelming majority use cases.
What’s more, it upholds the extraction of units from the portrayal of a field,
which is useful for logical information. Figure 4 shows a model in the construc-
tion alter mode.

Constraints of Determined are first, it really does just help a subset of JSON
mapping, which is adequate for the majority use cases, yet not so much for
any erratic pattern. Second, it doesn’t give a text-based supervisor to neither

Title Suppressed Due to Excessive Length 7

the outline nor the information. At long last, it is explicitly intended for logical
information, which makes it less reasonable for other use cases, particularly
enormous and complex constructions.

Fig. 4: Adamant, example for a form in edit mode

Schema editors In MetaConfigurator we expect to give a GUI to both altering
configuration files and altering the blueprint. For the last option, there exist a
few purported diagram editors, which are instruments for making and altering
constructions that are either text-based or graphical (or both).

JSON Supervisor Online [27] is an electronic proofreader for JSON compo-
sitions and JSON records. It isolates the proofreader into two sections, where
one section can be utilized to alter the outline and the other part can be utilized
to alter a JSON report, which is approved against the outline. The supervisor
gives different elements, for example, language structure endlessly featuring of
approval blunders (Figure 5). It gives a text-based or tree-based view for altering
the JSON records. For straightforward articles that are not additionally settled,
it likewise gives a table-based view (Figure 6). Notwithstanding, the elements
of the manager are extremely restricted. For instance, it gives no help to the
client, for example, tooltips or auto-fulfillment. For new records, it doesn’t show
the properties of the construction, so the client needs to know the pattern in
advance.

There likewise exists an assortment of pattern editors that are paid pro-
gramming, like Altova XMLSpy [8], Liquid Studio [32], XML ValidatorBuddy [7],
JSONBuddy [2], XMLBlueprint [6], furthermore, Oxygen XML Editor [5]. Those
are editors for XML or JSON pattern, for the most part with a blend of text-
based and graphical perspectives. These instruments are not electronic and not
open-source. Moreover, they don’t zero in on altering a JSON report in view of
a pattern, but instead just on altering the actual diagram.

8 S.K

Fig. 5: JSON Editor Online

Fig. 6: JSON Editor Online, table view

Schema visualization Generating a GUI from a schema is related to schema
visualization, for which several techniques exist [18, 21, 38, 44]. However, the
focus of schema visualization is on providing a static visual representation of the
schema and not on providing a GUI for editing the schema. Thus, we do not
consider schema visualization approaches in this work. However, future work can
investigate how such techniques could be embedded in our approach.

3 Evaluation of Schema Languages

We evaluate the schema languages mentioned in section 2.1 to determine which
is the most suitable one for this work.

3.1 Evaluation Criteria

Ideally, the schema language of MetaConfigurator is both popular and supported
by numerous tools and libraries as well as expressive enough to express the
features we need. We use the following criteria and metrics:

1. Practical usage — Ideally our approach uses a schema language that is
already known by many developers. As indicator of the practical usage we

Title Suppressed Due to Excessive Length 9

use the approximate search results on stackoverflow.com as metric. We ac-
quire the results by querying the google search engine with the name of
the schema language and “site:stackoverflow.com”, which limits the search
results to stackoverflow.com. This metric might also correlate with the com-
plexity of the schema language as a more complex to use schema language
will likely lead to more questions asked on the site. Nevertheless, we assume
that a significantly higher number of results indicates that a language is
more known than others.

Additionally, we investigate how well the schema languages are supported
by IDEs and code libraries:

(a) Tool support —We used the 10 most popular IDEs [16] and checked if the
IDE supports the schema language either natively or by a plugin. Here,
support means that either the IDE is capable of validating documents
against a schema in the schema language or supports creating schema
files, e.g., by using syntax highlighting for the schema language.

(b) Library support — As we implement a web-based tool, JavaScript or
TypeScript based tools are helpful for our approach, e.g., so we can
reuse a package for schema validation. We investigate the number of node
modules existing that are related to the schema languages by querying
the node module search on www.npmjs.com with the name of the schema
language.

2. Expressiveness — We evaluate how expressive each of the schema lan-
guages is, i.e., what possible constructs the language is able to express. We
define eight requirements on the language features that we consider helpful
for our approach. The number of requirements a schema language fulfills is
our metric that indicates how expressive the language is. Table 2 reports the
results. The nine requirements are:

(a) Simple types — This is fulfilled if the schema language provides the
possibility to define simple data types, at least strings, numeric types,
and a boolean type. This is a fundamental feature for our approach.

(b) Complex types — This is fulfilled if the schema language provides the
possibility to define complex data types, at least records and arrays.
This is crucial feature for our approach as configuration files are often
structured data rather than plain key-value pairs.

(c) Descriptions — This is fulfilled if the schema language provides the
possibility to add descriptions to fields. This is helpful in a schema-to-
GUI approach as the description can be shown to the user, providing
potential helpful information on how a field should be filled.

(d) Examples — This is fulfilled if the schema language provides the pos-
sibility to add example values. This is helpful in our approach as the
example values can serve as placeholders in the GUI editor.

(e) Default values — This is fulfilled if the schema language provides the
possibility to add default values which are assumed in an absence of a
value. This helpful information can be displayed to the user or used as
placeholder values.

www.npmjs.com

10 S.K

(f) Optional values — This is fulfilled if the schema language provides the
possibility to declare values as optional or required. Often it is not nec-
essary to provide all values in a configuration file, so it is helpful to mark
fields as required or optional in the GUI editor.

(g) Constraints — This is fulfilled if the schema language provides the pos-
sibility to constrain values of fields, e.g., maximum length of strings. To
be exact, for this evaluation we require that at least two of the following
constraints can be expressed by the schema language:
– The length of strings can be limited.
– The range of numeric types can be limited, e.g., to only positive

values.
– The valid values of a field can be restricted to a finite amount of

values (enumeration).
– The format of a string field can be constrained to a certain pattern.

This is a helpful feature for our approach as often not all possible values
are valid for specific fields in configuration files.

(h) Conditions — This is fulfilled if the schema language provides the pos-
sibility to define conditional dependencies between fields. This is an ad-
vanced feature that is helpful because it allows to express that a partic-
ular field must be given only if another field has a specific value.

(i) References — This is fulfilled if the schema language provides the pos-
sibility to define reusable sub-schemas that can be referenced in other
parts of the schema. This is often useful in practice to reuse common
data structures.

Table 1
Evaluation of different schema languages

Schema language # Search
results

IDE sup-
port

Node
packages

Expressiveness

JSON schema 245,000 8 / 10 4,536 9 / 9
XSD 151,000 8 / 10 116 8 / 9
DTD 69,700 9 / 10 34 6 / 9
CUE 10,500 4 / 10 97 8 / 9
Avro 20,000 8 / 10 211 5 / 9
JTD 109 0 / 10 17 5 / 9
TypeSchema 8,450 0 / 10 5 8 / 9
Protobuf 44,800 9 / 10 1,210 4 / 9
GraphQL schema 31,000 7 / 10 1,509 6 / 9

3.2 Evaluation results

Tables 1 and 2 show the results of our evaluation. We come to the conclusion
that JSON schema is sufficiently popular and expressive that we choose to use it

Title Suppressed Due to Excessive Length 11

Table 2
Comparison of expressiveness of different schema languages (Part

1)

Schema lan-
guage

Simple
types

Complex
types

DescriptionsExample
values

Default
values

JSON schema
XSD x
DTD x x
CUE x
Avro x x
JTD x x x
TypeSchema x
Protobuf x x x
GraphQL schema x

as the schema language for our approach. The other schema languages are either
less expressive or less popular. This result is in line with the work of Baazizi et
al. [12], who also found over 80,000 JSON schema files on GitHub, and with their
claim that JSON schema is the de-facto standard for JSON schema languages.

4 Design

4.1 User Interface

The design of MetaConfigurator is inspired by another tool [36] by one of the
authors, which is a GUI program that assists users in editing configuration files
of BossShopPro [37]. That tool provides the user a code panel for editing configu-
ration files of that domain in a text editor, as well as a GUI panel, where the user
can edit their configuration file using GUI components. MetaConfigurator differs
from that tool by being generic, instead of being bound to a certain domain, by
having a much more expressive schema language, a schema editor, and many
other features that improve the user experience, such as a search functionality.

