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Abstract
This paper presents a comparative analysis of feature- and embe-

dding-based approaches for audio-visual emotion classification.

We compared the performance of traditional handcrafted fea-

tures, using MediaPipe for visual features and Mel-frequency

cepstral coefficients (MFCCs) for audio features, against neural

network (NN)-based embeddings obtained from pretrained mod-

els suitable for emotion recognition (ER). The study employs

separate uni-modal datasets for audio and visual modalities to

rigorously assess the performance of each feature set on each

modality. Results demonstrate that in the case of visual data NN-

based embeddings significantly outperform handcrafted features

in terms of accuracy and F1 score when training a traditional

classifier. However, for audio data the performance is similar

on all feature sets. Handcrafted features, such as facial blend-

shapes, computed from MediaPipe keypoints and MFCCs, re-

main relevant in resource-constrained settings due to their lower

computational demands. This research provides insights into

the trade-offs between traditional feature extraction methods

and modern deep learning techniques, offering guidance for the

development of future emotion classification systems.
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1 Introduction
Automated emotion recognition (ER) often focuses on twomodali-

ties – video and audio. This is akin to human emotion recognition,

as we heavily rely on audio-visual characteristics, such as facial

expressions and audio cues, to deduce emotional state [7]. Both

audio and video are relatively simple to obtain using sensors,

as such sensors are unobtrusive and easily available (e.g., web-

cameras) and can be used to train machine learning (ML) models

for emotion recognition.

In the past decade deep-learning (DL) approaches achieved

state-of-the-art (SOTA) results in many domains, including emo-

tion recognition [16]. However, despite the superior performance

of such models, many doubts have been cast on their black-box
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nature, lacking explainability and interpretability of the internally

derived features [9]. Furthermore, while some research suggests

superior performance of embeddings compared to traditional

features [20], this is not universally agreed upon [8], especially

when taking into account potentially much higher computational

complexity of deriving embeddings with deep artificial neural

networks (ANNs).

Our research question is thus, whether it is better to compute

embeddings using SOTA pretrained DL models instead of using

hand-crafted features, as ANN embeddings promise to increase

detection accuracy at the cost of interpretability and computa-

tional complexity. In this work we compared the performance of

hand-crafted features and embeddings obtained with pretrained

SOTA models for the down-stream task of emotion recognition.

We independently compared ER performance of audio and video

modality, using established benchmark datasets for each. Hand-

crafted features were chosen based on literature and embeddings

were computed with task-suitable pretrained models available

in existing Python libraries. Both were formatted in a way that

allowed us to then train a set of traditional ML models, listed in

Section 3.3, for ER, using hand-crafted features, embeddings, or

a union of both as inputs.

2 Related Work
Performance comparison of hand-crafted features and learned

embeddings has been discussed in depth in computer vision do-

main. Schonberger et al. [15] demonstrated that hand-crafted

features (e.g., SIFT) still perform on par or better than learned

embeddings in image reconstruction. They warned of high vari-

ance across datasets when using learned embeddings as features.

Similarly, Antipov et al. [2] reported similar performance of hand-

crafted features (e.g., HOG) and learned embeddings when classi-

fying pedestrian gender from images using small datasets. They

also highlighted superior generalization performance of embed-

dings across (unseen) datasets. In emotion recognition from audio,

Papakostas et al. [13] compared using hand-crafted MFCC-based

features with embeddings from a custom convolutional neural

network (CNN) trained on spectrograms. The latter slightly out-

performed hand-crafted features by 1% on average in terms of

F1 score, again showing similar performance. Ye et al. [21] re-

cently showed that using a union of both hand-crafted features

and learned embeddings achieves superior performance in user

identification, compared to using each input individually.

There is moderate (but not universal) agreement in recent

literature that performance between hand-crafted features and
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learned embeddings is similar, however, most work comparing

their performance is limited to a single modality or task. We

compared performance between two different modalities for the

task of ER and investigated potential performance improvements

of feature-level fusion (hand-crafted + embeddings).

3 Methodology
Our task consisted of two parts – hand-crafted features and em-

beddings computation, and ER model training for classification.

Both were done on (separate) audio and visual modality and will

be described per-modality in the following sections.

3.1 Datasets
As mentioned previously, the ER task is most-often audio-visual,

so we decided to use an audio and a visual dataset to indepen-

dently evaluate the performance of different feature sets. While

many datasets exist that contain both modalities, they often have

a problem of imprecise coarse emotion labelling [18], as labels

are video-based, while emotions can be exhibited and changed in

much shorter windows. Splitting video into frames yields a large

number of (different) instances with the same label, so we wanted

a dataset with individual image labels. As our focus was on com-

paring the performance of hand-crafted and embedding-based

features, we chose two well-established benchmark datasets ded-

icated to audio and visual emotion classification. These datasets

contain short audio clips and individual images with precise

short-term and per-frame labels, circumventing the mentioned

per-video labelling problem.

