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Abstract
The field of emotion recognition from eye-tracking data is well-

established and offers near-real-time insights into human affec-

tive states. It is less obtrusive than some other modalities, such

as electroencephalogram (EEG), electrocardiogram (ECG) and

galvanic skin response (GSR), which are often used in emotion

recognition tasks. This study examined the practical feasibility of

emotion recognition using an eye-tracker with a lower frequency

than that typically employed in similar research. Using ocular

features, we explored the efficacy of classical machine learning

(ML) models in classifying four emotions (anger, disgust, sadness,

and tenderness) as well as neutral and “undefined“ emotions. The

features included gaze direction, pupil size, saccadic movements,

fixations, and blink data. The data from the “emotional State

Estimation based on Eye-tracking database“ was preprocessed

and segmented into various time windows, with 22 features ex-

tracted for model training. Feature importance analysis revealed

that pupil size and fixation duration were most important for

emotion classification. The efficacy of different window lengths

(1 to 10 seconds) was evaluated using Leave-One-Subject-Out

(LOSO) and 10-fold cross-validation (CV). The results demon-

strated that accuracies of up to 0.76 could be achieved with 10-

fold CV when differentiating between positive, negative, and

neutral emotions. The analysis of model performance across

different window lengths revealed that longer time windows

generally resulted in improved model performance. When the

data was split using a marginally personalised 10-fold CV within

video, the Random Forest Classifier (RF) achieved an accuracy of

0.60 in differentiating between the six aforementioned emotions.

Some challenges remain, particularly in regard to data granu-

larity, model generalization across subjects and the impact of

downsampling on feature dynamics.
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1 Introduction
Emotion recognition is a vibrant area of research, leveraging di-

verse data sources such as images [11], audio [16], and also, ocular

features like pupil dilation, gaze direction, blinks, and saccadic

movements [3, 8, 12]. Such eye-related features provide valu-

able insights into emotional states, offering a less-invasive and

real-time approach to understanding human affective responses.

Most studies that tried to predict emotions from these eye-related

features relied not only on eye-tracking data but also on EEG
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[8, 12]. We hypothesized that eye-tracking data is a valuable

modality for multi-modal emotion recognition on its own, with

potential applications in real-world scenarios like office work,

driving, and psychological assessments, as well as in estimat-

ing well-being. Our motivation was to explore eye-tracker-based

predictive models as an essential component in such practical

applications.

The primary objective of our study was to validate existing

findings on the performance of classical ML models for emotion

classification from eye-tracking data, using the models – Support

Vector Machine (SVM) and k-Nearest Neighbors (KNN) – and

features already explored in the literature [9, 15] as well as ex-

ploring classifiers not so frequently used in this field – such as

RF and XGBoost (XGB). Additionally, we aimed to explore the

potential of emotion recognition at lower sampling frequencies

available in most non-professional eye trackers. For the early

feasibility study, we used an existing dataset, which collected

data using a wearable eye-tracker but findings could possibly be

extended to high-quality unobtrusive contact-free trackers. Our

research also focused on understanding the impact of individual

features and window lengths on model performance.

2 Related Work
In literature, various physiological signals have been employed

for emotion recognition, with a particular focus on modalities

such as EEG, GSR, and eye-tracking systems [1, 6, 9]. Researchers

have explored both uni- andmulti-modal approaches, finding that

the integration of multiple modalities can significantly enhance

emotion recognition accuracy. Lu et al. achieved 0.78 accuracy

with eye-related features recorded with eye-tracking glasses –

which are not contact-free but record at relatively low frequen-

cies of 60 Hz or 120 Hz. They predicted positive, negative and

neutral classes with SVM. Interestingly, they observed a 0.10 in-

crease in accuracy when combining eye-related and EEG features

[12]. Similarly, Guo et al. observed a more substantial gain, with

accuracy improving by 0.20 when integrating EEG, eye-tracking,

and eye images, as opposed to using only eye-tracking data [7].

The features derived from eye-tracking have been widely used

inML algorithms to detect emotional states [2, 7, 12, 15]. However,

most studies have traditionally categorized emotions into broad

groups like positive, negative, and neutral [12, 14]. Pupil size, in

particular, has emerged as a valuable indicator for distinguishing

between positive and negative emotions [2, 7, 12] . Recent efforts

have begun to refine these broad categories, identifying more

specific emotions like happiness, sadness, fear, anger, etc. [2, 7,

15]. Although current methods can effectively identify certain

emotions such as sadness and fear, further research is needed to

reliably differentiate between others like disgust, joy, and surprise

[2].
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3 Methodology
3.1 Data
In our research, we used the “emotional State Estimation based

on Eye-tracking database“ (eSEEd) [13]. The eSEEd comprises

data from 48 participants, each of whom watched 10 carefully

selected videos intended to evoke specific emotional responses.

