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Abstract
Microsatellite instability (MSI) is a crucial biomarker in colorec-
tal cancer, guiding personalised treatment strategies. The focus
of our paper is on evaluating how different state-of-the-art pre-
trained artificial intelligence models perform in extracting fea-
tures on molecular and cellular oncology (MCO) study dataset
to predict biomarkers. In this study, we present an advanced
approach for MSI prediction using multiple instance learning on
whole slide images. Our process begins with comprehensive pre-
processing of WSIs, followed by tessellation, which breaks down
large images into manageable tiles. State-of-the-art feature ex-
traction techniques are utilised on these selected tiles, employing
pretrained models to capture rich, discriminative features. Vari-
ous aggregation methods are applied to combine these features,
leading to the prediction of MSI status across the entire slide.
We assess the performance of different pretrained models within
this framework, demonstrating their effectiveness in accurately
predicting MSI, with results showing an AUROC of 0.91 on the
MCO dataset. Our findings underscore the potential of multiple
instance learning-based approaches in enhancing biomarker pre-
diction in colorectal cancer, contributing to more targeted and
effective treatment strategies.
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1 Introduction
MSI is a crucial biomarker in colorectal cancer (CRC) that indi-
cates defects in the DNA mismatch repair system, leading to a
high mutation rate within tumor cells. MSI status has significant
clinical implications, influencing treatment decisions, particularly
the use of immunotherapy, and providing prognostic information.
Traditionally, MSI is determined through laboratory tests such as
PCR-based assays or immunohistochemistry (IHC) on tumor tis-
sue samples, which require invasive biopsy procedures. However,
these methods can be time-consuming, costly, and dependent on
the availability of sufficient tissue samples.
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Deep learning methods have emerged as a promising non-
invasive alternative for MSI prediction by analysing whole slide
images (WSIs) of histopathological samples. These models can
detect patterns linked to MSI, eliminating the need for genetic
testing. WSIs provide a comprehensive view of tumor histology,
offering a faster, less invasive, and more accessible means of
diagnosis.

Integrating deep learning into clinical practice can improve
early MSI detection, personalise treatment, and reduce invasive
procedures. WSI-based methods streamline diagnostics and en-
hance cancer care with accessible predictive analytics.

Tomanage these challenges,WSIs are often divided into smaller
regions or patches. A common method to address these issues
is Multiple Instance Learning (MIL) [3, 8]. Due to the vast size
of WSIs, computational resources can be easily overwhelmed,
making MIL an essential approach. MIL is a machine learning
technique that operates on sets or "bags" of instances, where the
label is assigned to the entire bag rather than individual instances.
This is particularly advantageous in WSI analysis, where labels
such as MSI status apply to the entire slide, which is composed
of numerous smaller regions or patches.

In this context, [4] demonstrates state-of-the-art (SOTA) re-
sults in predicting MSI in colorectal cancer. Their workflow uti-
lizes the Swin-T model on small datasets to predict MSI. First, a
pretrained tissue classification model is employed to filter out
non-tissue patches, followed by fine-tuning a pretrained model
to classify the remaining patches. Both intra-cohort and exter-
nal validation are performed. When trained on the MCO dataset
(N=1065), the model achieved a mean AUROC of 0.92 ± 0.05 for
MSI prediction. Similarly, [11] employs a transformer-based ap-
proach for large-scale multi-cohort evaluation, involving over
13,000 patients for biomarker prediction, achieving a negative
predictive value of over 0.99 for MSI prediction. When trained
and tested only on a single cohort (MCO), the model achieved
an AUROC of 0.85. While [4] achieved promising results on the
MCO dataset using an additional tissue classifier, we obtained
comparable performance without the need for tissue classifica-
tion. On the other hand, [11] used a multicentric cohort, which
demands additional computational resources. In comparison to
their results on the MCO dataset, we achieved a 6% improvement
using a smaller dataset.

In this study, we leverage MIL to process WSIs for the pre-
diction of MSI in CRC. By testing SOTA models on the MCO
dataset, we aim to assess their performance in MSI prediction
using MIL. This approach not only highlights the potential of MIL
in processing complex, unannotated WSIs but also contributes
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to the broader goal of improving biomarker prediction in CRC,
ultimately supporting more personalized and effective treatment
strategies.