3.1.1 Audio Dataset. For evaluation on audio data we decided

to use the crowd-sourced emotional multimodal actors dataset

(CREMA-D) [4]. It contains short clips of 91 actors between the

ages of 20 and 74 coming from a variety of races and ethnicities,

who exhibited six different emotions (Anger, Disgust, Fear, Happy,
Neutral, Sad). Each actor produced about 80 clips (small vari-

ation), saying specific sentences exhibiting different emotions.

The distribution of labels was balanced, each class representing

approx. 16% of the data. The intended emotions were verified

with 2,443 crowd-sourced human raters as baseline. These raters

predicted emotions based on audio only, video only, or both,

achieving 40.9%, 58.2% and 63.6% recognition of intended (acted)

emotion respectively.

3.1.2 Visual Dataset. For visual data we chose the extended

Cohn-Kanade dataset (CK+) [11], which a staple dataset in ER

evaluation from facial expressions. It contains images of 118

adults, aged between 18 and 50, again of different ethnicities. Par-

ticipants were instructed to perform a series of 23 facial displays,

relating to one of seven emotions (Anger, Contempt, Disgust, Fear,
Happy, Sad, Surprise). The distribution of classes in CK+ is not

balanced – Surprise is the majority class at 25% and Contempt the
minority class at 6%, with others in between. This distribution

also changes between subjects. CK+ images were reshaped to

48x48 pixels, put in grayscale format and cropped using frontal

face Haar cascade classifier [1] as part of preprocessing. The

emotion labels were validated by experts via facial activation

unit rules (e.g., Happy = Activation unit 12 must be present = Lip

corner puller active).

3.2 Feature Computation
For selection of hand-crafted features we relied on literature

and previous work in ER for each modality. For embeddings on

the other hand, we chose SOTA pretrained models trained for

related tasks. We extracted embeddings at a model-specific point

before the learning layers, and formatted them using principal

component analysis (PCA) in order to reduce their dimensionality

while maintaining the relevant information.

3.2.1 Audio Features. MFCCs are historically well-established

in ER from audio [10], as they give a good approximation of the

human auditory system’s response. For each audio clip, we com-

puted a common set of statistical aggregate features (averages,

standard deviations) for MFCCs, Root Mean Square (RMS) en-

ergy (volume), Zero-Crossing Rate, Spectral Bandwidth, Spectral

Contrast, and Spectral Roll-off, using the librosa python library.

For embeddings we decided to investigate models pretrained

on similar audio tasks (e.g., emotion recognition) and use them

to the point where embeddings are available, which typically

means the upper part of the ANN architecture, responsible for

computation of embeddings representing the features. Three pre-

trained models were investigated in our evaluation, all based

on the wav2vec2 architecture, which is a self-supervised model

for learning speech representations proposed by Facebook AI

Research (FAIR) [3]. Full wav2vec2 pretraining framework com-

prises a latent feature encoder, a context network using the trans-

former architecture, a quantization module and contrastive loss

(pre-training objective). For our purposes the feature encoder

is important, which is a 7-layer 1D CNN reducing the dimen-

sionality of audio inputs into a sequence of feature vectors. The

initial model version was pretrained on the LibriSpeech dataset,

another version was fine-tuned on IEMOCAP dataset specifically

for ER, and finally a large general cross-lingual model (XLSR)

was trained on millions of hours of unlabeled audio data in 53

(later extended) languages [5]. These three variants were used

to extract their corresponding embeddings. Since the input data

from CREMA-D is of inconsistent shape (varying by < 1 sec), we

had to employ an additional adaptive average pooling layer to en-

sure consistently shaped outputs. We designed this pooling layer

so that we lost minimal information (short segment length for

pooling) and the outputs were then flattened. PCA was employed

to subsequently reduce them to 10 dimensions. The number of di-

mensions was chosen arbitrarily and could be changed, however,

we believe that 10 dimensions offer a good balance between re-

tained information and computational (and spatial) requirements.

Moreover, this number of PCA components is on the same order

of magnitude as the number of hand-crafted features, making

them more comparable.