Before we dive into the architecture and detailed design of MetaConfigurator ,
this section provides an overview from the view of the user.

The UI has three particular perspectives:

1. Document proofreader (figure 7): In this view, the client can change their
configuration file, in light of a composition.

2. Outline proofreader (figure 8): In this view, the client can change their com-
position.

3. Settings (figure 13 in supplement): In this view, the client can change bound-
aries of the apparatus.

The UI is separated into two fundamental boards: the Code panel (on the
left) and the GUI panel (on the right). In the Code panel the client can change

12 S.K

Fig. 7: UI of file editor view. Different components highlighted in red: 1) button to
switch to other view (e.g. to Schema Editor view), 2) Toolbar with various functionality,
3) Code panel, 4) GUI panel

Fig. 8: UI of schema editor view

Title Suppressed Due to Excessive Length 13

their information the hard way, as in an ordinary code supervisor. Highlights,
for example, punctuation featuring and composition approval, help the client.
In the GUI panel, the client can change their information with the assistance of
a GUI. The GUI depends on the blueprint which the client gives (to a greater
degree toward that in the following passages). For instance, for enum properties,
the client will get a dropdown menu with the various choices to browse and for
boolean properties the client will get a checkbox. Different elements, for example,
tooltips that show the depiction, and imperatives of a property, further help the
client.

This plan consolidates the advantages of both a code manager with the ad-
vantages of a GUI. A code manager is effective for some errands and more appro-
priate for clients with a specialized comprehension of the information structure,
while a GUI empowers clients without profound specialized understanding to
work with the information and furthermore helps master clients.

As a pattern is a configuration file itself, it very well may be treated thusly
and the device can offer help in like manner. Note that at whatever point the
client alters a configuration file utilizing the instrument, they do so utilizing
some basic pattern. Indeed, even the instrument settings should be visible as a
configuration file, for which the hidden outline is a settings construction.

Table 3 delineates how for the various perspectives, record information and
outline being utilized by the instrument contrast.

Table 3
File data and schema for the different views

View Effective File Data Effective Schema

File editor User data User schema
Schema editor User schema JSON Schema Meta Schema
Settings Settings data Settings schema

4.2 Intended Workflow

1. Upon initial access of MetaConfigurator , a dialog is displayed, where users
can select their desired schema.

2. After selecting a schema, the user will find that a GUI is automatically
generated on the right-hand side of the file editor, tailored to the selected
schema.

3. Through the GUI panel, users are assisted in creating or modifying configu-
ration files.

4. If a user wishes to modify the selected schema, such as adding new properties,
they can do so through the schema editor. Changes can be made using either
the GUI panel or the code panel, and these modifications will automatically
reflect in the file editor.

14 S.K

4.3 Architecture

This section describes our main architectural design decisions. Those will not be
relevant or visible for the user of the tool but are important for understanding
our implementation. The aim of those design decisions is to ensure modularity
and maintainability of the tool.

The core of MetaConfigurator is a single source of truth data store that
contains the current user configuration data (as a JavaScript Object). With
this data store, we can bidirectionally connect what we call “editor panels”. An
editor panel is a modular component that the user can access to modify the data
indirectly. It might be implemented as a code editor, a graphical user interface,
or any other way in which the data can be presented to the user. All editor
panels are independent and only have access in the data store but not to each
other. Every editor panel subscribes to the changes of the data store, so it can
be updated accordingly whenever the data in the store is changed. Additionally,
every panel has the capability of updating the data store themselves, which is
done when the user modifies the data in the editor panel. The following artificial
example use cases illustrate the capabilities of this architecture:

– Format converter: one panel shows the data in a code editor in JSON format,
and a second panel shows the data in a code editor in YAML format. Any
semantic data change on one panel will cause the same semantic change in
the other panel.

– Split-Screen Editor: one panel shows the data in a code editor, and a second
panel shows the data in a GUI. This way the user can have the efficiency of a
text editor, but also the assistance of a GUI at the same time. Any semantic
data change on one panel will be forwarded to the other panel.

– The Split-Screen Editor could be implemented for different data formats,
such as YAML, JSON, and XML. The architecture allows any data format
as long as there exists a mapping from this data format to a JavaScript
Object and back.

In practice, we implement only one code editor panel, as well as one GUI
editor panel. The architecture, however, would be flexible enough to allow re-
placing any of these panels or adding new ones, since they are decoupled from
each other and only communicate with the single source of truth data store.

Single Source of Truth Data Store This is the core of the tool. The panels
can subscribe to this store to receive updates whenever data is changed. Also,
panels can trigger changes in the data in the store. Besides the current config-
uration data, the store also stores the path of the currently selected data entry
and the schema that is currently being used.

Code Panel For the code board, we install a code proofreader that as of now
upholds sentence structure featuring and other helpful highlights. We empower
approval of whether the text is very much framed by the JSON/YAML/XML

Title Suppressed Due to Excessive Length 15

standard and add mapping approval. The board buys into the information store.
Whenever the arrangement information is changed in the store, the board will
take the new setup information JavaScript Article, serialize it into the given
information design, and supplant the text in the code proofreader with the new
serialized information. The activity of supplanting the text in the code manager
will make designing and remarks be lost, which we acknowledge. Later on, a
few components can be applied to keep away from the deficiency of designing or
remarks (see segment 7.2).

At the point when the client alters the message in the code manager, the
message is deserialized into a JavaScript Item and shipped off the information
store, which then refreshes the setup information item and tells any remaining
bought in boards of the change.

To empower correspondence with the store, for any information design that
the device ought to help, we want a capability to change over a JavaScript object
to a string in the information design and a capability to parse a string in that
information design as a JavaScript object.

To make it conceivable to feature specific lines in the manager as wrong (con-
struction infringement) or leap to specific lines (for example at the point when
the client chooses a property in the GUI supervisor, we need to leap to a similar
property in the word processor), we want a capability determineRow(editorContent,
dataPath) that can decide the relating proofreader line, in light of the design
text and a given information way.

The reverse way around, when the client puts their cursor inside the word pro-
cessor, we need to decide the way of the component that the cursor is as of now at.
This requires a capability determinePath(editorContent, cursorPosition)

which returns an information way founded on the design text and a given cursor
position.

GUI Assistance Panel The GUI assistance panel directly works with the
given schema and provides the user with corresponding GUI elements, such
as a checkbox for a boolean data structure or a text field for a string data
structure. Additional GUI elements, such as tooltips (showing the description of
a data field) are used to support the easier. The GUI elements are constructed
in the following manner: a schema is seen as a hierarchical tree of data field
definitions and their corresponding constraints. A data field can either be simple
(string, boolean, number, integer) or complex (array or object with children).
Every schema has a root data field. The GUI element for this root data field is
constructed. When constructing the GUI element for a complex data field, all
GUI elements of the child data fields are constructed too, in a recursive manner.
This way, the whole schema tree is traversed and GUI elements for all entries
are constructed. To avoid overwhelming the user with too many GUI elements,
the ones with child elements can be expanded or collapsed by the user and
only a limited amount of them is expanded by default. By design, each of these
constructed GUI elements is mapped to their corresponding data field (in other
words: to a path in the data structure). The initial values of all GUI elements

16 S.K

are taken from the data in the store, by accessing the data at the given paths.
Whenever the values in a GUI element are adjusted by the user, the data in the
store will be updated with the new values.

5 Implementation

This section contains the implementation details of MetaConfigurator . We first
describe the implementation and features of the two main components of Meta-
Configurator , the code editor and the GUI editor. Then, we explain the schema
preprocessing steps that are required to generate the GUI editor. Finally, we
describe how we developed a new meta schema for JSON schema that is more
suitable for our tool.

5.1 Technologies

We use Vue.js [45] as the UI framework for our tool, combined with the compo-
nent library PrimeVue [30].

5.2 Code Panel

The code editor is a GUI panel designed for editing the configuration files. For
this project, we use the Ace Editor [24] library to embed an interactive code
editor into our user interface. It provides useful features for our approach, such
as syntax highlighting and code folding. To make our code editor more user-
friendly, we implemented several features, which are described in the following.

