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Abstract
Empathy is a multifaceted concept with both cognitive and

emotional components that plays a crucial role in social

interactions, prosocial behavior, and mental health. In our

study, empathy and general arousal were induced via VR,

with physiological signals measured and ground truth collected

through questionnaires. Data from over 100 participants were

collected and analyzed using multiple machine learning models

and classification algorithms to predict empathy based on

physiological responses. We explored different data balancing

techniques and labeled data in multiple ways to enhance

model performance. Our results show that they are effective in

detecting general arousal, empathy, and differentiating between

non-empathic and empathic arousal, but the models encountered

difficulties with precise emotion detection. The dataset extracted

at 5-second intervals and models using Random Forest and

Extreme Gradient Boosting showed the best performance. Future

work will focus on refining emotion detection through advanced

modeling techniques and investigating gender differences in

empathy.
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1 Introduction
Empathy is a multifaceted concept explored across various fields,

including psychology, neuroscience, and sociology. Though no

universal definition exists, empathy is generally understood to

include both cognitive (understanding another’s perspective)

and emotional (experiencing another’s feelings) components [8].

Our research defines empathy as the ability to model others’

emotional states and respond sensitively while recognizing the

self-other distinction [14].

There is no "golden standard" for measuring empathy

[10], with methods varying from self-report questionnaires

to psychophysiological measures like heart rate and skin

conductance. Each method has its pros and cons, often leading

to a combination of approaches for a comprehensive assessment.

Psychophysiological measures offer objective data but face

challenges due to individual variability and non-empathetic

factors. Our study addresses these issues by using machine

learning to directly measure empathy from physiological signals,

offering a novel approach.
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VR creates an immersive environment that enhances empathy

by allowing users to experience different perspectives and engage

emotionally. VR is effective for empathy training and is referred

to as ’the ultimate empathy machine’ [1, 11] for various reasons:

1) Immersive Experience: Provides a strong sense of presence,

helping users adopt new viewpoints [15]. 2) Perspective-Taking

and Emotional Engagement: Simulates realistic scenarios to

provoke emotional responses and understanding [19]. 3) Empathy

Training: Effective in healthcare, education, and diversity training

by challenging preconceptions and deepening emotional insights

[16]. 4) Ethical Considerations: Ensures respectful use of VR,

balancing immersive experiences with participants’ well-being

[2].

The objective of this study was to examine how participants’

empathy correlates with changes in their physiological metrics,

measured using sensors such as inertial measurement unit (IMU),

photoplethysmograph (PPG), and electromyography (EMG).

Participants were immersed in 360° VR videos featuring actors

displaying various emotions (sadness, happiness, anger, and

anxiety) and reported their empathetic experiences via brief

questionnaires. Using data from these sensors and questionnaires,

machine learning models were developed to predict empathy

scores based on physiological responses during the VR sessions

[9].

2 Materials and Data Collection Process
2.1 Materials and Setup for Empathy

Elicitation in VR
To elicit empathy, we immersed participants in a 360º and 3D

virtual environment, as VR has proven more effective than

methods like 2D videos, workshops, or text-based exercises [8,

13, 17, 20]. We used videos featuring actors expressing four

emotions—happiness, sadness, anger, and anxiousness—without

additional content to avoid confounding factors [2]. Recognizing

the impact of understanding emotional context, an audio

narrative version was also created, followed by a corresponding

video (50-120 seconds). To ensure gender balance, we recorded

videos with two male and two female actors. Five versions were

developed: four with narratives (two male, two female) and one

non-narrative, where all emotions are portrayed by all actors

without accompanying narratives. The non-narrative version

allows gradual transitions between emotions, making it suitable

for participants of all linguistic backgrounds.

Additionally, a 2-minute forest video ("The Amsterdam Forest

in Springtime") was included at the start to establish a relaxed

baseline and a roller coaster video ("Official 360 POV - Yukon

Striker - Canada’s Wonderland") at the end to control for

non-empathic arousal. Both videos were sourced from YouTube.

Participants completed trait empathy questionnaires (QCAE)

[14] and, after each emotion-specific video, provided feedback
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Figure 1: The best accuracies for each group of models, developed using datasets extracted at two different frequencies and
various data balancing techniques, presented for all the labeling schemes

on their empathic state (State Empathy Scale) [18], arousal and

valence levels (SAM) [3], and personal distress (IRI) [5]. Each VR

session lasted around 20 minutes to minimize VR sickness, with

participants viewing one of five versions.

Sensor data were collected using the emteqPRO system

attached to the Pico Neo 3 Pro Eye VR headset, including EMG

for facial muscle activation, PPG for heart rate, and IMU for head

motion tracking. The device uses an internal clock as well [12].

