
A continent to the state web service integration: a definition
and the implementation approach

Boris Benko
boris.benko@kapion.eu

KAPION D.O.O.
Slovenia

Abstract
A new type of web service IS 1 integration is discussed, a con-
tinent to the state web service integration, dubbed as 𝑘2𝑠 . A
definition of this web service type IS integration is given, and a
general approach about the implementation is discussed. A brief
comparison with other types of web service IS integrations is
given, including but not limited to the global to the state web
service integration, dubbed as 𝑔2𝑠 .

Keywords
continent to state information system integration, web services,
digital inclusion, 𝑘2𝑠

1 Introduction
In the global reach of IT, two general trends related to IS inte-
gration are emerging. On one side we have national and multi-
national companies, with a global reach, where 𝑏2𝑏 2 integrations
are taking place and also 𝑏2𝑐 3. On the other side we have a solid
trend of public services to be offered in a digital form, to com-
panies 𝑠2𝑏 4 and consumers 𝑠2𝑐 5, as well. As there is Single
European Act [11] in force, it is clear, further integration pro-
cesses are taking place.

An example of 𝑘2𝑠 system taken into consideration is EU-
CSW-CERTEX system [8], commonly known as CERTEX. CERTEX
is a system that connects customs systems with the EU’s non-
customs systems. This allows Customs authorities across EU to
access relevant data within these non-customs systems. Quick
access to non-customs systems is crucial for making informed
decisions about whether or not to release goods for a specific
customs procedure. While CERTEX system has several compo-
nents, we’ll be referring to the core 𝑘2𝑠 web service integration
part in between non-customs systems on one side, e.g. the k part,
against the EU member-state IS, e.g. the s part.

One example of a such non-customs system is IS for the im-
portation of certain organic goods with a requirement of meeting
the phytosanitary requirements, regulated as [9]. The EU-CSW-
CERTEX system is in use as a mandatory requirement as of March
2025, but it is clear integration activities within EU-CSW-CERTEX
system started much earlier, as the integration activities need to
be implemented in each and every EU member state.

1The Information System
2A business to business integration.
3A business to consumer integration.
4A state to business integration.
5A state to citizens integration.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
Information Society 2025, Ljubljana, Slovenia
© 2025 Copyright held by the owner/author(s).

While the main topic is 𝑘2𝑠 systems, let’s mention 𝑔2𝑠 inte-
gration system, as we will define it as well. Such an example
is UN/FLUX standard, regulated as [4]. UN/FLUX facilitates the
information exchange in between fishing domain entities. These
fishing domain entities are fishing vessels, reporting the catch
data to their domicile fishery authorities via different commu-
nication channels. The data received from fishing vessels at sea
is then transferred to the geographically related authority via
web services in a store and forward fashion. UN/FLUX system
is comprised of many communication nodes, all communicating
via HTTPS/SOAP messages.

2 Definitions
A continent to state web service integration system is the sys-
tem, which integrates one supra-national authority, with multiple
national authorities, to exchange relevant data via web services,
whereby the data exchange is confined to a wider geographic region,
possibly a continent. All stakeholders operate withing boundaries
of their national jurisdictions.

A global to state web service integration system is the system,
which integrates various entities, geographically dispersed, to one
or possibly multiple state authorities via web services, whereby
the data exchange is not limited by any geographic region. The
stakeholders are normally bound by international standards and
agreements and their jurisdictions are not playing the prerogative
role.

3 Results
3.1 Specific requirements
The first and foremost requirement for CERTEX was that each
software release has a status of 𝐿𝑇𝑆6. So, after the production
tape-out it is expected for the version release to stay in pro-
duction for years to come. There was a practical reason behind
the requirement, as the complete EU member state IS is to be
adapted to be compatible with CERTEX. Note, however, while
we are discussing about CERTEX as 𝑘2𝑠 system, the IS of EU
member state is really 𝑠2𝑏 or/and 𝑠2𝑐 to users in that particular
member state. While the software maintenance for CERTEX was
planned, retroactive functional upgrades for the version accepted
in production were strongly discouraged.