Schema Validation To provide the user feedback on whether their data is valid
according to the provided schema, we perform schema validation. We make use
of the Ajv JSON schema validator [19] library, which supports the newest JSON
schema draft 2020–12.

If schema violations are found, the corresponding user data lines in the code
editor will be marked with a red error hint, which also describes the violation.

Linkage of text with the data model As described in section 4.3, to map a
cursor position in the text editor to a path in the data model we need to imple-
ment the function determinePath(editorContent, cursorPosition) and to
map a path in the data model to a text row in the editor, we need to implement
the function determineRow(editorContent, dataPath).

For JSON, the functions have been implemented using a Concrete Syn-
tax Tree (CST). The text content is parsed as a CST. Then this tree is tra-
versed recursively. Every tree node has a range property, describing the start
and end index of the text belonging to the node. To determine the correspond-
ing path for a cursor position, the cursor position is translated to a character
index targetCharacter within the text. Then the CST is traversed and for

Title Suppressed Due to Excessive Length 17

all nodes currentNode of type array or object for which targetCharacter ∈
currentNode.range, the child nodes are checked, and the key of the node (or
index for array elements) is appended to the result path. This way, the corre-
sponding path is built up.

To determine the cursor position for a given path, we reverse this algorithm:
the CST is traversed until the node is found whose path matches the target path.
Then currentNode.range.start is returned as the result index, which is then
translated into a cursor position (row and column).

For YAML, this linkage is not yet implemented and will be part of further
work.

Editor Operations The code editor has more functionalities, such as the pos-
sibility to open a file by drag and drop into the editor, undo/redo operations,
and the possibility to change the font size.

5.3 GUI Panel

The GUI supervisor is a part that permits the client to alter the design informa-
tion in a GUI, which is created in light of the pattern of the design information.
It is organized in a table-like way, where each line addresses a key-esteem sets of
the setup information. Cluster components are addressed in much the same way,
where the file of the exhibit component is the key and the worth is the exhibit
component itself. Figure 7 shows the GUI manager part with a model pattern
and setup information.

To permit this portrayal of the pattern, we do some preprocessing of the
blueprint, which is portrayed in section 5.4. To help the client in altering the
design information, the GUI manager offers a bunch of elements, which are
depicted in the accompanying.

Traversal of the Data Tree As is normally done, only the chief level of the
data tree is shown. The client can expand the data tree by tapping on the bolt
near the key of a thing or display. This will show the sub-properties of the
thing or the parts of the group. We limit the significance of the data tree to a
configurable worth, to thwart the GUI manager ending up being unnecessarily
overwhelming. Regardless, the client can similarly tap on the property name or
group document to zoom in on that part. This will show the sub-properties of
that part at the undeniable level, like that property were the foundation of the
data tree. The breadcrumb at the top allows the client to see what direction the
GUI editor at this point shows and to investigate back to the upper levels of the
tree.

GUI implementations for JSON schema features Table 4 shows how the
different JSON diagram highlights are carried out in our GUI.

18 S.K

Table 4
Corresponding GUI implementations for JSON schema features

JSON schema
type / key-
words

GUI implementation

string Text field.
number Text field which allows only floating point numbers

and has buttons to increment and decrement.
integer Text field which allows only integer numbers and has

buttons to increment and decrement.
boolean Checkbox.
object Expandable list of child columns in the properties

table (see figure 9).
array Similar as for object. Also has a button to add new

items (see figure 10).
enum Dropdown menu.
const Dropdown menu with just one entry.
required Red asterisk left of the property name.
deprecated Strikethrough styling for property name.
anyOf Multiselect menu to choose sub-schemas. Based on

the selected sub-schemas, corresponding properties
will be shown as children in the table.

oneOf Dropdown menu to choose one sub-schema. Based
on the selected sub-schema, corresponding proper-
ties will be shown as children in the table.

Remove Data The client can erase properties or exhibit components from the
information by tapping on the × button close to the alter field. This button is
possibly shown on the off chance that the property isn’t needed and there exists
information.

Schema Information Tooltip At the point when the client floats over the
property key or exhibit file, an overlay is shown (figure 11), which contains all
data from the mapping about that property. We physically carried out an age of
a literary depiction for every one of the JSON mapping watchwords. Beginning
with the title and portrayal of the property, the overlay then, at that point,
shows imperatives, (for example, the number should be more prominent than 0)
and at the base, it likewise shows mapping infringement, in the event that there
are any. This element assists the client with grasping the imperatives and the
importance of a property.

Highlighting Schema Validation Errors When the configuration data does
not comply with the schema, the corresponding elements are underlined in red
and highlighted with a red error icon. This way, the user knows what parts of

Title Suppressed Due to Excessive Length 19

Fig. 9: GUI implementation for object properties

Fig. 10: GUI implementation for array properties

the data are invalid and what the error is. Additionally, the schema information
tooltip lists all schema violations, as shown in figure 12.

5.4 Schema preprocessing

To address the blueprint in the GUI supervisor, it is important to preprocess
the composition concerning some JSON pattern watchwords it isn’t quickly clear
how to address them in a GUI. For instance, the type catchphrase can have nu-
merous qualities, which address a sort association. There is no undeniable GUI
part that addresses this case. We separate between three different ways of prepro-
cessing: A one-time preprocessing step while stacking the blueprint, an interior
preprocessing that occurs at each layer of the composition tree, also, computing
a viable outline that happens each time the setup information changes. It is es-
sential to take note of that every one of these preprocessing steps are just utilized
for creating the GUI manager. They won’t influence the pattern document itself
that is stacked into the outline supervisor. The accompanying areas depict the
preprocessing steps exhaustively and how we settle cases like the one recently
referenced.

One-time Preprocessing Step At the point when the construction is stacked,
we play out a one-time preprocessing step. This step just cycles the entire pattern

20 S.K

Fig. 11: Tooltip

Fig. 12: Tooltip with a schema violation

once and doesn’t rely upon the design information. We play out no tedious
activities in this step, so the client doesn’t need to trust that the GUI will stack.
The accompanying three stages are acted in this preprocessing step:

1. Title prompting: On the off chance that a property doesn’t have the watch-
word title, we infuse the property name as title. The title can be then
utilized in different spots in the GUI, for example, the tooltip as a place-
holder in the text field.

2. Handling enum and const: The const catchphrase is utilized to limit the
worth of a property to a solitary worth. It is semantically comparable to
the enum watchword with a solitary worth. In this manner, we convert any
utilization of const to enum with a solitary component, which permits us to
overlook the const watchword in different tasks.

3. Deducing sorts of enums: If the enum watchword is utilized, however not the
type catchphrase, we induce the kind of the property from the components
of the enum exhibit. This is helpful for the GUI proofreader, as it permits us
to show the right kind data in the tooltip.

Lazy preprocessing The accompanying preprocessing steps occur at each layer
of the diagram tree sluggishly, just when the client extends the relating property
in the GUI supervisor. Apathy of the preprocessing is expected as blueprints can
have roundabout references, which would, somehow or another, lead to boundless
circles. In the accompanying, we depict the preprocessing steps exhaustively.

Title Suppressed Due to Excessive Length 21

Resolving references JSON schema uses the $ref keyword to reference other
schemas. This can either be references to schemas in the same file (using the
$defs keyword), references to other local files, or references to schemas at a
URL on the web. We currently only support references to schemas in the same
file. These are lazily resolved as the first preprocessing step. listing 1.3 shows
an example schema, listing 1.4 shows the equivalent example after this first
preprocessing step.

{
"title": "NonEmptyString",

"$ref": "#/ $defs/nonEmptyString",
"$defs": {

"nonEmptyString": {
"type": "string",

"minLength": 1

}
}

}

Listing 1.3: Simple JSON schema before reference resolving

{
"allOf": [

{
"title": "NonEmptyString"

},
{

"type": "string",

"minLength": 1

}
],

"$defs": {
"nonEmptyString": {

"type": "string",

"minLength": 1

}
}

}

Listing 1.4: Simple JSON schema after reference resolving

22 S.K

{
"title": "NonEmptyString",

"type": "string",

"minLength": 1,

"$defs": {
"nonEmptyString": {

"type": "string",

"minLength": 1

}
}

}

Listing 1.5: Simple JSON schema after allOf resolving

Resolving allOfs The allOf keyword in JSON schema specifies that all the
schemas in the given array must be valid. To simplify any other operation on
the schema, we aim to merge the schemas in the allOf array into one equiva-
lent schema. As the first step, we do a recursive step by preprocessing all the
schemas of the allOf array. Then, we use the mergeAllOfs [22] library to merge
all the sub-schemas. Listing 1.5 shows the previous example schema after this
step. It is important to note that this library only supports a few keywords of
JSON schema, most notably the properties and items keywords. Hence, the
MetaConfigurator has only limited support for allOf and any other keywords
for which we use this library in the preprocessing.