After viewing each video, participants ranked their emotions

– anger, disgust, sadness, and tenderness – on a scale from 0

to 10. Tenderness, however, is not regarded as one of the basic

emotions, but it has been widely utilized in emotion research

in recent years [13]. Since the participants had ranked all four

emotions for every video, a labelling problem emerged when

multiple emotions shared the highest score, in our case, leading

to “undefined“ labels. In our study, emotions were mapped by

applying a set of extraction rules in the following order: if the

highest-ranked emotion is below four, the response is labelled as

neutral; if multiple emotions share the highest rank, the label is

undefined; otherwise, the emotion with the highest rank is cho-

sen. The boundary of four was chosen because the original study

on eSEEd constructed this rule and we adapted it from there

[13]. Although the initial study design aimed for an even distri-

bution of emotions, neutral responses dominate, representing

about one-fourth of the labels (depending on window length).

3.1.1 Data Preprocessing. We have preprocessed the data to

make it more suitable for our future research and to reduce its

size. We wanted to study the performance of data with a rela-

tively low frequency rate of 60 Hz, which is used by relatively

affordable mid-tier eye-trackers, like Tobii Pro Spark. Firstly, the

features that were uninformative or could be misleading (e.g.

raw tracker signal and timestamps) were removed, and the fol-

lowing set of features was preserved: 2D screen coordinates of

gaze points (for standard deviation (std) of screen gaze coordi-

nates), 3D coordinates of gaze points (exclusively for saccade

calculations), pupil sizes (a and b of the pupil ellipse), and eye

IDs (each eye has its own pupil size features). Secondly, rows

containing any NaN values were removed, as there were no large

consecutive blocks of such rows and downsampling of the data

was planned. Finally, we further downsampled the data to 60

Hz, matching the sampling frequency of a mid-tier eye-tracker.

However, we acknowledge that downsampling might lead to the

loss of high-frequency information, which could be important for

capturing subtle dynamics in gaze behaviour and pupil responses.

This is particularly relevant considering that recent studies, such

as those by Collins et al. [3] and the SEED project [4, 17], have

utilized data collected at much higher frequencies to preserve

these subtle dynamics. Therefore, while downsampling makes

the data more meaningful to our research and more computa-

tionally manageable, it is important to keep in mind the reduced

temporal resolution when discussing the results.

Following the preprocessing, window segmentation was ap-

plied to the data. This step is essential for analyzing temporal

patterns within the data, as it allows for the capture of trends

and behaviours over specific time intervals. By segmenting the

data into windows, we can improve the robustness of feature

extraction and model training, enabling the detection of mean-

ingful patterns that might be obscured in raw, unsegmented data.

Additionally, with window segmentation, the number of training

instances increases which is commonly better for learning more

robust ML models and conducting rigorous evaluation. Hence,

multiple window lengths were examined, namely: 1, 3, 5 and 10 s.

We used 50% sliding window overlap. From each window, we

computed 22 features, belonging to the following groups:

(1) gaze coordinates on screen: std of x and y coordinates

(2) pupil ellipse sizes of a and b for each eye: mean, std

(3) blinks: number; mean and std of duration (all 0 if no blinks)

(4) saccades: number; mean speed; mean, std, total duration

(5) fixations: number; mean, std, total duration

Saccade and, implicitly, fixation calculations were done using

existing code based on the algorithm proposed by Engbert et al. [5,

10]. The algorithm calculates the velocity and acceleration of eye

movements by using a velocity threshold identification method

to detect saccades based on continuous 3D gaze data. In our study

we define fixation (interval) as an absence of a saccade (interval),

thus one fixation is declared between every two saccades (and

before the first and after the last one).

As mentioned previously, our data was imbalanced in terms

of class distribution, namely the distributions for anger, disgust,

sadness, neutral, tenderness and undefined were 8.7%, 13.6%,

17.5%, 25.7%, 15.8% and 18.7%, respectively. Notably, for the 1 s

window length, the number of windows was 67,181, whilst for

the 10 s window, the number of instances decreased to 6,507.

3.2 Experiments
We initially examined feature correlation matrices to identify

potential correlations between features, as well as between fea-

ture and class. Then, we compared the following classifiers from

the Scikit-learn library: Random Forest (RF), Support Vector Ma-

chines (SVM), k-Nearest Neighbors (kNN), and XGBoost (XGB)

from the XGBoost library, as well as an ensemble method major-

ity vote of the aforementioned classifiers. We compared all results

against a baseline majority classifier. Each model was trained and

tested using its default hyperparameters. To evaluate the models’

performance, we implemented multiple CV techniques.

The first CV technique was Leave-One-Subject-Out (LOSO).