3.2.2 Visual Features. For visual features, we focused on the

movement of specific facial keypoints, such as the corners of

the mouth and eyebrows, which form the basis of the Facial

Action Coding System (FACS) – a taxonomy that categorizes

human facial expressions based on muscle movements [6]. We

employed the MediaPipe (MP) framework [12] to extract values

representing the activation of various facial blendshapes, which

correspond approximately to the regions defined in FACS. In this

paper, we classify MediaPipe features as “handcrafted” because,

despite being neural network-based, they quantify predefined

facial areas with human-interpretable metrics. This contrasts

with CNN-based embeddings, which capture patterns without

direct interpretability.

For comparison, we used embeddings from two pretrained

models: FaceNet [17] and EfficientNet [19] from the HSEmotion

library [14]. FaceNet architecture is based on GoogleNet, which

is a variant of deep CNN, and is trained using triplet loss. It
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was optimized for facial recognition, verification, and clustering.

EfficientNet comprises several inverted bottleneck convolutional

residual blocks. It achieved SOTA results on the AffectNet ER

dataset, while being relatively light-weight. Again, PCAwas used

to reduce the embeddings to 10 dimensions.

3.2.3 Computational and Spatial Requirements. In order to have

a clear overview of the trade-off between computational and

spatial requirements of each feature computation method, and

their classification performance discussed in the next section, we

first report the average times to compute and disk sizes of the

output (per one instance) for each method in Table 1.

Table 1: Average time and disk space needed for feature
computation using each method.

Modality Feature method Avg. Time Avg. Space

Audio

MFCC stats 19 ms < 1 kB
wav2vec2 LibriSpeech 99 ms 194 kB

wav2vec2 XLSR 274 ms 258 kB

wav2vec2 IEMOCAP 101 ms 5 kB

Video

MediaPipe 10 ms < 1 kB
FaceNet 29 ms 2 kB

EfficientNet 2 ms 5 kB

When interpreting the results in Table 1, it must also be con-

sidered that DL-based methods require additional computational

time when doing PCA on top of the raw embeddings.

3.3 Emotion Classification
Data splitting is a crucial step in evaluation of ML models, as

it must be done in a way to avoid overfitting and provide a ro-

bust evaluation of generalization capabilities of a model. The

aim of this research was primarily not to evaluate the absolute

performance of ER, but rather compare the performance when

using hand-crafted vs. embedding features. Therefore it was cru-

cial to consistently ensure that the same data splits and models

were used in each experiment, for each of the compared inputs.

We decided for the most robust leave-one-subject-out (LOSO)

evaluation, always using default model hyperparameters. Such

experimental setup minimized overfitting and also gave a good

overview of generalization performance of emotion classifiers.

4 Experiments and Results
The outputs of the previous step were used as inputs (features)

to train a traditional ML model for emotion classification. We

evaluated several options: taking the 10 PCA components of em-

beddings obtained from each pretrained model as inputs, taking

only hand-crafted features as inputs, and taking union of both

as input. Each of these cases was evaluated for audio and visual

modality separately, using the LOSO experimental setup. Several

popular ML models were compared (with default hyperparame-

ters), including k-nearest Neighbours (kNN), Random Forest (RF),

Support Vector Machines (SVM) with linear kernel, and eXtreme

Gradient Boosting (XGB). We monitored classification accuracy

and macro F1 score as metrics of the model performance. All

results were compared with baseline majority classifier and are

reported as averages across all iterations of LOSO, wheremajority

was always taken from the train data (all except left-out).

4.1 Audio Emotion Classification
As mentioned in Section 3 we investigated the following options

as feature inputs:

(1) Hand-crafted statistical features relating to MFCCs

(2) 10-component PCA ofwav2vec2 embeddings from amodel

trained on LibriSpeech

(3) 10-component PCA ofwav2vec2 embeddings from amodel

trained on IEMOCAP

(4) 10-component PCA of wav2vec2 embeddings from a cross-

lingual XLSR model

(5) Union of hand-crafted and best-performing embeddings

(from above)

These were compared in experiments as described in Section 3.3,

using a set of four ML models. Results of best-performing model

for each set in terms of accuracy and F1 are given in Table 2.

Fused data was acquired by concatenating the feature sets.

Table 2: Best performing models for each feature set and
corresponding accuracy and F1 scores for audio data. Note
that embeddings were represented with 10 components
obtained from PCA.

Feature set Best model Accuracy F1 score

N/A Majority 0.17±0.00 0.05±0.00
MFCC stats RF 0.46±0.08 0.43±0.09
wav2vec2 LibriSpeech SVM 0.47±0.08 0.45±0.09
wav2vec2 XLSR SVM 0.30±0.05 0.27±0.05
wav2vec2 IEMOCAP SVM 0.47±0.08 0.42±0.09
MFCC + best wav2vec2 SVM 0.52±0.09 0.50±0.10
4.2 Image Emotion Classification
To stay consistent with the audio experiments we performed the

same LOSO experiments described in Section 3.3. We compared

model performances using the following features as inputs:

(1) MediaPipe blendshapes

(2) 10-component PCA of FaceNet embeddings

(3) 10-component PCA of EfficientNet embeddings

(4) Union of MP and FaceNet embeddings

(5) Union of MP and EfficientNet embeddings

Accuracy and F1 scores for the best performing models for

each set of features are again reported in Table 3

Table 3: Best-performing models for each feature set and
corresponding accuracy and F1 scores for visual data. Note
that embeddings were represented with 10 components
obtained from PCA.