Converting types to oneOf In JSON schema, a property can have multiple types,
such as shown in listing 1.6. A semantically equivalent schema can be generated
by the use of oneOf, where each sub-schema contains exactly one of the types,
as shown in listing 1.7. If a schema defines more than one type, we convert the
types to oneOf. As oneOfs are represented as a dropdown menu in the GUI
editor, we now have a way to represent multiple types in the GUI. For schemas
that already contain oneOf, every type is multiplied by every existing oneOf

sub-schema. For two types and three oneOf sub-schemas, this will result in a
new oneOf with six options. An exception is when a type can not be merged
with a oneOf sub-schema (e.g., the type is “boolean” and the oneOf sub-schema
has type “string”). In that case, the incompatible pair is dismissed.

{
"type": ["object", "boolean", "string"]

}

Listing 1.6: Simple JSON schema with three possible types

Title Suppressed Due to Excessive Length 23

{
"oneOf": [

{
"type": "object"

},
{

"type": "boolean"

},
{

"type": "string"

}
]

}

Listing 1.7: Simple JSON schema after conversion of types to oneOf

Removing incompatible oneOfs and anyOfs A schema may have oneOf or anyOf
options that are not compatible with the schema of the property (e.g., sub-
schemas that can never be fulfilled in combination with the property schema).
Listing 1.8 provides an example of a schema with an incompatible oneOf option.
For every oneOf and anyOf sub-schema, we check whether it can be merged with
the schema of the property. The options which are not compatible are removed
(see listing 1.9).

{
"type": "object",

"oneOf": [

{
"type": "object"

},
{

"type": "boolean"

}
]

}

Listing 1.8: Simple JSON schema with incompatible oneOf option

Merging singular oneOfs and anyOfs Because of the previous pre-processing
step, it can happen that for some oneOfs or anyOfs, there remains only one com-
patible sub-schema left (see listing 1.9). If this is the case, the use oneOf/anyOf
is redundant, as that singular sub-schema must be chosen implicitly. Therefore,

24 S.K

{
"type": "object",

"oneOf": [

{
"type": "object"

}
]

}

Listing 1.9: Simple JSON schema with the incompatible oneOf option removed

if there exists only one singular choice for oneOf/anyOf, we merge its sub-schema
into the property schema and remove the use of oneOf/anyOf (see listing 1.10).

{
"type": "object"

}

Listing 1.10: Simple JSON schema with singular oneOf merged into property schema

Attempting to merge oneOfs into anyOfs Schemas can use both anyOf and oneOf

at the same time. Especially after converting type unions to oneOf, it happens
that a schema has oneOf options (typically for types) and simultaneously anyOf
options. The user will then have to select both a oneOf sub-schema, as well as an
anyOf sub-schema in the GUI. We observed a special scenario in the JSON meta
schema, where the oneOf selection was always implicitly given by the anyOf

selection. For every single anyOf sub-schema, only one oneOf sub-schema was
compatible. In that scenario, we can merge the oneOfs into the anyOfs: for every
anyOf sub-schema, we merge the one compatible oneOf sub-schema into it. This
is precisely what this pre-processing step does: if possible, the oneOf sub-schemas
are merged into the anyOf sub-schemas, and the oneOf property is removed from
the schema.

Preprocessing oneOfs and anyOfs For all remaining oneOf and anyOf sub-
schemas, the internal pre-processing steps are executed.

Calculating an effective schema This third preprocessing step is determined
each time the information changes. The JSON mapping watchwords if, then,
and else give a method for remembering conditions for the JSON pattern. In the
event that the blueprint in the if field is legitimate, additionally the composition
in the then field should be substantial, in any case, the pattern in the else field
should be substantial. This makes the blueprint information subordinate. To

Title Suppressed Due to Excessive Length 25

show the right properties, we assess the information and ward on legitimacy or
not, we either utilize the then or the elsemapping. We comparatively handle the
dependentRequired and the dependentSchemas catchphrases. For blueprints
with no of those catchphrases, this step is minor as the composition isn’t altered
in any capacity.

{
"properties": {

"mode": {
"enum": ["manual", "automatic"]

}
},
"if": {

"properties": {
"mode": {

"const": "manual"

}
},
"required": ["mode"]

},
"then": {

"properties": {
"manualValue": {

"type": "number"

}
}

}
}

Listing 1.11: Data dependent schema. If the field mode is set to “manual” in the data,
users will expect that the GUI shows the manualValue property

Listing 1.11 shows an example of a data-dependent schema and listing 1.12
shows the effective schema when the value for mode is “manual”.

5.5 Developing a Custom Meta Schema

The schema editor view has the same structure as the file editor view, as dis-
cussed in previous sections. The only difference is that the schema used for
generating the GUI panel is not the schema file provided by the user but the
JSON schema meta schema, i.e., the schema that defines the structure of valid
JSON schema files. However, applying our generic approach on the official JSON
schema meta schema [1] does not result in a user-friendly editor for creating and
modifying schema files. In this section, we discuss the reasons for that and how
we developed a new meta schema that circumvents the problems of the official
meta schema.

26 S.K

{
"properties": {

"mode": {
"enum": ["manual", "automatic"]

},
"manualValue": {

"type": "number"

}
}

}

Listing 1.12: Effective schema when the value for mode is “manual”

Missing descriptions With the description keyword, schema authors can
give descriptions to any elements of their schema. This can help the user of a
schema in many ways, for example, the author can specify the unit of a numeric
field or give other additional information. The JSON schema meta schema does
not provide any descriptions. Users, especially those without prior knowledge of
JSON schema, might not understand the meaning of the fields of JSON schema.
Thus, we insert descriptions from the JSON schema specification [1] into our
modified meta-schema.

External references MetaConfigurator does not support references to exter-
nal schemas yet, i.e., references inside the schema to a schema at a specific URL.
Also, MetaConfigurator does not support the $vocabulary keyword. Both fea-
tures are used in the JSON schema meta schema, as it is distributed over multiple
schema files. To circumvent that problem, we put all schemas in one schema file
into the $defs object and replace the external references with local references.

Use of dynamic anchors and references The JSON schema meta schema
uses dynamic references and dynamic anchors. The difference between those
keywords in comparison to the $ref keyword is that they provide a way to
dynamically extend the JSON meta schema at runtime. For example, one could
combine the JSON schema meta schema with an extension that defines how
fields should be serialized in XML. We do not support dynamic references and
anchors yet. We replaced all of them with “non-dynamic” references using the
$ref keyword.

Allowing each field in each context The JSON schema meta schema allows
each field in each context. For example, if the type keyword is used and set
to string, then the properties keyword is allowed, even though it does not
make sense in that context. According to the specification, any validator should
ignore the fields that do not make sense in the current context. Consequently,
if the user gets shown all fields that are allowed by the meta schema, they get

Title Suppressed Due to Excessive Length 27

overwhelmed, although many fields do not make sense in a given context. This
is also feedback we got from our user study.

{
"if": {

"$ref": "#/ $defs/hasTypeArray"
},
"then": {

"$ref": "#/ $defs/arrayProperty"
}

}

Listing 1.13: If condition for array properties. The hasTypeArray is valid if the current
property is of type array. The arrayProperty schema defines the properties of an array.

Thus, we added if conditions to each field to only show them when they
make sense in the current context. Listing 1.13 shows an example of such an if

condition. The relevant properties for arrays are only shown when the current
property is of type array.