Secondly, we implemented a marginally personalised 10-fold CV

“within video.“ In this approach, a standard 10-fold CV was per-

formed where 90% of temporally sequential windows were used

for training and 10% for testing. The splits were done separately

for each video within every subject. All the training data from

every video was combined to train a single model, and all the

test data was combined to evaluate the model, ensuring that

the model was exposed to data from all subjects and videos. We

named the experiment “marginally“ personalised because most

training data does not come from any single subject and is thus

not very personalised. Finally, we explored a completely person-

alised 10-fold CV “within subject.“ Here, training and testing were

done only on data of one subject. In all three CV methods, the

instances were never shuffled to preserve temporal and subject

sequential information and to minimize overfitting.

We attempted to merge certain classes in a way to group

negative emotions – anger, disgust, and sadness – under the cat-

egory “negative,“ while labelling tenderness as “positive.“ The

label for neutral remained unchanged, while the undefined la-

bel was changed to “negative“ because it always resulted from

multiple negative emotions scoring equally. Lastly, the feature im-

portances were analysed for different combinations of data splits

and models in order to identify potential consistently important

features.
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4 Results
The results described in the following subsections are summarised

in Table 1.

4.1 Feature Correlations
The first important observation from correlation matrices was

that no output class is closely correlated to any other singular fea-

ture. Secondly, we noticed some strong correlations, for example,

a 1.0 correlation between a number of fixations and a number of

saccades, because one simply equals the other increased by one.

More importantly, we noticed little-to-no correlation between fea-

tures that proved to be most important in some best-performing

models, meaning each of these features brought some novel infor-

mation to the model. The only exceptions of important features

being correlated are the features representing the mean size of a

pupil i.e., ellipse a and b axes, which are expected to be correlated.

They were correlated more than 0.8. However, we decided not to

remove any features because we assessed the feature count of 22

to be well-balanced in relation to the number of instances.

4.2 Leave-One-Subject-Out
With the goal of training a robust general model for our dataset,

we first applied the LOSO CV technique. The best performance

was achieved by RF on 10 s windows, yielding an accuracy of

0.28± 0.13 and an F1-score of 0.28± 0.16. It outperformed the ma-

jority classifier by 0.03 in accuracy and 0.13 in F1-score. In a sub-

sequent experiment, the negative emotions were grouped. This

adjustment led to an overall increase in performance. However,

with such grouping the majority classifier score also increased to

0.59 accuracy, which is the same as the best-performing model.

Further analysis revealed that high accuracy mainly implied

the subject predominantly reported “neutral“ feelings and low

accuracy implied little-to-no “neutral“ labels. However, not every

subject with a high “neutral“ count achieved outstanding results

and not every subject with a wide range of emotions yielded poor

results. A comparison was made between the number of windows

in the left-out subject to their performance and no correlation

was found. 10 s window length performed better than the shorter

windows with lengths 1-5 s. We also tested longer (60 s) windows

and the resulting accuracies were higher than those from 10 s

windows, but we evaluated that the number of instances was

insufficient for the results to be representative.

4.3 Marginally Personalised 10-fold
Cross-Validation Within Video

Given that the LOSO yielded relatively poor results, the next

step was to explore 10-fold CV. Experiments showed an average

accuracy of 0.60 ± 0.07 and an F1-score of 0.60 ± 0.08, produced

with RF on 10 s windows, the best-performing model. This should

be compared to the results given by the majority classifier –

average accuracy of 0.21 ± 0.01 and F1-score of 0.07 ± 0.01. With

negative emotions grouped, the accuracy and F1-score raised to

0.76 ± 0.04 and 0.73 ± 0.04, respectively, for the best-performing

XGB on 10 s windows. The majority class classifier yielded an

accuracy of 0.66 ± 0.02 and an F1-score of 0.52 ± 0.02.

4.4 Personalised 10-fold Cross-Validation
Even though 10-fold CV within video resulted in much better per-

formance compared to LOSO, we wanted to see the performance

of completely personalised models. All the models performed

similarly well, with the absolute best being RF on 10 s windows

which outperformed the majority classifier by 0.05 and 0.13 for

accuracy and F1-score, respectively. When grouping the nega-

tive emotions, we observe an absolute improvement in models’

performance, but a relative decline toward the majority classi-

fier benchmark. The best model, in this case, did not surpass

the majority classifier in terms of accuracy, with the majority

classifier achieving 0.67 ± 0.16 accuracy and 0.61 ± 0.16 F1-score,

while SVM, the best-performing model, scored an accuracy of

0.64 ± 0.13 and an F1-score of 0.63 ± 0.12.