The paper is organised as follows: Section 2 outlines the meth-
ods used in the pipeline, Section 3 provides a description of the
data, Section 4 presents the results, and Section 5 discusses the
findings and potential directions for future work.

2 Methods
This section outlines the pipeline for MSI prediction, as illus-
trated in Figure 1. The process begins with the preprocessing
of WSIs, including tessellation into smaller patches. Next, SOTA
pretrained models are employed to extract features from these
patches. These models, trained on large and diverse datasets,
capture rich and discriminative features crucial for accurate MSI
prediction. Finally, aggregation techniques are applied to com-
bine the information from the patches, enabling precise MSI
status prediction for the entire slide. Each subsection provides a
concise explanation of these individual processes.

2.1 Preprocessing
WSIs are first tessellated into smaller, more manageable patches
to facilitate further processing. This step involves dividing the
large images into smaller regions using the tiatoolbox presented
in [9]. Non-informative tissue patches are removed to ensure the
analysis focuses solely on relevant tissue areas.

Specifically, patches that are out of bounds—where only a
portion contains actual image data and the remainder consists of
padding—are discarded. Patches that consist entirely of tissue are
retained for subsequent analysis. This preprocessing step ensures
that only informative and relevant patches are used for feature
extraction and MSI prediction.

2.2 Feature Extraction Methods
Since onlyWSI-level annotations are available, several pretrained
feature extraction models - UNI [1], ProvGigaPath [13], Phikon
[2] and CTransPath [12] - are applied to patches, removing
the need for detailed patch-level labeling. These SOTA models,
trained on large datasets, can capture complex and discrimina-
tive features essential for accurate biomarker prediction. The
extracted feature embeddings are then used as input for the ag-
gregation and classification stages, laying the foundation for
precise MSI status prediction. For technical details about these
models, see Table 1.

2.3 Aggregation Methods
After feature extraction, we apply aggregation techniques to
combine patch-level features into a slide-level representation.
Traditional pooling methods like max-pooling and mean-pooling
provide straightforward approaches.

However, thesemethods are limited by their lack of trainability.
In recent years, attention-based pooling or ABMIL became a
popular technique that adresses this issue [6]. ABMIL assigns a
weight 𝛼𝑖 to each patch’s feature vector, reflecting its importance:

𝐹 =
∑︁
𝑖∈𝑃

𝛼𝑖 𝑓𝑖

The attention scores 𝛼𝑖 are computed as:

𝛼𝑖 =
exp(𝑤⊤ tanh(𝑉 𝑓𝑖 ))∑

𝑘∈𝑃 exp(𝑤⊤ tanh(𝑉 𝑓𝑘 ))

where𝑤 and 𝑉 are trainable parameters.
This approach allows the model to dynamically focus on the

most relevant patches, leading to more accurate MSI predictions.
Another technique similiar to attention is DSMIL [7] or a dual

stream aggregator, consisting of two branches, employing both an
instance classifier and a bag classifier. Let ℎ𝑖 ∈ R𝐿×1 be a feature
embedding, and 𝐵 = {ℎ0, ..., ℎ𝑛} a bag of embeddings. The first
stream uses an instance classifier, followed by a max-pooling
operation to obtain a score 𝑐𝑚 (𝐵) and the critical embedding ℎ𝑚 .
The second stream aggregates the embeddings into a single bag
embedding which is then passed through a bag classifier:

𝑐𝑏 (𝐵) =𝑊𝑏

𝑛−1∑︁
𝑖

𝑈 (ℎ𝑖 , ℎ𝑚)𝑣𝑖

Where𝑊𝑏 is a weight vector for classification, 𝑣𝑖 an information
vector and 𝑈 is a distance measurement between an arbitrary
embedding and the critical embedding:

𝑈 (ℎ𝑖 , ℎ𝑚) = exp(⟨𝑞𝑖 , 𝑞𝑚⟩)∑𝑛=1
𝑘=0 exp(⟨𝑞𝑘 , 𝑞𝑚⟩)

where is a query vector. Both 𝑞𝑖 and 𝑣𝑖 are calculated by:

𝑞𝑖 =𝑊𝑞ℎ𝑖 , 𝑣𝑖 =𝑊𝑣ℎ𝑖 , 𝑖 = 0, ..., 𝑛 − 1

where𝑊𝑞 and𝑊𝑣 are weight matrices. The final prediction is
given by:

𝑐 (𝐵) = 1
2
(𝑐𝑚 (𝐵) + 𝑐𝑏 (𝐵))

The last approach for feature aggregation reviewed in this
paper is TransMIL, as proposed in [10], a Transformer based
aggregation method, which unlike the afore-mentioned methods,
takes into account spatial information as well. By treating a
bag of embeddings as a sequence of tokens, TransMIL uses a
novel TPT module made up of two Transformer layers and a
position encoding layer, where Transformer layers are designed
for aggregating morphological information and Pyramid Position
Encoding Generator (PPEG) which encodes spatial information,
followed by a multi-layer perceptron (MLP) which classifies the
bag.

2.4 MSI Classification
The aggregation step produces a single feature vector F, which
encapsulates the most informative characteristics of the entire
slide. This aggregated feature vector F is then passed through
one or more fully connected (dense) layers. These layers apply
learned weights and biases to the features to transform them
into a form that is more suitable for classification. The output of
the fully connected layer is often passed through an activation
function, such as a sigmoid or softmax, depending on whether
the classification task is binary (microsatellite instability MSI vs.
microsatellite stability MSS) or multi-class. For MSI prediction,
a sigmoid function is typically used, outputting a probability
value between 0 and 1. The final output of the model is a single
probability value indicating the likelihood of the slide being MSI.
A threshold (e.g., 0.5) is applied to this probability to make a
binary decision.

3 Data
For this paper the MCO study [5] was used for training and test-
ing. The MCO study collection contains 1,500 digitized whole
slide images (WSIs) of colorectal cancer tissues. Conducted by
the Molecular and Cellular Oncology (MCO) Study group from
1994 to 2010, this study systematically gathered tissue samples
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Figure 1: General architecture: multiple-instance learning approach.

feature extractor architecture dataset embedding size

UNI [1] ViT-large, DINOv2, 16 heads

Mass-100k: in-house histopathology slides from
MGH and BWH, and external slides from
the GTEx consortium containing >100M images,
derived from >100,000 WSIs across 20 major tissue types

1024

ProvGigaPath [13] ViT-large, DINOv2, 24 heads
Prov-Path: dataset from Providence,
a large US health network comprising 28 cancer centres,
consisting of 1,3B images from 171,189 WSIs

1536

Phikon [2] ViT-large, iBOT combining MIM and CL
PanCancer40M: dataset from TCGA,
covering 13 anatomic sites and 16 cancer subtypes,
consisting of 43,4M images from 6,093 WSIs

768

CTransPath [12] CNN with multi-scale Swin Transformer dataset from TCGA and PAIP,
consisting of 15M images from 32,220 WSIs 768

Table 1: Technical details about the pretrained feature extraction models.

and clinical data from over 1,500 patients who underwent col-
orectal cancer surgery. Each slide, representing a typical tumor
section, is stained with Hematoxylin and eosin and scanned at
a 40x objective, achieving a resolution of 0.25 mpp comparable
to an optical microscope (∼100,000 dpi). The total data size is
approximately 3 Terabytes, and the collection is available on the
Intersect Australia RDSI Node.

4 Results
The dataset used in this study comprised 996 whole slide images
(WSIs), with 242 labeled as MSI and 754 as MSS. To evaluate
the performance of various aggregation methods, models were
trained using 5-fold cross-validation, which ensured robust train-
ing and validation. To create a balanced testing set of 96 samples,
20% of positive (MSI) samples and an equal number of negative
(MSS) samples were randomly excluded. The remaining data was
split into five equally balanced parts for cross-validation, with
each fold consisting of 180 samples in the validation set and 720
samples in the training set.

WSIs were then preprocessed into bags, each containing ap-
proximately 2,000 to 4,000 patches. Each patch was then con-
verted into feature embeddings using four different feature ex-
traction methods: Phikon, CTransPath, ProvGigaPath, and UNI.
Specifically, CTransPath and Phikon produced embeddings with
768 features, UNI with 1024 features, and ProvGigaPath with
1536 features.