Feature set Best model Accuracy F1 score

N/A Majority 0.25±0.00 0.40±0.00
MediaPipe RF 0.62±0.28 0.51±0.29
FaceNet SVM 0.45±0.30 0.36±0.30
EfficientNet RF 0.93±0.16 0.90±0.20
Mediapipe + FaceNet XGB 0.70±0.28 0.60±0.29
Mediapipe + EfficientNet XGB 0.93±0.17 0.90±0.21

4.3 Discussion
From Tables 2 and 3 we can observe that for audio the best

performance is achieved when using union of hand-crafted and

embedding features, while for visual ER the performance of only

embeddings or union is nearly identical. The improvement of

feature union is thus generally small, as for visual data we get

the same result as using only the best embeddings (1% difference

in standard deviation), while for audio data the improvement in
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both metrics is about 5% compared to individual feature sets. All

results substantially outperform the baseline majority classifiers.

For audio datawe can see that the best embedding set (wav2vec2

LibriSpeech) performs nearly the same as hand-crafted features

(MFCC stats), which is in agreement with some literature [13]. It

is surprising that LibriSpeech embeddings slightly outperform

IEMOCAP ones, since the latter were trained specifically for

emotion recognition, while the former were not. The subpar

performance of XLSR is expected, since it is a more general cross-

lingual unsupervised model, while investigated data is spoken in

English. For visual data on the other hand the best embeddings

(EfficientNet) substantially outperform hand-crafted facial ex-

pression features (MediaPipe) and those obtained from FaceNet.

This is expected, as EfficientNet was trained specifically for emo-

tion recognition, while FaceNet was trained for face recognition.

In terms of ML models, we consistently observed best perfor-

mance of SVM for ER from audio data, while for video data the

best model is not as homogeneous. Importantly, performance of

different models (RF, SVM and XGB) was often within 1%.

Another important observation is the relative stability of re-

sults across subjects when classifying from audio, with standard

deviations around 8%. The same was not observed in the eval-

uation from visual data, with much higher standard deviations,

indicating lower stability and greater variation between subjects.

To address our initial research question, we observed simi-

lar performance of hand-crafted features and embeddings from

SOTA DL models for audio-based ER, with union of both achiev-

ing the best results. The image-based visual ER achieved much

better performance with learned embeddings as inputs, while the

union of features showed no improvement. However, the cost

of hand-crafted features and embeddings in terms of computa-

tional power required to compute, and spatial requirements to

save, is not the same. While hand-crafted features are usually

computed quickly and represented with a few numbers, as re-

ported in Table 1, the embeddings require loading a (commonly

large) pretrained ANN, which performs a large number of matrix

multiplications, resulting in high-dimensional embeddings (e.g.,

64×512). This in turn requires additional dimensionality reduc-

tion, such as PCA employed in this work. Our results indicate

that for image-based visual ER, the additional cost is worthwhile,

due to large improvements in performance, while audio-based

ER achieved much smaller improvement, making the use of em-

beddings from pretrained models less attractive.

Finally, hand-crafted features mostly offer direct interpretabil-

ity (e.g., audio loudness), while embeddings are commonly black-

box in nature, lacking explainability without suitablemechanisms

on top. The clear meaning of hand-crafted features can be helpful

when training traditional ML models, where feature importance

can be compared and subsequently interpreted.

5 Conclusion
In summary we compared using hand-crafted features, embed-

dings of pretrained SOTA models, or union of both, as inputs for

ERmodels using audio and visual data. We found that embedding-

based approach is substantially superior with visual data, out-

weighing the computational cost – the latter is in fact the lowest

when using EfficientNet. For audio data, the improvement was

only seen in union of inputs, and was relatively low.

As future work it would be worthwhile to compare merged

audio-visual features and embeddings in a single ER problem on

the same dataset having both modalities. Furthermore, currently

used data was simulated/acted, so interpretation of these results

must take that into account. Numbers are expected to decrease

on a more realistic dataset, as emotions in everyday life are quite

subtle [18]. It would thus make sense to run similar experiments

on more realistic data as well, although such data is more scarce.
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