To even more reduce the amount of fields shown to the user, we also introduce
a custom keyword for our own meta schema. The keyword advanced is a boolean
field that is set to false by default. It is wrapped in an metaConfigurator

object, which is ignored by any validator as it is not part of the JSON schema
specification. We use this wrapper to prevent any other schema extensions from
colliding with our keyword. When set to true, the field is not shown by default,
but only when the user expands an advanced section that we added to the GUI.
We put all fields that are not required for the basic usage of the schema into
the advanced section. For this, we oriented ourselves on the work of Baazizi et
al. [12], which analyzed the usage of JSON schema keywords in 82,000 JSON
schemas.

6 User Study

We conduct a qualitative user study with five participants. During each inter-
view, we introduce MetaConfigurator , give the participant tasks to execute using
the tool, and finish the session with open-ended questions. We observe how the
participants work with the tool and which difficulties they have when executing
the tasks. Additionally, we ask them for feedback and improvement suggestions.
We also conduct a survey to gather demographic information about the partici-
pants of the user study.

6.1 Research Questions

We address the following research questions with the user study:

28 S.K

1. RQ1: Which aspects of the tool can be improved?

2. RQ2: Are users able to perform the following types of tasks using the tool:

– RQ2.1 Retrieve information from configuration files in the context of a
given schema

– RQ2.2Modify configuration files within the constraints of a given schema

– RQ2.3 Modify a schema file

3. RQ3: Would people use the tool in practice?

6.2 Methodology

Our user study is qualitative and consists of five interviews. We do not perform
any major quantitative analysis of the results as the sample size is too small to
draw any statistically significant conclusions.

Potential Users We look for potential users to conduct the interviews. We
consider the following groups of people as potential users:

– Professors and students who are interested in our application.

– People who frequently use configuration files and schema languages

In table 6, the professions of the participants are listed.

Interview Questions We created a JSON schema and configuration file for a
made-up self-driving car simulation software. All interview questions are about
working with these files. By using a made-up example, we avoid that the par-
ticipants are biased by their domain knowledge. We note, however, that besides
the user study, we have applied MetaConfigurator on several real-world schemas
(such as EnzymeML [41] and the Strenda schema [42]) and configuration files
from the real-world, to verify that it works and does bring benefits to the user.

We divide our interview tasks into four parts:

– Setup: We guide the participant through the setup of the tool, which involves
accessing the tool via a web browser and loading the example files.

– Information Retrieval Questions: with increasing difficulty, the participant
has to retrieve information from the configuration file.

– Configuration Modifications: The participant has to modify the given con-
figuration file in various ways.

– Schema modifications: The participant has to modify the schema file.

The interview tasks and additional files can be found in out GitHub reposi-
tory1.

1 https://github.com/PaulBredl/meta-configurator/tree/main/paper/user_

study

https://github.com/PaulBredl/meta-configurator/tree/main/paper/user_study
https://github.com/PaulBredl/meta-configurator/tree/main/paper/user_study

Title Suppressed Due to Excessive Length 29

Interview Process We performed the interview with one interviewee each.
The interview lasts around one hour. At the beginning, we ask the interviewee
about approval of recording, and they can stop participating at any time. We
introduce MetaConfigurator to the interviewee. Then we send the participant
the tasks, an example configuration file and let them work on the tasks while
sharing their screen. During this task-solving session, we provide the interviewee
with some basic help if they ask specific questions about the tool. The interview
is recorded, and we make notes of the answers, feedback, and behavior of the
interviewee. Finally, in an open dialog, we ask the interviewee for more feedback
and improvement suggestions as well as their opinion on the tool. After the
interview, we ask each interviewee to fill out a survey with some questions about
their background and their opinion on the tool.

6.3 Results

This section presents the results of the user study for each research question.

RQ1: Which aspects of the tool can be improved? Tables 7-11 (in the
appendix) show the feedback of the interviewees, as well as which measures we
took based on it.

RQ2: Are users able to perform the following types of tasks using
the tool? Table 5 shows the accuracy and difficulties that the participants had
when solving the tasks. Accuracy is determined as the ratio of tasks that were
solved correctly without the need for any hints to the total number of tasks. We
note that all participants were able to solve all tasks after receiving hints from
the interviewer.

– RQ2.1: Table 5 shows that all participants were able to retrieve information
related to the schema and data. All participants were using mostly the GUI
panel to retrieve information. Difficulties occurred when participants did
not know that they could use the tooltips to get more information about the
properties.

– RQ2.2: All participants were able to modify the given test file according to
the given tasks. For some (User study 1 and 4) it was challenging to find a
particular property, and they were not aware of the search functionality.

– RQ2.3: Most of the users were able to modify the schema file according to
the tasks. The biggest difficulty was that participants did not know how to
add a new property in the schema editor using the GUI panel.

Given that the average accuracy is approximately 0.9, we conclude that the
participants were able to perform all three types of tasks usingMetaConfigurator .

30 S.K

Table 5
User Study - Task solving accuracy and difficulties

Accuracy & Notes Difficulties

User Study 1 Accuracy: 100%(11/11)
Effective use of tooltips
Used both GUI and code editor

Task 3.2: Setting Vehicle Type to the high-
est level:
Took some time to find the field

User Study 2 Accuracy: 91%(10/11)
Used search functionality
Used both GUI and code editor

Task 4.2: Adding new property:
Could not find where to add a new prop-
erty in Schema Editor
Did not know how to edit the property
name

User Study 3 Accuracy: 82%(9/11)
Effective use of tooltips
Not familiar with JSON schema
Used only code editor in the be-
ginning and then only GUI edi-
tor after task 2.3.

Task 2.3: Duration of Simulation:
Did not think about using the GUI panel
to retrieve information
Task 2.4: Validity of humidity:
Mistakenly thought the humidity value
was valid.
Did not consider red underline as an error
Task 4.2: Add new property:
Tried to set the property name in the
wrong place

User Study 4 Accuracy: 82%(9/11)
Solved tasks in a short time
Used only the GUI editor

Task 2.4: Validity of humidity:
Mistakenly thought the humidity value
was valid
Did not find out that he could use tooltips
Task 3.2: Setting Vehicle Type to the high-
est level:
Did not scroll down in Dropdown menu
Task 3.3: Validation Errors:
Thought the red underline was spell-
checking

User Study 5 Accuracy: 100%(11/11)
Solved tasks in a short time
Used both GUI and code editor

Task 3.2: Setting Vehicle Type to the high-
est level:
Took some time to find the vehicle type
Task 4.2: Adding new property:
Did not set the property type

RQ3: Would people use the tool in practice? Table 6 shows the positive
feedback that the participants provided and where they can imagine the tool
to be used in practice. Three of the participants highlighted the intuitiveness
of MetaConfigurator. Four of the participants explicitly describe the tool with
the words “useful” or “helpful”. Additionally, all five participants responded

Title Suppressed Due to Excessive Length 31

that they would use the tool. Consequently, this result suggests that there is a
demand for MetaConfigurator in practice.

Note that we only include positive feedback in this table since criticism is
already addressed in section 6.3.

6.4 Threats to Validity

Our user study is qualitative and only has a small sample size of 5 participants.
Hence, the results are not representative and cannot be generalized. In addition,
the tasks of the user study only cover a small subset of operations that a user may
want to perform with MetaConfigurator to edit configuration files and schemas.
Due to the time constraints of the user study, we only cover rather simple tasks.
Thus, for very complex tasks, the user study is not conclusive.

To get feedback on the tool and find out whether it is useful in practice, these
limitations are acceptable. For RQ2, we cannot generalize our results but only
provide a first impression of how users work with MetaConfigurator .

7 Discussion

This section discusses the implications of our work and future work.

7.1 Implications of our Work

MetaConfigurator provides a novel approach for editing configuration files by
combining the advantages of a GUI and a code editor. Our user study suggests
that MetaConfigurator allows users to successfully modify files within the con-
straints of a schema and to modify the schema itself. The participants rated our
tool as intuitive to use and responded that they would use it themselves.

However, the user study also revealed some limitations of MetaConfigurator .
Editing schemas with MetaConfigurator is not as intuitive as editing configura-
tion files, especially for users who are not familiar with JSON schema. JSON
schema may be feature-rich and expressive, but it is also complex and hard to
understand for new users. The next section discusses how future work might
address these limitations.