The second requirement for CERTEX was two or more EU
member states may communicate via CERTEX, even if they are
at different software releases. It is possible, the web service inte-
gration may be degraded to be at the level of the lease capable
software release, but in principle, EU member states should not
be constrained in any way in intercommunication, while being
on different CERTEX software releases.

The third requirement for CERTEX had a priority set to be
more like a nice to have, but it was the integral part of the CERTEX
success. Each and every EU member state may decide to upgrade

6A Long Term Support release.



Information Society 2025, 6–10 October 2025, Ljubljana, Slovenia Boris Benko

Figure 1: The CERTEX single release architecture

it’s CERTEX release version either to the latest or to a higher
version, at very least. But this web service release upgrade should
be seamless, without the lengthy data migration, if possible.

3.2 An architectural overview
The complete CERTEX implementation relies on one software
release, shown in Figure 1. Each release is done approximately
every calendar year and since release version 1.0 in 2018, there
are now six releases in production use, while the seventh release
is in the development phase. All CERTEX releases run on Jakarta
EE [3] server. While particular software releases are loosely cou-
pled, the complete software package is of a monolithic type. From
the year 2025 timepoint of view, the loosely coupled software
releases would be very appropriate to be implemented with Ku-
bernetes [5]. But as the software implementation started in 2018,
at that time Kubernetes was not sufficiently mature and even if it
would be mature enough in 2018, the decision of possible use of
Kubernetes would require at least one prototype, which in turn,
would require a delay of 12 months at very least. There was also
an option to do a parallel software development on two different
technology platforms - one Jakarta EE, as the proven one, and
the challenger, namely Kubernetes. This, however, would increase
the cost of the software development, at least in the initial phase,
as two source codebases would be built in parallel. But even this
parallel software development might uncover shortcomings on
the challenger platform - Kubernetes.

3.3 XML Schemas
While the CERTEX has implemented the ability to communicate
via HTTP/SOAP and REST/JSON messages, the bulk of messages
is exchanged via HTTP/SOAP. There are two challenges present
while messages are exchanged via HTTP/SOAP in between EU
member states. One is, the standardized approach with XML
schemas are needed, in order to standardize on a common mes-
saging format with code lists included. There is a standard present
UN/CEFACT for a global trade facilitation, defined as [10]. From
the implementation perspective, UNECE XML schemas are well
defined, but rather extensive in length and this presents a chal-
lenge to Java source code generators for HTTP/SOAP message
processing. The challenge itself lies in the name-space tracking,

whenever theHTTP/SOAPmessage request/response is generated.
The UN/CEFACT uses name-spaces extensively and it is essential,
name-spaces not in use, should not be present in the constructed
XML message. Out of two XML Java code generators, namely
CXF [2] and Apache Axis2 [1], the former generates more optimal
XML messages, while the latter does not track name-space usage
very well and the corresponding XMLmessages are larger in size.

3.4 Record locking mechanism
The production version of CERTEX releases runs on a cluster of
Jakarta EE, which are connected with a distributed shared cache.
In order to facilitate a proper ACID 7 properties of transactional
processing a capable record locking mechanism needs to be es-
tablished. At first, ACID properties in RDBMS 8 were used. So,
an SQL database was locking records, on as designed basis. This
proved to be insufficient solution, as in the case when two or
more parallel HTTP/SOAP web service calls were in progress,
only the first commit of a web service call would pass, all other
web service call transactions were rolled back. This proved to be
insufficient from a business perspective. Namely every technical
fault at transaction processing was reported to the EU member
state authorities and a manual insight was dispatched to resolve
the reported technical fault. These manual insights were costly
from the human resources perspective, thus, a better collision
resolution had to be found.