2.2 Dataset Description
In this research, we used convenience sampling to recruit

participants from the general public without a specific selection

pattern. Participants were invited from various sources, including

Jožef Stefan Institute employees, university students, and

the general public. Invitations were sent verbally or in

writing. Data collection concluded with 105 participants,

averaging 22.43 ± 5.31 years (range 19–45), with 75.24%

identifying as female. Participants had diverse educational and

professional backgrounds. Additionally, ethical clearance for

this study was obtained from the Research Ethics Committee

at the Faculty of Arts, University of Maribor, Slovenia

(No. 038-11-146/2023/13FFUM). Furthermore, written informed

consent was obtained from the actors prior to recording.

The EmteqPRO system not only provides raw sensor data

but also generates derived variables through the Emteq Emotion

AI Engine, which utilizes data-fusion and machine learning to

analyze multimodal sensor data and assess the user’s emotional

state. This system provides a file with 29 derived features, called

affective insights for each recording: 7 features for heart-rate

variability (HRV) and 3 for breathing rate; 2 features for facial

expressions; 4 features for arousal and 4 for valence; 1 feature for

facial activation; and 1 feature for facial valence. Additionally,

head activity is tracked, reflecting the percentage of the session

with head movement. Dry EMG electrodes on facial muscles such

as the zygomatic, corrugator, frontalis, and orbicularis provide

four more features, each representing muscle activation as a

percentage of maximum activation observed during calibration.

The data also includes the time elapsed since the start of the

recording and the row index.

3 Methodology
3.1 Preprocessing
Since all the features or insights are numeric, except for the

feature "Expression/Type," which has three values—smile, frown,

and neutral—we applied one-hot encoding, a technique used in

data preprocessing where categorical (non-numeric) variables

are transformed into a numerical format. Each unique value in

the original non-numeric feature is transformed into a separate

binary (0 or 1) feature.

Next, because missing values represent less than 1% of the total

data for each participant, they were filled in using the average

of each feature’s values. Scaling the values in the descriptive

features between 0 and 1 was the final step in the preprocessing

process.

3.2 Feature Engineering
Since features were provided at intervals ranging from 1 second

to 500 milliseconds, we divided the data into two windows: one

of 5 seconds and one of 500 milliseconds. For each window,

we computed features from the 22 insights across the seven

modules, as well as from the features for head activity and

facial muscle electrodes, deriving a total of 108 new features,

including minimum, maximum, average, and standard deviation

for each original feature or insight. Additionally, the features for

head activity and facial muscle electrodes were used to define

’Expression/Type,’ and the time and row index were used as

provided. However, the row index was disregarded further in the

study.

We labeled the dataset in six different ways: 1) as a binary

classification aiming to detect empathic arousal, comparing

empathic parts with the forest part of the video, while excluding

the non-empathic content of the roller coaster video; 2) as a

binary classification using the forest and roller coaster, aiming to

detect non-empathic arousal; 3) again, as a binary classification,

but including only empathic parts and the roller coaster, aiming

to distinguish between empathic and non-empathic arousal, and

examining the differences in physiological responses between

empathic content and non-empathic arousal-inducing content,

such as the roller coaster video; 4) aiming to detect arousal in
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general, regardless of whether it is empathic or non-empathic,

by splitting the entire dataset into two classes: the forest and

everything else, including empathic parts and the roller coaster;

5) into three classes: treating the chunks of the roller coaster and

forest as separate classes and grouping all the empathic parts into

one class, without differentiating between the different emotions.

The goal is to distinguish among no-arousal, empathic arousal,

and non-empathic arousal; 6) with the average of participants’

answers to the state empathy questions for each part of the video,

with each part of the empathic content considered a separate

chunk. Additionally, there are two other classes: the forest and

the roller coaster. The aim is to detect the level of empathy

participants experience during the session. We also included each

participant’s ID, intending to later use it for model evaluation

with the ’leave-one-subject-out’ technique.

4 Experiments and Results
4.1 Experimental setup
To build models for predicting a participant’s state empathy

during the VR session, we used six different classification

algorithms: Gaussian Naive Bayes, Stochastic Gradient Descent

Classifier, K-Nearest Neighbors Classifier, Decision Tree

Classifier, Random Forest Classifier, and Extreme Gradient

Boosting Classifier. The balanced accuracy score was used as

an evaluation metric to assess the classification models for

predicting participants’ state empathy. This metric evaluates the

overall balanced accuracy of the model by calculating the average

of recall obtained on each class. Additionally, we used a confusion

matrices to evaluate the performance of the classification models

by comparing the actual and predicted labels.

For model evaluation, we used a Leave-One-Subject-Out

cross-validation setup, where each subject is a unique participant

identified by their ID.

Because the labeling schemes 2, 3, 5, and 6 are not balanced

(with the 80% of the majority class), we conducted four

experiments for each developed model: 1) applying the Synthetic

Minority Over-sampling Technique (SMOTE) to create synthetic

samples for the minority class to balance the dataset; 2) using

the RandomUnderSampler (RUnderS) method to randomly select

samples from the majority class, thereby reducing their count

and balancing the dataset; 3) using SMOTETomek, a combination

of SMOTE for oversampling and Tomek links for undersampling,

which targets both theminority andmajority classes; and 4) using

the dataset as it is, without any undersampling or oversampling.

