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Abstract 
To mitigate distractions during complex tasks, ubiquitous 
computing devices should adapt to the user's cognitive load. 
However, accurately assessing cognitive load remains a significant 
challenge. This study aims to present sophisticated, multi-modal 
data collection, which can enable accurate estimation of cognitive 
load using wearable and contact-free devices. A total of 25 
participants participated in six cognitive load-inducing tasks, each 
presented at two levels of difficulty. Simultaneously, physiological 
and behavioral data were collected from a multi-modal sensory 
setup, including: Empatica E4 wristband, Emteq OCOsense 
glasses, an eye tracker, a thermal camera, a depth camera and an 
RGB video camera. Additionally, participants provided subjective 
measures of cognitive load by completing standardized NASA 
Task Load Index (NASA TLX) and Instantaneous Self-Assessment 
(ISA) questionnaires following each cognitive task. Preliminary 
statistical analyses were conducted on participant demographics, 
performance metrics, and the perceived difficulty of tasks, as 
reported in the completed questionnaires.  
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1 Introduction 
Human attention is a critical resource that is increasingly targeted 
by mobile applications, online services, and other forms of digital 
engagement. In an era of constant connectivity, capturing and 
retaining user attention has become a primary objective for many 
technologies. However, as users engage in cognitively demanding 
tasks, distractions can lead to performance degradation and 
increased stress. Therefore, to minimize interruptions and maintain 
productivity, ubiquitous computing systems must become capable 
of recognizing and adapting to the user’s cognitive load in real time.  

    Cognitive load, defined as the mental effort required to process 
information and perform tasks, triggers a series of physiological 
responses in the human body. These responses are largely governed 
by the activation of the sympathetic nervous system. When 
cognitive load increases, measurable changes can be observed in 
physiological markers, including blood pressure, brain activity, eye 
movements, electrodermal activity (EDA), respiration rate, heart 
rate variability, etc. Furthermore, changes are also reflected in 
facial expressions, posture, and other behavioural patterns. 

    This study seeks to offer a unique multi-modal dataset with a rich 
set of wearable and unobtrusive sensors to capture the subtle 
changes that occur with the gradual activation of the sympathetic 
nervous system. Rather than solely focusing on maximizing data 
accuracy through the use of numerous devices, this approach also 
aims to identify the minimum set of sensors required to achieve 
reliable cognitive load assessment. To that end, rich multi-modal 
data was collected from a myriad of sensors, including wearables 
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(OCOsense glasses and Empatica E4 wristband) and contact-free 
unobtrusive sensors such as an advanced eye tracker, a thermal 
camera, a depth camera, and an RGB video camera. To the best of 
our knowledge, no prior dataset exists containing such rich multi-
modal data obtained with such an elaborate sensory setup.  
 
2    Related Work 
The challenge of cognitive load estimation has been extensively 
studied across various fields. Significant emphasis has been placed 
on reducing cognitive load in dynamic environments, such as 
aviation [1]. Recent research has increasingly focused on 
transitioning from direct measurements, such as 
electroencephalography (EEG), to indirect methods of cognitive 
load assessment. For instance, ocular metrics, including pupil 
diameter and blink rate, have been shown to accurately estimate 
cognitive load [2, 3, 4]. Additionally, facial temperature variations 
have been widely correlated with cognitive workload, providing 
another non-invasive means of assessment [5, 6]. Novak et al. 
demonstrated that biometric indicators, such as galvanic skin 
response and skin temperature, can signal increased cognitive load; 
however, these measures are insufficient to distinguish between 
varying levels of cognitive load [7]. Wang et al. demonstrated that 
visual cues—including face pose, eye gaze, eye blinking, and yawn 
frequency—can serve as indicators of cognitive load [8]. 
    This research aims to address the complexities of cognitive load 
estimation by integrating a wide range of psychophysiological 
signals, offering a more comprehensive approach to this task. 
  

3    Experimental Setup 
The objective of our data collection was to capture participants' 
cognitive load under varying levels of difficulty imposed by 
cognitive load-inducing tasks. The study was conducted in a quiet, 
temperature-controlled room, with participants tested individually. 
At the beginning of each session, participants were seated in a 
comfortable chair in front of a 24” monitor and given instructions 
about the experiment and their expected role. The Empatica E4 
wristband was then fitted to the participant's non-dominant hand, 
and the OCOsense glasses for emotion recognition were equipped 
in line with product instructions.  
    Data collection was further enriched through the use of 
unobtrusive sensing technologies, including a Tobii Spark eye 
tracker (60 frames per second), an Intel RealSense Depth Camera 
D455 (providing depth data at 30 fps), a Logitech BRIO stream 4k 
webcam at 10 fps with HDR and noise-canceling microphones and 
a FLIR Lepton 3 thermal camera delivering a full 160x120 pixel 
thermal resolution with 8 fps. We used this set of devices to 
continuously monitor participants throughout the recording 
session. The experimental setup can be observed in Figure 1. 
 

4    Data Collection Protocol 
Prior to the experiment, participants completed a brief sleep 
questionnaire to gather information about their sleep patterns (e.g., 
hours slept the night before and usual sleep duration) and rated their 
levels of fatigue and focus on a scale of 1 to 10. 
 