7.2 Future Work

To makeMetaConfigurator more useful for users who are not familiar with JSON
schema, there are several possible improvements. First, a visual schema editor
could be added to MetaConfigurator , similar to schema editors discussed in sec-
tion 2.2. These would provide a graph view of the schema, which is easier to
understand than the JSON schema in text form or the tree view in MetaCon-
figurator . Second, MetaConfigurator could provide more guidance for users who
are not familiar with JSON schema, e.g., by providing an interactive tutorial or
supporting a less complex schema language.

32 S.K

There are many other possible improvements toMetaConfigurator . A desktop
version of MetaConfigurator could be developed, which would allow users to edit
files on their local machine, which is more convenient than loading them into the
web application. Similarly, integration into other tools, such as IDEs, could be
helpful for many users. MetaConfigurator currently only supports JSON schema
draft 2020–12, but it could be extended to support other drafts by converting
imported schemas to the latest draft. Furthermore, YAML is not fully supported
yet, which could be added in the future. Another point that can be addressed
is the loss of formatting and comments in YAML documents when they are
updated with new data. This could be avoided by replacing only the section in
the YAML document that corresponds to the change, instead of replacing the
complete document. To allow for different styles of formatting, the user could
be provided with global formatting style settings (such as level of indentation or
whether in YAML strings should be in quotation marks or not). To deal with
the loss of comments, a technique that keeps track of any comments in the text
and then restores them after the text is replaced could be implemented. This
has already been done in another tool of one of the authors [36].

Finally,MetaConfigurator could be extended to support code generation, e.g.,
for generating Java classes from a JSON schema, which is useful for developers.

To improve the user study, it could be repeated with more participants, so
that the results are more representative. Instead of just having participants solve
tasks, it could also be interesting to have one group of participants solve tasks
with MetaConfigurator and another group solve the same tasks with only a text
editor. This way, we could evaluate whether MetaConfigurator is more efficient
than just using a text editor.

8 Conclusion

This paper addresses the development ofMetaConfigurator , a tool that generates
YAML/JSON file editor GUIs tailored to a given data schema. Our approach
allows users to edit configuration files in a GUI, while still having the flexibility
and speed of a code editor. Additionally, it removes the need for developing and
maintaining a custom GUI for a particular schema. We use JSON schema as a
schema language for the tool as it is an expressive and popular schema language.
The tool is successfully implemented and our user study shows that it can be
applied to solve practical tasks in 1) retrieving information from configuration
files in the context of a schema, in 2) modifying configuration files, and in 3)
editing schemas. The interest and positive feedback of the participants suggests
that MetaConfigurator will be used in practice.

References

1. JSON Schema — json-schema.org. https://json-schema.org, [Accessed 01-05-
2023]

https://json-schema.org

Title Suppressed Due to Excessive Length 33

2. JSON Schema editor for Windows — json-buddy.com. https://www.json-buddy.
com/json-schema-editor.htm, [Accessed 08-10-2023]

3. Leading Serialization Format for Record Data, https://www.ibm.com/topics/

avro, [Accessed 14-06-2023]
4. Protocol Buffers — protobuf.dev. https://protobuf.dev, [Accessed 01-05-2023]
5. The complete solution for XML authoring, development and collaboration. — oxy-

genxml.com. https://www.oxygenxml.com/xml_developer.html, [Accessed 08-
10-2023]

6. XML Editor - XMLBlueprint — xmlblueprint.com. https://www.xmlblueprint.
com, [Accessed 08-10-2023]

7. XML editor and validator tool — xml-buddy.com. https://www.xml-buddy.com,
[Accessed 08-10-2023]

8. XML Editor: XMLSpy — altova.com. https://www.altova.com/

xmlspy-xml-editor, [Accessed 08-10-2023]
9. Configure Unify Execute (2019), https://cuelang.org/, [Accessed 18-05-2023]

10. A. Wright, H. Andrews, B.H.: JSON Schema Validation: A Vocabulary for Struc-
tural Validation of JSON (March 20, 2020), https://json-schema.org/draft/
2019-09/json-schema-validation.html, [Accessed 06-05-2023]

11. A.Wright, H.Andrews Ed, B.H.: Validation (18 December 2022),
https://json-schema.org/draft/2020-12/json-schema-validation.html#

name-validation-keywords-for-any, [Accessed 18-05-2023]
12. Baazizi, M.A., Colazzo, D., Ghelli, G., Sartiani, C., Scherzinger, S.: An Empirical

Study on the ”Usage of Not” in Real-World JSON Schema Documents (Long
Version) (2021)

13. baeldung: Validate an XML file against an XSD file (Sep 2023), https://www.
baeldung.com/java-validate-xml-xsd

14. Bex, G.J., Neven, F., Van den Bussche, J.: DTDs versus XML schema: A Prac-
tical Study. In: Proceedings of the 7th International Workshop on the Web and
Databases: Colocated with ACM SIGMOD/PODS 2004. p. 79–84. WebDB ’04,
Association for Computing Machinery, New York, NY, USA (2004). https://doi.
org/10.1145/1017074.1017095, https://doi.org/10.1145/1017074.1017095

15. Bosak, J., Bray, T., Connolly, D., Maler, E., Nicol, G., Sperberg-McQueen, M.,
Wood, L., Clark, J.: W3C XML Specification DTD (“XMLspec”) (1998), https:
//www.w3.org/XML/1998/06/xmlspec-report-19980910.htm

16. Carbonnelle, P.: TOP IDE Top Integrated Development Environment index —
pypl.github.io. https://pypl.github.io/IDE.html, [Accessed 18-05-2023]

17. Carion, U.: JSON Type Definition. RFC 8927 (Nov 2020). https://doi.org/10.
17487/RFC8927, https://www.rfc-editor.org/info/rfc8927

18. Deligiannidis, L., Kochut, K.J., Sheth, A.P.: RDF Data Exploration and Visual-
ization. In: Proceedings of the ACM First Workshop on CyberInfrastructure: In-
formation Management in EScience. p. 39–46. CIMS ’07, Association for Comput-
ing Machinery, New York, NY, USA (2007). https://doi.org/10.1145/1317353.
1317362, https://doi.org/10.1145/1317353.1317362

19. etc., E.P.: A useful library for validating a JSON file based on the schema (May
17, 2015), https://ajv.js.org/

20. Fallside, D., Walmsley, P.: XML Schema Part 0: Primer Second Edition -
W3C Recommendation 28 October 2004 (2004), https://www.w3.org/TR/2004/
REC-xmlschema-0-20041028/

21. Frasincar, F., Telea, A., Houben, G.J.: Adapting Graph Visualization Tech-
niques for the Visualization of RDF Data, pp. 154–171. Springer London, Lon-

https://www.json-buddy.com/json-schema-editor.htm
https://www.json-buddy.com/json-schema-editor.htm
https://www.ibm.com/topics/avro
https://www.ibm.com/topics/avro
https://protobuf.dev
https://www.oxygenxml.com/xml_developer.html
https://www.xmlblueprint.com
https://www.xmlblueprint.com
https://www.xml-buddy.com
https://www.altova.com/xmlspy-xml-editor
https://www.altova.com/xmlspy-xml-editor
https://cuelang.org/
https://json-schema.org/draft/2019-09/json-schema-validation.html
https://json-schema.org/draft/2019-09/json-schema-validation.html
https://json-schema.org/draft/2020-12/json-schema-validation.html#name-validation-keywords-for-any
https://json-schema.org/draft/2020-12/json-schema-validation.html#name-validation-keywords-for-any
https://www.baeldung.com/java-validate-xml-xsd
https://www.baeldung.com/java-validate-xml-xsd
https://doi.org/10.1145/1017074.1017095
https://doi.org/10.1145/1017074.1017095
https://doi.org/10.1145/1017074.1017095
https://doi.org/10.1145/1017074.1017095
https://doi.org/10.1145/1017074.1017095
https://www.w3.org/XML/1998/06/xmlspec-report-19980910.htm
https://www.w3.org/XML/1998/06/xmlspec-report-19980910.htm
https://pypl.github.io/IDE.html
https://doi.org/10.17487/RFC8927
https://doi.org/10.17487/RFC8927
https://doi.org/10.17487/RFC8927
https://doi.org/10.17487/RFC8927
https://www.rfc-editor.org/info/rfc8927
https://doi.org/10.1145/1317353.1317362
https://doi.org/10.1145/1317353.1317362
https://doi.org/10.1145/1317353.1317362
https://doi.org/10.1145/1317353.1317362
https://doi.org/10.1145/1317353.1317362
https://ajv.js.org/
https://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
https://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