Three feature aggregationmethods—ABMIL, DSMIL, and Trans-
MIL—were applied to the extracted features to generate a single
representative feature for each WSI. Following aggregation, a
simple neural network with a sigmoid activation function and a
threshold of 0.5 was used to classify MSI and MSS.

Each aggregation model was then trained for each feature
extraction method on each fold, with training being conducted
over 50 epochs using the AdamW optimiser and the 1-cycle
learning rate scheduler to adjust the learning rate as models
approached convergence. Binary cross-entropy (BCE) was used
as the loss function. After each epoch, model performance was
evaluated on the validation set using the AUROC metric to select
the best checkpoint, as most models tended to overfit toward the
end of training. The selected checkpoints were then tested to
calculate the mean AUROC across all folds.

Results are presented in Figure 2a. The best performance was
achieved using the DSMIL aggregation method with the ProvGi-
gaPath feature extractor, yielding an AUROC of 0.91 ± 0.01. The
ABMIL method performed best with the Phikon and UNI extrac-
tors, achieving AUROCs of 0.91 ± 0.02. Finally, the TransMIL
method combined with ProvGigaPath resulted in an AUROC
of 0.90 ± 0.01. Additionally, statistical analysis was performed,
specifically, the Wilcoxon signed-rank test, which yielded an
average p-value of 0.446, showing a relatively insignificant dif-
ference in performance of different feature extraction methods,
as expected.
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(a) ABMIL (b) DSMIL (c) TransMIL

Figure 2: Predictive performance of 5-fold cross-validation of different feature extractors and aggregation methods. AUROC
plots for prediction of MSI/MSS status. The true positive rate represents sensitivity and the false negative rate represents
1-specificity. The shaded areas represent the standard deviation (SD). The value of the lower right each plot represents
mean AUROC ± SD.

5 Discussion and Conclusion
n this study, we explored the potential of MIL combined with
SOTA pretrained models for predicting MSI in colorectal cancer.
Our results indicate that the approach is highly effective, achiev-
ing an AUROC of 0.913 on the MCO dataset. This is a notable
achievement, particularly when compared to previous studies,
such as [4] and[11], which reported AUROCs of 0.92 and 0.85,
respectively, on the same dataset. Our results not only validate
the effectiveness of our approach but also suggest that the careful
selection and combination of feature extraction and aggregation
methods can yield improvements in predictive accuracy.

The positive and negative rates observed in our results reflect
the model’s ability to correctly classify MSI and MSS cases. A
high true positive rate (sensitivity) indicates the model’s pro-
ficiency in identifying MSI-positive cases, which is crucial for
ensuring that patients who could benefit from MSI-targeted ther-
apies are accurately identified. Conversely, a high true negative
rate (specificity) shows the model’s effectiveness in correctly clas-
sifying MSS cases, thereby minimising false positives. To further
enhance the accuracy and reliability of MSI prediction, several
avenues for future work are planned.

Utilisation of the Entire Dataset: We plan to leverage the full
dataset to improve the robustness of our model. Training on a
larger dataset may help in capturing more nuanced patterns and
variations, leading to even more accurate predictions.

Fine-Tuning of Pretrained Models: While we used pretrained
models without fine-tuning in this study, fine-tuning these mod-
els specifically for the task of MSI prediction could further im-
prove their performance. Tailoring the models to our specific
data distribution and task requirements may yield significant
gains in accuracy.

Incorporation of a Tissue Classifier: Since MSI is typically
found in tumor tissue, we plan to integrate a tissue classifier to
automatically remove non-tumor tissue from the analysis. This
step should enhance the model’s focus on relevant tissue regions,
potentially improving MSI prediction accuracy and speed up the
whole process.

Development of Advanced AggregationMethods:We also plan
to explore more sophisticated aggregation techniques that can

better capture the complex relationships between patches within
a WSI. Advanced methods may help in refining the prediction
process, leading to further improvements in model performance.

Overall, our study demonstrates the potential of MIL-based ap-
proaches in enhancing biomarker prediction in colorectal cancer,
paving the way for more personalized and effective treatment
strategies.
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