 
Figure 1: Experimental setup 

 
Calibration data for the OCOsense glasses was then recorded by 
having participants replicate four facial expressions — smiling, 
frowning, brow raising, and eye squeezing — three times each. 
Calibration for the eye tracker followed, during which participants 
tracked a moving dot with their eyes. This calibration aimed to 
optimize participant's seating position for accurate eye-tracking. 
    The experiment's main phase involved participants completing 
cognitive load-inducing tasks that tested three aspects of cognition: 
attention, memory, and visual perception. For each cognitive 
domain, two widely recognized tasks were presented, each with 
two levels of difficulty (easy and difficult). This design allowed for 
the differentiation of cognitive load levels. Following each 
category of cognitive tasks, participants engaged in relaxation tasks 
that were not expected to induce cognitive load, such as meditation 
with open eyes, listening to music to relieve stress and passive 
viewing of aesthetically pleasing images. These tasks provided 
baseline data for periods of minimal cognitive load. 
    In summary, each recording session included six cognitive load-
inducing tasks (with two levels of difficulty) and three relaxation 
tasks, totaling 15 tasks. After each task, participants completed the 
NASA Task Load Index (NASA TLX) questionnaire, a validated 
instrument for assessing cognitive load across six dimensions: 
mental demand, physical demand, temporal demand, performance, 
effort, and frustration [9]. Each question was rated on a scale of 0 
to 100. In this study, the unweighted version of the NASA TLX, 
known as the Raw NASA TLX, was used. Additionally, 
participants completed a single-item Instantaneous Self-
Assessment (ISA) of workload, providing a subjective measure of 
the cognitive load induced by the task [10]. These questionnaires 
served as subjective assessments of cognitive load and as reference 
points for the difficulty of each task [11].  
    The tasks were implemented using PsychoPy, an open-source 
software package commonly used in neuroscience and 
experimental psychology research [12]. For attention-related tasks, 
participants completed the N-back and Stroop tests. In the N-back 
task, participants were presented with a sequence of letters and 
asked to determine whether the current letter matched the one 
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presented N trials earlier (with task difficulty increasing as N 
increased) [13]. Participants completed both a 2-back and a 3-back 
task. In the Stroop test, participants identified whether the word 
matched the color in which it was written, with the easier version 
involving two colors (red and blue) and the more difficult version 
incorporating five colors [14].  
    Memory-related tasks included a memory game and a question-
answering task based on a previously shown image. In the memory 
game, participants recalled as many words as possible from a set, 
with the easier version comprising seven words and the more 
difficult version consisting of 15 words. In the question-answering 
task, participants focused on an image and then answered questions 
about it (e.g., remembering the number of particular objects in the 
image), with the hard version using an image with greater detail. 
    The visual perception tasks included a "spot the difference" task 
and a pursuit test. In the "spot the difference" task, participants were 
presented with two images and were asked to identify as many 
differences as possible within a one-minute time frame. The 
difficulty of this task varied, with the more challenging version 
involving an image that contained greater detail compared to the 
simpler, easier version. The pursuit test required participants to 
visually track irregularly curved, overlapping lines. As with the 
"spot the difference" task, the pursuit test was administered at two 
levels of difficulty. The more difficult version featured a more 
intricate image, with longer and more tangled lines, as opposed to 
the less complex image used in the easier version of the task. 
 

5    Statistics 
In this section, we present some descriptive demographic and task-
related statistics for the participants involved in the experiment. 
The average age of participants was 29.28 years, with a standard 
deviation of 8.31. In terms of educational background, the majority 
of participants (44 %) had obtained a Bachelor's degree (BSc), 
followed by those with a Master's degree (MSc), 28 %. A smaller 
portion had completed only high school (16 %) or had earned a PhD    
(12 %). Additionally, 60 % of the participants were male. 
    We then looked at the descriptive statistics derived from the 
performance of the participants in each task. These indicate that 
participants performed consistently well on tasks such as the 2-back 
task, both easy and difficult versions of the Stroop test, the easy 
memory task (where participants recalled an average of 5 out of 7 
words), the easy version of the "spot the difference" task (with an 
average detection rate of approximately 90 % of all the 
differences), and both versions of the pursuit test. Notably, 
participants performed slightly better on the difficult version of the 
Stroop test, likely due to their increased familiarity with the task. 
    However, performance was lower on tasks such as the 3-back 
test (which most participants perceived as highly or extremely 
difficult), the difficult memory task (with an average recall rate of 
39 %), and both the easy and difficult question-answering tasks. 
The difficult version of the "spot the difference" task also showed 
lower performance, with participants detecting only 25 % of the 
differences on average. Consistent performance among subjects 
(with low standard deviation) was observed across all tasks except 