4.5 Feature Importances
Following the completion of model training, we analyzed the fea-

ture importances of the best-performing models. For RF this was

calculated based on the Mean Decrease in Impurity, summing the

impurity reduction each feature contributes across all trees; and

for XGB, feature importances were calculated using the “weight“

metric, which counts the number of times each feature is used to

split the data across all trees. For SVMwe did not calculate feature

importances. In the completely personalised 10-fold experiments,

feature importances varied significantly across different subjects

and even between different runs within the same subject, specif-

ically with RF, as the random state was not fixed. In contrast,

feature importance was notably consistent in experiments where

models were trained on data from multiple subjects, such as in

the LOSO and the 10-fold within video, even with a variable

random state of the RF model.

The most important features of best-performing models were

those related to average pupil sizes, followed by fixation duration.

These results partially align with those of Collins et al., who

found features relating to pupil diameter and saccades statistically

significant [3].

5 Conclusion
Our research explored emotion classification using eye-tracking

data with classical ML models and hand-crafted features. The

data was downsampled to a lower-than-standard frequency i.e.,

to 60 Hz, which was more realistic for consumer contact-free

eye-tracker data. This made the problem harder, making it not

directly comparable with other studies working on eSEEd, but

valuable from a practical perspective.

Window segmentation significantly impacted model perfor-

mance, with the best results constantly obtained using the largest

window length. This suggests that longer observation periods

capture more comprehensive information, making smaller win-

dows less effective for emotion classification. We hypothesize

that this does not transfer to realistic scenarios, as users might

experience emotions in short bursts while being neutral for the

majority of the time. In specifically designed cases where emo-

tion is consistently induced for longer periods of time (like our

dataset), this is more expected.

The LOSO validation strategy, which tests model generaliza-

tion across different subjects, yielded poor results. The variability

in performance across subjects indicates the challenge of cap-

turing general relationships between eye features and emotions.

While both 10-fold CV approaches showed an increase in perfor-

mance, their generalizability is limited. Completely personalised

10-fold showed worse results than the marginally personalised

one presumably because of the low number of videos per emotion

within an individual subject.
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Table 1: Best-performing models and their corresponding results along the results of the Majority Class Classifier for the
same parameters. Window lengths are 10 s.

Settings Model Acc Model F1 Majority Class Acc Majority Class F1

LOSO, RF 0.28 ± 0.13 0.28 ± 0.16 0.25 ± 0.25 0.15 ± 0.26

LOSO, SVM, negative emotions grouped 0.59 ± 0.19 0.46 ± 0.18 0.59 ± 0.19 0.46 ± 0.18

10-fold within video, RF 0.60 ± 0.07 0.60 ± 0.08 0.21 ± 0.01 0.07 ± 0.01

10-fold within video, XGB, negative emotions grouped 0.76 ± 0.04 0.73 ± 0.04 0.66 ± 0.02 0.52 ± 0.02

10-fold within subject, RF 0.38 ± 0.20 0.42 ± 0.19 0.33 ± 0.26 0.29 ± 0.26

10-fold within subject, SVM, negative emotions grouped 0.64 ± 0.13 0.63 ± 0.12 0.67 ± 0.16 0.61 ± 0.16

An important issue with the eSEEd data is that all participants

watched the same 10 emotion-evoking videos in the exact same

order. This uniformity raises concerns that, given the small num-

ber of videos (two intended
1
per emotion), the models might

learn to associate features unrelated to emotions, such as video

dynamics or illumination. We circumvented the problem with

video dynamics by dropping the mean gaze coordinate features

and not using them in our experiments.

Despite these challenges, our experiments offer valuable in-

sights into the feasibility of emotion recognition from low-frequency

eye-tracker data, providing a foundation for future work. We

opted for classical models initially due to their explainability,

lower computational complexity, and efficiency, which are in our

opinion essential for understanding the data before transitioning

to more complex deep learning models.

In future work, several enhancements could be explored to

improve the robustness and accuracy of emotion classification

models using eye-tracking data. One approach could involve ana-

lyzing distinct fixation areas as an additional feature, potentially

offering deeper insights into visual attention patterns. Moreover,

considering that each emotion is (in some cases) represented

by two videos, a valuable experiment would be to train models

on one video and test on the other. This could help assess the

model’s ability to generalize across different stimuli within the

same emotional category.

Further analysis could focus on demographic factors by exam-

ining the LOSO results for potential correlations between model

predictions and participant characteristics such as gender, age,

and education. This might reveal underlying biases or trends that

affect model performance. Additionally, rather than downsam-

pling and removing rows with missing data, future work could

explore retaining or imputing these rows.

Furthermore, exploring the training of neural networks on

raw, non-downsampled data from multiple modalities is another

promising direction, as other studies already observed promising

results with such approaches. Moreover, we should address the

issue of overlapping emotions which could involve developing a

multiclass output model, reflecting a real-world scenario where

multiple emotions can be present simultaneously. This approach

could also help reduce the number of undefined labels, increasing

the amount of useful data.
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