The solution with a distributed shared cache Coherence [7] was
found. So, each CERTEX web service processing thread attempts
to get a lock on the record. This action really implies creating
a record in Coherence and obtaining a lock on the record in the
shared distributed cache. If the CERTEX web service processing
thread was not successful, a reasonably long lock 30 seconds
timeout was used. The distributed shared cache locks proved
to resolve processing collisions, however, in 𝑘2𝑠 web service
integration systems a performant record locking mechanism is
one of critical system components.

7Atomicity, Consistency, Isolation, and Durability.
8A Relational Database Management System



A continent to the state web service integration: a definition and the implementation approach Information Society 2025, 6–10 October 2025, Ljubljana, Slovenia

4 Discussion
In general, 𝑘2𝑠 web service integration systems are very large ISs,
which connect the continent with states. And example of CERTEX
integration is set forth and few challenges were present, while the
software was developed. The underlying programming language
and technologies need to be selected in order to implement a
large scale IS, what CERTEX really is. Jakarta EE was selected
for CERTEX, and this dictates the selection of other, compatible
software components, such as Coherence. Selecting the Jakarta
EE framework brings a lot of benefits into the project, such as a
wide range of software vendors, even wider set of open-source
alternatives. Furthermore, Jakarta EE is a widely used framework,
thus a lot of practical software development answers can be found
on Internet.

Kubernetes however, brings distinguished qualities, which
Jakarta EE cannot match. Kubernetes brings efficient virtualiza-
tion in a form of running containers within the pod. Furthermore,
Kubernetes brings a computing resource dynamic scaling and
declarative deployments. Furthermore, Jakarta EE is a server-
side Java standard, comprising of a fixed set of Java specifica-
tions, such as JAX-RS 9. This set of standards is versioned with
the version of Jakarta EE. This is possible, with a distinguished
Java library class-loading to upgrade a single standard. This is,
however, an elaborate and unstable server configuration process,
determining what are Java library class references and loading
them, as well. Also, the Jakarta EE server includes all afore Java
specifications - even if some or many Java specifications are not
used, at all. Many software developers consider Jakarta EE as
overly bloated and difficult to manage. And there isn’t just the
question of Java specifications, which are included into Jakarta
EE, but also the inherent software security question. Related to
the software security, we can follow a less is more imperative.
So, less components the Jakarta EE server includes, less attack
vectors are available to be attacked by hackers.

Is it possible to run Jakarta EE based software on Kubernetes?
This is inherently possible, as many Jakarta EE servers main-
tain multiple managed servers, which may be run within the
container. But this setup is not a true Kubernetes-native soft-
ware program. A Jakarta EE compatible software is typically of a
monolithic type, with a lot of possible Java modules, which are
tightly coupled. A Kubernetes system typically inspires loosely
coupled, micro-service based set of containers, with specific re-
source declarations.

It must be noted; Kubernetes is not on the same architectural
level, as Jakarta EE. Kubernetes is in fact on the same level, as
any enterprise-class, type-1 hypervisor, often referred as the
bare-metal hypervisor. A true Jakarta EE counterpart is, for ex-
ample, Quarkus [6] serverless environment. The problem with
the Quarkus, as a viable alternative to Jakarta EE is, it is not
the only serverless environment available and the list of Java
standards available is less strictly defined.

The only natural path forward for CERTEX is to port the soft-
ware from the monolithic Jakarta EE based form to the true
Kubernetes-native, container-first software architecture. As CER-
TEX is a complex piece of software, the generalized methodology
for porting monolithic Java server applications to Kubernetes-
native, container-first serverless software. KAPION R&D group
works extensively on the afore mentioned generalized methodol-
ogy. A lot of development resources were invested into Jakarta

9Jakarta RESTful Web Services.

EE compatible software. However, as Kubernetes offers clear ad-
vantages, compared to Jakarta EE compatible software, the gen-
eralized methodology as indicated above, is of a great interest to
the Java software development community.