for the N-back tasks. Notably, the N-back tasks were always 
presented first to participants, suggesting that they may have 
required additional time to adjust to the testing environment and 
fully engage with the task. 
    Next, an inferential statistical analysis was performed on the 
relationship between task scores and various variables of the sleep 
pattern. To investigate the potential influence of tiredness on 
performance, responses from the sleep patterns questionnaire were 
analyzed. A non-parametric Kruskal-Wallis test was performed to 
determine whether there was a statistically significant difference in 
overall scores across different levels of tiredness (low, medium, 
and high). The resulting p-value (0.91) indicated no significant 
difference in performance between these groups. Thus, tiredness 
levels did not show a statistically significant impact on 
performance within a 95 % confidence interval.  
    Similarly, the effect of focus level (low vs. high) on overall 
performance was examined using a non-parametric Mann-Whitney 
test. The p-value was 0.12, indicating no statistically significant 
difference in performance between low and high focus groups at 
the 5 % significance level.  
    Furthermore, the relationship between hours of sleep the night 
before the experiment and participant performance was examined 
using Spearman’s correlation. The p-value was 0.42, indicating no 
statistically significant correlation between overall performance 
scores and hours of sleep the night before the experiment.  
    The potential influence of participants' highest education level 
on overall performance was also investigated. To assess this, a non-
parametric Kruskal-Wallis test was conducted. The results (p-value 
of 0.33) indicated no statistically significant difference in 
performance scores across different education levels among the 
participants. 
    Overall, the small sample size may have constrained the ability 
to detect significant effects. The limited variability in the sample's 
educational background and other factors likely contributed to the 
lack of observed differences, emphasizing the need for a larger, 
more diverse sample to better understand the impact of these 
variables on cognitive load performance. 
 
 

 
 

Figure 2: Reported perceived difficulty per cognitive task 
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    As shown in Figure 2, participants consistently perceived the 
difficulty of the two N-back tasks and the difficult version of the 
"spot the difference" task as somewhat high or high. This suggests 
a general consensus regarding the difficulty of these tasks. In 
contrast, the NASA TLX-based perceived difficulty of remaining 
tasks, exhibited significant variability among participants.  
    To assess differences in performance across task difficulties and 
evaluate the potential for differentiating cognitive load using 
machine learning models, we conducted additional inferential 
statistical analyses. The Wilcoxon signed-rank test was used to 
compare participant performance on the easier and more difficult 
versions of each cognitive task. 
    Statistically significant differences in performance were found 
between the two difficulty levels for all tasks. For the N-back, "spot 
the difference", and pursuit tasks, participants performed 
significantly better on the easier versions, indicating that increased 
difficulty negatively impacted performance. Conversely, for the 
Stroop, memory, and question-answering tasks, participants 
performed better on the more difficult versions.  
    The statistical analysis conducted in this study provides initial 
evidence supporting the validity of the data collection protocol, 
particularly with respect to the selection of tasks and task difficulty 
levels. The tasks chosen for this experiment varied significantly in 
terms of their cognitive demands, as reflected by the substantial 
differences in performance between the easier and more difficult 
versions of each task. These results indicate that cognitive load and 
performance are task-specific, and the significant differences 
observed support the feasibility of using machine learning models 
to differentiate between varying levels of cognitive load.  
 

6    Conclusion and Future Work 
This study employs a novel approach to data collection for 
cognitive load inference by combining psychophysiological data 
obtained from multi-modal sensory setup, including wearable and 
unobtrusive contact-free sensors. The decision to utilize a diverse 
set of devices was motivated by the hypothesis that integrating data 
from multiple sources could provide a more accurate assessment of 
cognitive load, while also aiming to identify the minimal sensor 
configuration required to achieve reliable results. This is 
particularly relevant in dynamic and high-stakes environments, 
such as driving, where accurate cognitive load assessment could 
have life-saving implications. To the best of our knowledge, no 
prior research has incorporated such a comprehensive and 
multifaceted setup for cognitive load evaluation.  
    The statistical analyses conducted thus far offer promising 
validation for the data collection protocol. The selection of tasks 
and task difficulty levels proved effective in eliciting a range of 
cognitive load levels, as evidenced by the significant performance 
differences between task difficulties. 
    To further enhance the validity of the data collection protocol, 
several changes could be implemented in potential subsequent 
collections. Refining task difficulty levels could offer more 
granularity in cognitive load differentiation, ensuring a clearer 
distinction between varying levels of cognitive load. Furthermore, 
increasing the diversity of participants in terms of age, educational 

background, and other demographic factors is desirable to enhance 
the generalizability of the findings. 
    In future work, the collected data will be processed and utilized 
to train machine learning models aimed at estimating cognitive 
load. Ground truth for the machine learning models can be derived 
from various sources, including perceived task difficulty reported 
through the standardized questionnaires, the designed difficulty 
level of the tasks or the participants' performance on the tasks. 
These machine learning models will leverage sophisticated ML 
techniques to effectively integrate and analyze multi-modal data, 
aiming to enhance the accuracy of cognitive load predictions. We 
also plan to further expand the dataset with another phase of data 
collection, offering a rich dataset both in terms of modalities, as 
well as in terms of participants. The collected dataset will serve as 
a stepping stone towards robust multi-modal cognitive load 
assessment, allowing for creation and benchmarking of ML models 
and will be made available to general public after the collection is 
finalized. 
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