34 S.K

don (2006). https://doi.org/10.1007/1-84628-290-X_9, https://doi.org/10.
1007/1-84628-290-X_9

22. Hansen, M.: GitHub - mokkabonna/json-schema-merge-allof: Simplify your
schema by combining allOf — github.com. https://github.com/mokkabonna/

json-schema-merge-allof (2023), [Accessed 18-10-2023]
23. Hartig, O., Hidders, J.: Defining Schemas for Property Graphs by Using the

Graphql Schema Definition Language. In: Proceedings of the 2nd Joint Interna-
tional Workshop on Graph Data Management Experiences & Systems (GRADES)
and Network Data Analytics (NDA). GRADES-NDA’19, Association for Comput-
ing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3327964.
3328495, https://doi.org/10.1145/3327964.3328495

24. Harutyun Amirjanyan, F.J.: Code Editor (Mar 28, 2010), https://ace.c9.io/,
[Accessed 14-05-2023]

25. Higgins, D., Icebob: GitHub - vue-generators/vue-form-generator: :clipboard: A
schema-based form generator component for Vue.js — github.com. https://

github.com/vue-generators/vue-form-generator (2019), [Accessed 08-10-2023]
26. Jensen, D., Bennett, M.J., Dervisevic, D., Edwards, C., Marcacci, M.: GitHub -

json-schema-form/angular-schema-form: Generate forms from a JSON schema,
with AngularJS! — github.com. https://github.com/json-schema-form/

angular-schema-form (2016), [Accessed 08-10-2023]
27. de Jong, J.: JSON Editor Online: JSON editor, JSON formatter, query JSON —

jsoneditoronline.org. https://jsoneditoronline.org, [Accessed 08-10-2023]
28. Kappestein, C.: Typeschema (2023), https://typeschema.org/
29. Kristensen, M.: JSON Schema Store — schemastore.org. https://www.

schemastore.org/json/, [Accessed 07-10-2023]
30. Küçükoğlu, T.: PrimeVue — Vue UI Component Library — primevue.org. https:

//primevue.org (2023), [Accessed 18-10-2023]
31. Lee, D., Chu, W.W.: Comparative Analysis of Six XML Schema Languages. SIG-

MOD Rec. 29(3), 76–87 (sep 2000). https://doi.org/10.1145/362084.362140,
https://doi.org/10.1145/362084.362140

32. Limited, L.T.: JSON Schema Editor — liquid-technologies.com. https://www.

liquid-technologies.com/json-schema-editor, [Accessed 08-10-2023]
33. Marrs, T.: JSON at work: practical data integration for the web. O’Reilly Media,

Inc. (2017)
34. Martens, W., Neven, F., Niewerth, M., Schwentick, T.: Bonxai: Combining the

Simplicity of DTD with the Expressiveness of XML schema. ACM Trans. Database
Syst. 42(3) (aug 2017). https://doi.org/10.1145/3105960, https://doi.org/
10.1145/3105960

35. Müller, E., Neufeld, E., Dirix, S., Koehler, L., Gareis, F.: More forms. Less code.
- JSON Forms — jsonforms.io. https://jsonforms.io (2021), [Accessed 08-10-
2023]

36. Neubauer, F.: GitHub - Logende/Bossshopproeditor: powerful and user-friendly
web application, which makes setting up shops for the bukkit plugin BossShopPro
way easier. — github.com. https://github.com/Logende/BossShopProEditor

(2023), [Accessed 11-10-2023]
37. Neubauer, F.: Bossshoppro - the most powerful chest GUI

shop/menu plugin., https://www.spigotmc.org/resources/

bossshoppro-the-most-powerful-chest-gui-shop-menu-plugin.222/
38. North, C., Conklin, N., Saini, V.: Visualization schemas for flexible information

visualization. In: IEEE Symposium on Information Visualization, 2002. INFOVIS
2002. pp. 15–22 (2002). https://doi.org/10.1109/INFVIS.2002.1173142

https://doi.org/10.1007/1-84628-290-X_9
https://doi.org/10.1007/1-84628-290-X_9
https://doi.org/10.1007/1-84628-290-X_9
https://doi.org/10.1007/1-84628-290-X_9
https://github.com/mokkabonna/json-schema-merge-allof
https://github.com/mokkabonna/json-schema-merge-allof
https://doi.org/10.1145/3327964.3328495
https://doi.org/10.1145/3327964.3328495
https://doi.org/10.1145/3327964.3328495
https://doi.org/10.1145/3327964.3328495
https://doi.org/10.1145/3327964.3328495
https://ace.c9.io/
https://github.com/vue-generators/vue-form-generator
https://github.com/vue-generators/vue-form-generator
https://github.com/json-schema-form/angular-schema-form
https://github.com/json-schema-form/angular-schema-form
https://jsoneditoronline.org
https://typeschema.org/
https://www.schemastore.org/json/
https://www.schemastore.org/json/
https://primevue.org
https://primevue.org
https://doi.org/10.1145/362084.362140
https://doi.org/10.1145/362084.362140
https://doi.org/10.1145/362084.362140
https://www.liquid-technologies.com/json-schema-editor
https://www.liquid-technologies.com/json-schema-editor
https://doi.org/10.1145/3105960
https://doi.org/10.1145/3105960
https://doi.org/10.1145/3105960
https://doi.org/10.1145/3105960
https://jsonforms.io
https://github.com/Logende/BossShopProEditor
https://www.spigotmc.org/resources/bossshoppro-the-most-powerful-chest-gui-shop-menu-plugin.222/
https://www.spigotmc.org/resources/bossshoppro-the-most-powerful-chest-gui-shop-menu-plugin.222/
https://doi.org/10.1109/INFVIS.2002.1173142
https://doi.org/10.1109/INFVIS.2002.1173142

Title Suppressed Due to Excessive Length 35

39. Perriault, N., Ramaswami, A., Grosenbacher, N.: GitHub - rjsf-team/react-
jsonschema-form: A React component for building Web forms from JSON Schema.
— github.com. https://github.com/rjsf-team/react-jsonschema-form (2023),
[Accessed 08-10-2023]

40. Pezoa, F., Reutter, J.L., Suarez, F., Ugarte, M., Vrgoč, D.: Foundations of JSON
schema. In: Proceedings of the 25th International Conference on World Wide Web.
p. 263–273. WWW ’16, International World Wide Web Conferences Steering Com-
mittee, Republic and Canton of Geneva, CHE (2016). https://doi.org/10.1145/
2872427.2883029, https://doi.org/10.1145/2872427.2883029

41. Range, J.: GitHub - Lightweight syntax for rapid development of data management
solution in enzymology and biocatalysis. (2020), https://github.com/EnzymeML/
PyEnzyme, [Accessed 19-10-2023]

42. Range, J.: GitHub - Standards for Reporting Enzymology Data. (2023),
https://github.com/EnzymeML/strenda-specifications/blob/master/

specifications/strenda-specs.md, [Accessed 19-10-2023]
43. Siffa, I.C., Schäfer, J., Becker, M.M.: Adamant: a JSON schema-based metadata

editor for research data management workflows. F1000Research 11 (2022)
44. Silva, I.C.S., Santucci, G., Freitas, C.M.D.S.: Visualization and analysis of schema

and instances of ontologies for improving user tasks and knowledge discovery. Jour-
nal of Computer Languages 51, 28–47 (2019). https://doi.org/https://doi.
org/10.1016/j.cola.2019.01.004, https://www.sciencedirect.com/science/

article/pii/S1045926X17302458

45. You, E.: Vue.js - The Progressive JavaScript Framework — Vue.js — vuejs.org.
https://vuejs.org (2023), [Accessed 18-10-2023]