4.2 Results
Including models developed by six different classification

algorithms on two distinct datasets—with two different window

sizes—and utilizing four different data balancing techniques:

undersampling, oversampling, combination techniques, and the

dataset in its original form, along with six different labeling

schemes, we obtained 288 unique confusion matrices and

corresponding accuracies for each combination.

We ran a correlation matrix, which revealed that the highest

correlation with the state empathy feature was found with

the derived maximum and minimum values from the mean

heart rate, the derived maximum and minimum values from

the arousal class feature, and the average of the arousal class

— the insight, which can be -1 (low), 0 (medium), or 1 (high).

The derived standard deviation, maximum, and minimum values

from the activation—expressed as a percentage of the maximum

activation of particular muscles from the calibration session,

especially the zygomaticus and orbicularis muscles—were also

highly correlated.

Regarding the labeling schemes, we can conclude the

following: 1) We can detect empathic arousal with confusion

matrices that show a relatively good distribution of correct

predictions across both classes and high accuracies for most

of the developed models; 2) We can detect non-empathic

arousal, with almost every developed model achieving a balanced

accuracy higher than 60%, reaching up to 78%, and a reasonable

balance between classes, indicating satisfactory classification

performance; 3) We can even distinguish between empathic and

non-empathic arousal with balanced accuracy of 79%; 4) We can

detect arousal in general, again with high accuracies and balanced

classes; 5) We can distinguish to some extent among no-arousal,

empathic arousal, and non-empathic arousal; 6) However, it is

currently very challenging to detect the precise level of empathy

participants are feeling during the session using these methods,

and to determine whether they are empathizing by mirroring

emotions or experiencing something different while observing

specific emotions. The best we can detect in this regard is up

to 28% balanced accuracy, with confusion matrices showing a

relatively balanced performance across multiple classes, with a

good number of correct classifications, particularly in the more

frequent classes.

Regarding the two window sizes, both models showed similar

class balance and balanced accuracy scores. However, the dataset

extracted at 5-second intervals performed slightly better. Using

this dataset, false positives and false negatives were reducedmore

effectively. This led to more reliable classification performance,

especially in terms of precision and recall, despite the smaller

scale. Thus, the models developed using the 5-second interval

dataset generally performed better, showing more effective

classification and fewer errors. The simpler confusion matrix

and potentially better handling of fewer classes suggest that it

performs better in practical terms (Figure 2, Figure 1).

Regarding the data balancing techniques, the undersampling

technique never produced the best results. For the dataset

extracted at 500 ms intervals, using the SMOTE oversampling

technique and SMOTETomek yielded the best results. For the

dataset extracted at 5-second intervals, using the entire dataset

yielded the best results, although models developed using

SMOTETomek yielded slightly lower results in each combination

of different labeling schemes.

Regarding the classification algorithms, Gaussian Naive Bayes

performed the worst in terms of balanced confusion matrices,

while Random Forest Classifier and Extreme Gradient Boosting

performed the best across all combinations, with Random Forest

Classifier showing slightly better results for most combinations

(Figure 2, Figure 1).

4.3 Conclusion
In this study, we define the entire plan for developing materials,

methods, and environments to evoke and measure the level of

empathy. We started by defining the videos and the session,

creating or selecting questionnaires for later use as ground truth,

writing the narratives, recording the VR videos, and then editing

and preparing them for use. Additionally, we collected a dataset

from over 100 participants, which we filtered, preprocessed, and

prepared for feature engineering and analysis.
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Figure 2: The best confusion matrices for each group of models, developed using dataset extracted at a 5s window size and
various data balancing techniques, shown for all labeling schemes

We conducted and analysed four groups of experiments,

totaling 288 combinations, where we developed models using

two different window sizes, six classification algorithms, and

three resampling techniques, with six different labeling schemes

aimed at detecting various aspects of the dataset chunks: four

empathetic parts, forest, and roller coaster.

The main conclusion is that we can detect arousal in general,

non-empathic arousal, empathy, and differentiate between

non-empathic and empathic arousal, as well as between relaxed

states and arousal. However, we face difficulties in detecting and

distinguishing between the precise levels of empathy during VR

sessions using these methods and approaches.

Our next steps involve refining the detection of empathy

levels during VR sessions by applying detailed data filtering

and transforming it into a stationary format. Furthermore, we

will develop models such as Autoregressive, Moving Average,

and Extended Recurrent Moving Average, and use clustering

techniques like DBSCAN and HDBSCAN. Additionally, we will

extract more features from the raw data or use end-to-end neural

networks. We plan to analyze gender differences in empathy

with a t-test [7], and explore the impact of narrative context and

emotions on empathic responses using ANOVA and MANOVA

[4, 6].
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