5 Conclusions
A new type of web service IS integration is present, a continent to
the state web service integration, named as 𝑘2𝑠 . As the compari-
son reasons, a global to the state web service integration, dubbed
as 𝑔2𝑠 was present as well. Definitions of both web service in-
tegrations were given and an example for 𝑘2𝑠 was present, as
well. CERTEX is a system that connects customs systems with the
EU’s non-customs systems. Few CERTEX implementation chal-
lenges were discussed. For integration projects of such a scale,
it is important the adequate IT software architecture is selected,
where proven Java technologies took a precedence. Thus the
Jakarta EE architecture was selected. It offers clear advantages
in terms of using proven Java technologies, thus no delays are
introduced into the software development timeline. However, in
a sense disruptive Kubernetes emerged as a viable IT architecture
substitute to Jakarta EE offering better scalability, and better
declarative deployment capabilities, among other things. How-
ever, as both afore mentioned architectures, namely Jakarta EE
and Kubernetes have a distinctive set of design patterns, a gener-
alized methodology for porting the software from the monolithic
server architecture to micro-services based, serverless software.
KAPION R&D group is currently working on the generalized
approach for the afore mentioned methodology.

References
[1] Apache. 2025. Apache axis2/java. Retrieved July 29, 2025 from https://axis.a

pache.org/axis2/java/core/.
[2] Apache. 2025. Apache cxf. Retrieved July 29, 2025 from https://github.com

/apache/cxf/commit/main.
[3] Jakarta EE. 2021. Jakarta ee 9.1. Retrieved July 29, 2025 from https://jakarta

.ee/release/9.1/.
[4] United Nations Economic Commission for Europe (UNECE). 2018. The

un/flux standard. Retrieved July 29, 2025 from https://unece.org/trade/unce
fact/unflux.

[5] Cloud Native Computing Foundation. 2014. Kubernetes. Retrieved July 29,
2025 from https://kubernetes.io/.

[6] Commonhaus Foundation. 2025. Quarkus. Retrieved July 29, 2025 from
https://quarkus.io/.

[7] Oracle java. 2025. Oracle coherence. Retrieved July 29, 2025 from https://co
herence.java.net/.

[8] European Parliament. 2024. Regulation establishing the european union
single window environment for customs. Retrieved July 29, 2025 from https
://eur-lex.europa.eu/eli/reg/2022/2399/oj/eng.

[9] European Parliament. 2019. The imsoc regulation. Retrieved July 29, 2025
from https://eur-lex.europa.eu/eli/reg_impl/2019/1715/oj/eng.

[10] UNECE. 2025. Unece xml schemas. Retrieved July 29, 2025 from https://une
ce.org/trade/uncefact/xml-schemas.

[11] European Union. 1987. The single european act. Retrieved July 29, 2025 from
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=legissum:xy0027.

https://axis.apache.org/axis2/java/core/
https://axis.apache.org/axis2/java/core/
https://github.com/apache/cxf/commit/main
https://github.com/apache/cxf/commit/main
https://jakarta.ee/release/9.1/
https://jakarta.ee/release/9.1/
https://unece.org/trade/uncefact/unflux
https://unece.org/trade/uncefact/unflux
https://kubernetes.io/
https://quarkus.io/
https://coherence.java.net/
https://coherence.java.net/
https://eur-lex.europa.eu/eli/reg/2022/2399/oj/eng
https://eur-lex.europa.eu/eli/reg/2022/2399/oj/eng
https://eur-lex.europa.eu/eli/reg_impl/2019/1715/oj/eng
https://unece.org/trade/uncefact/xml-schemas
https://unece.org/trade/uncefact/xml-schemas
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=legissum:xy0027

	Abstract
	1 Introduction
	2 Definitions
	3 Results
	3.1 Specific requirements
	3.2 An architectural overview
	3.3 XML Schemas
	3.4 Record locking mechanism

	4 Discussion
	5 Conclusions