46. Zimmer, S., Chapellier, C., Daoust, F.: GitHub - jsonform/jsonform: Build forms
from JSON Schema. Easily template-able. Compatible with Bootstrap 3 out of the
box. — github.com. https://github.com/jsonform/jsonform (2021), [Accessed
08-10-2023]

9 Design Appendix

10 User Study Appendix

https://github.com/rjsf-team/react-jsonschema-form
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1145/2872427.2883029
https://doi.org/10.1145/2872427.2883029
https://github.com/EnzymeML/PyEnzyme
https://github.com/EnzymeML/PyEnzyme
https://github.com/EnzymeML/strenda-specifications/blob/master/specifications/strenda-specs.md
https://github.com/EnzymeML/strenda-specifications/blob/master/specifications/strenda-specs.md
https://doi.org/https://doi.org/10.1016/j.cola.2019.01.004
https://doi.org/https://doi.org/10.1016/j.cola.2019.01.004
https://doi.org/https://doi.org/10.1016/j.cola.2019.01.004
https://doi.org/https://doi.org/10.1016/j.cola.2019.01.004
https://www.sciencedirect.com/science/article/pii/S1045926X17302458
https://www.sciencedirect.com/science/article/pii/S1045926X17302458
https://vuejs.org
https://github.com/jsonform/jsonform

36 S.K

Fig. 13: UI of the Settings view

Title Suppressed Due to Excessive Length 37

Table 6
User Study - Would people use the tool in practice?

UserProfessionUse
Tool?

Potential Use Case Positive Feedback

1 ProfessorYes Configuring CI and sim-
ulations

“[I think always having those
two views (code panel and GUI
panel) is very helpful].” “[Modify-
ing things using the GUI panel felt
more comfortable than the code
panel].” “Nice examples shown.
[Without the GUI] you’d need to
jump to the schema to find the
max value.”

2 ProfessorYes “I’d especially recom-
mend [the tool] to some
project partners.” “I’d
certainly invite another
partner to join in.”

“Very intuitive already.” “The
search [functionality] is good.” “I
like the tool; working with the GUI
panel is intuitive and having an
overview in the [code panel] helps.
The combination of both is helpful
and really good.”

3 Software
Engi-
neer

Yes “Working with exper-
imental partners, data
often isn’t machine-
readable. [. . .] A tool
like this, where scien-
tists define properties
and schema, would be a
huge advantage.”

“The tool is really, really nice
and will help many people orga-
nize their data.” “Having a click-
able, intuitive way to show schema
structure is neat and looks pretty.”
“I see potential impact in our
research field; promoting this to
partners could make a difference.”

4 ProfessorYes Chemistry and biology
field

We only discussed on a techni-
cal level; no general feedback col-
lected.

5 StudentYes “An interface like this
is helpful for JSON ed-
its, especially with error
indication.” “I’m a fan;
even though I use Git on
the command line, GUI
tools are faster for many
tasks, and your tool feels
similar.”

“[I was] positively surprised; it was
easy to navigate. Parsing JSON
manually is a pain; this tool felt
like Word compared to LaTeX, al-
lowing intuitive changes directly in
the interface.” “Are you going to
open source this? It could be use-
ful.”

38 S.K

Table 7
User Study 1 - Feedback and Solution

Feedback Solution

The property value should not be auto-
corrected if the user enters an incorrect
value. Instead, an error message or an-
other way should be used to inform the
user that their input is incorrect.

Instead of autocorrecting values, we
now provide more clear user feedback
on incorrect values (red underline, er-
ror symbol).

It would be good to have the ability
to remove data entries with the GUI
panel.

Implemented by adding a remove but-
ton next to properties that have data
and are not required.

A search functionality to locate proper-
ties would be helpful, especially within
nested levels.

Implemented in the toolbar. All find-
ings are highlighted in the GUI panel.

The GUI panel feels overwhelming to
the user due to many variations in the
styling and color of the GUI elements.

We slightly reduced the number of dif-
ferent styles by no longer showing re-
quired properties in boldface and in-
stead just showing an asterisk next to
it.

The cursor should not have the click-
able animation when hovering over
non-clickable fields in the GUI editor.

Now we only show the clickable anima-
tion when hovering over clickable GUI
components.

In drop-down menus, we do not need a
button to clear the selection.

We disabled the option of clearing the
selection.

If the type of a property is “any”,
it should not be interpreted as the
“string” type in the GUI panel.

We improved the representation of the
“any” type, but further improvements
are needed, which will be considered in
future work.

Validation errors should not be high-
lighted via a warning symbol, but in-
stead an error symbol.

We changed the warning symbol into
an error symbol.

After performing an undo or redo ac-
tion, the cursor should jump to the
corresponding location to reflect the
changes made by the user.

This will be considered in future work.

Title Suppressed Due to Excessive Length 39

Table 8
User Study 2 - Feedback and Solution

Feedback Solution

A graph-based view would be more
intuitive for handling complex data
structures.

This will be considered in future work.

Providing immediate feedback to users
when they enter incorrect ranges is es-
sential to prevent them from inputting
invalid values into the property.

We now highlight schema violations by
a red error symbol in the GUI panel
and underlining the property name in
red. Additionally, the tooltip lists all
schema violations of a property.

Validation errors should also be re-
flected in the GUI panel, including for
child properties.

See the point above. Also, now the
tooltip lists schema violations of child
properties.

When dealing with an array, the dis-
play name of array elements (index)
should be improved. Currently, the tool
only shows the element index.

We replaced the numerical labels
with a standard programming no-
tation, which is propertyName[0],
propertyName[1], . . .

The input field next to the Add Item
button is confusing. Both the input
field and the button can be used to cre-
ate a new item, which is redundant.

We removed the input field next to the
button.

It would be more consistent if all user
input in the GUI panel was within the
right column of the table. In some sce-
narios user input is needed within the
left column (for names of new proper-
ties), which feels inconsistent.

Because of the nature of JSON schema,
we retained the property name within
the left column. To make it clear to
the user that the property name can
be edited, we added an edit icon next
to it.

The search function for locating spe-
cific properties lacks clarity at first
glance. It should provide an immedi-
ate response and extend to nested lev-
els, rather than merely highlighting the
higher-level findings.

The search now provides a list of re-
sults, and upon clicking on a particular
result, it jumps to that result in the
code panel and GUI panel. In the GUI
panel, if the element is nested, its par-
ents will be automatically expanded.

40 S.K

Table 9
User Study 3 - Feedback and Solution

Feedback Solution

Working with the schema editor is dif-
ficult for me. It does not feel intuitive.

We made the schema editor more in-
tuitive by creating our own simplified
JSON schema meta schema. For exam-
ple, advanced JSON schema features
are separated from the simple ones. See
section 5.5

Table 10
User Study 4 - Feedback and Solution

Feedback Solution

Modifying or renaming a new property
in the GUI panel does not appear to
take effect when double-clicking on it.

Renaming properties in the GUI panel
can now be done using the edit button
next to the property name.

When creating a new property in the
schema editor, its sub-schema has to
be selected, such as string property or
boolean property. Additionally, the type
of the property has to be selected by
the user too. Therefore, for example,
when creating a new string property,
the user has to select that it is a string
two times. It would be much more in-
tuitive if the selection needs to be done
only one time.

We completely overhauled our JSON
schema meta schema. Now, when cre-
ating a new property, the user will have
to select the type only once.

A toggle button should be implemented
to enable and disable the code panel
and GUI panel.

Only having a GUI panel or only hav-
ing a code panel restricts the user un-
necessarily. The interplay of both pan-
els is what makes this tool most effec-
tive. If the user does not want to use
one of the panels, they can resize that
panel to a very small size.

When working with a particular prop-
erty in the GUI panel, the opacity
of the other properties should be de-
creased, visually highlighting the cur-
rently focused property.

Will be considered in future work.

Simplify the schema editor to make it
easier to work with, for those who are
not very familiar with JSON schema.

Has been done, see section 5.5.

Title Suppressed Due to Excessive Length 41

Table 11
User Study 5 - Feedback and Solution

Feedback Solution

The search button is not immediately
evident, making it challenging for users
to locate the search function.

Instead of showing the search bar only
when clicking the search button, we
now always show it.

	MetaConfigurator: A Schema-Aware GUI Tool for Editing YAML/JSON Configuration Files

