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Abstract

Accurate vehicle axle weight estimation is essential for the main-
tenance and safety of transportation infrastructure. This study
evaluates and compares the performance of various algorithms
for axle weight prediction using time-series data. The algorithms
assessed include traditional machine learning models (e.g., ran-
dom forest) and advanced deep learning techniques (e.g., con-
volutional neural networks). The evaluation utilized datasets
comprising time-series data from 10 sensors positioned on a sin-
gle lane of a bridge, with the goal of predicting each vehicle’s axle
weights based on the signals from these sensors. Each algorithm’s
performance was measured against the OIML R-134 recommen-
dation, where a prediction was classified as accurate if the error
was within +4 percent for two-axle vehicles and +8 percent for
vehicles with more than two axles. Tests were conducted on sev-
eral bridges, with this paper presenting detailed results from the
Lopata bridge. Findings indicate that deep learning models, par-
ticularly convolutional neural networks, significantly outperform
traditional methods in terms of accuracy and their ability to adapt
to complex patterns in time-series data. This study provides a
valuable reference for researchers and practitioners aiming to
enhance axle weight prediction systems, thereby contributing to
more effective infrastructure management and safety monitoring.
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1 Introduction

Accurate axle weight prediction plays a pivotal role in the mainte-
nance and safety of transportation infrastructure [7]. The precise
estimation of axle weights is essential for various applications,
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including road maintenance planning, traffic management, and
the prevention of overloading, which can lead to premature road
wear and increased accident risks [8]. Traditional methods for
axle weight measurement often rely on static scales or weigh-
in-motion (WIM) systems. While these methods provide direct
measurements, they are susceptible to limitations such as high
installation and maintenance costs, potential measurement inac-
curacies due to environmental factors, and the need for frequent
calibration.

In recent years, the advent of advanced computational tech-
niques has opened new avenues for improving axle weight predic-
tion. Machine learning (ML) and deep learning (DL) algorithms, in
particular, offer promising alternatives by leveraging time-series
data to model complex, non-linear relationships inherent in ve-
hicular weight patterns. These methods can enhance prediction
accuracy, handle large volumes of data, and adapt to varying con-
ditions, making them suitable for real-world applications where
traditional methods may fall short.

This study systematically evaluates and compares the per-
formance of various axle weight prediction algorithms using
time-series data. We focus on a diverse set of algorithms, includ-
ing machine learning models like random forests (RF) [6] and
advanced deep learning techniques such as convolutional neural
networks (CNN) [4].

The objective of this research is to explore the potential of
combining traditional WIM systems with advanced ML and DL
models to enhance axle weight predictions. By comparing the
performance of different methodologies, including the STIWIM
traditional model, random forest (IJS RF), a hybrid approach
(AVERAGE(TJS, SIWIM traditional)), and a CNN-based model, this
study aims to identify the most effective strategies for accurate
and reliable axle weight estimation. Additionally, it examines the
impact of synthetic data generation on the performance of these
models, providing a comprehensive evaluation of their practical
applicability in real-world scenarios.

The study aimed to predict the axle weights of vehicles using
ten input signals from sensors placed under the Lopata bridge.


https://doi.org/10.70314/is.2024.scai.4752

Information Society 2024, 7-11 October 2024, Ljubljana, Slovenia

Each predictive algorithm’s performance was evaluated accord-
ing to the OIML R-134 recommendation, which is deemed accu-
rate if the error margin for predicting the axle weight is within
+4% for vehicles with two axles and within +8% for vehicles with
more than two axles.

The dataset comprised 1478 samples, i.e. passing of a vehicle,
each containing 10 signals per vehicle. For each sample, a static
weight for each axle was assigned as the target value. Static
weight refers to the weight measured by a scale when the vehicle
is stationary.

This paper is structured as follows: Section 2 reviews several
state-of-the-art approaches. Section 3 details the preprocessing
steps necessary before applying machine learning methods. In
Section 4, algorithms used for predicting axle weights are pre-
sented. Section 5 presents the final results of the axle weight
predictions. Finally, Section 6 summarizes the findings and pro-
poses ideas for future research.

2 Related Work

The prediction of axle weights using time-series data has often
been studied in recent years, resulting in a substantial body of
related work. Below, several state-of-the-art (SOTA) approaches
are described.

Zhou et al. [10] differentiated between high-speed and low-
speed weigh-in-motion (WIM) systems and analyzed the char-
acteristics of axle weight signals. They proposed a nonlinear
curve-fitting algorithm, detailing its implementation. Numerical
simulations and field experiments assessed the method’s perfor-
mance, demonstrating its effectiveness with maximum weighing
errors for the front axle, rear axle, and gross weights recorded
at 4.01%, 5.24%, and 3.92%, respectively, at speeds of 15 km/h or
lower.

Wu et al. [8] introduced a modified encoder-decoder architec-
ture with a signal-reconstruction layer to identify vehicle proper-
ties (velocity, wheelbase, axle weight) using the bridge’s dynamic
response. This unsupervised encoder-decoder method extracts
higher features from the original data. A numerical bridge model
based on vehicle-bridge coupling vibration theory demonstrated
the method’s applicability. Results indicated that the proposed ap-
proach accurately predicts traffic loads without additional sensors
or vehicle weight labels, achieving better stability and reliability
even with significant data pollution.

Xu et al. [9] applied wavelet transform for denoising and re-
constructing the WIM signal, and used a back propagation (BP)
neural network optimized by the brain storm optimization (BSO)
algorithm to process the WIM signal. Comparing the predictive
abilities of BP neural networks optimized by different algorithms,
they found the BSO-BP WIM model to exhibit fast convergence
and high accuracy, with a maximum gross weight relative error
of 1.41% and a maximum axle weight relative error of 6.69%.

Kim et al. [5] developed signal analysis algorithms using artifi-
cial neural networks (ANN) for Bridge Weigh-in-Motion (B-WIM)
systems. Their procedure involved extracting information on ve-
hicle weight, speed, and axle count from time-domain strain
data. ANNs were selected for their effectiveness in incorporating
dynamic effects and bridge-vehicle interactions. Vehicle exper-
iments with various load cases were conducted on two bridge
types: a simply supported pre-stressed concrete girder bridge and
a cable-stayed bridge. High-speed and low-speed WIM systems
were used to cross-check and validate the algorithms’ perfor-
mance.
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Bosso et al. [1] proposed a method using weigh-in-motion
(WIM) data and regression trees to identify patterns in over-
loaded truck weights and travel. The analysis reveals that truck
type is the key predictor of overloading, while time of day is
crucial for axle overloading, with most incidents occurring late
at night or early morning. These insights can enhance enforce-
ment strategies and inform pavement management and design,
optimizing infrastructure longevity and safety.

He et al. [2] introduced a new method that uses only the
flexural strain signals from weighing sensors to identify axle
spacing and weights, reducing installation costs and expanding
BWIM applications. The method’s accuracy is validated through
numerical simulations and laboratory experiments with a scaled
vehicle-bridge interaction model, showing promising results for
accurate axle spacing and weight identification.

3 Data Preprocessing

Before applying various algorithms to the dataset, several pre-
processing steps were necessary. Due to the differing lengths of
signals from each sample, padding was performed to standardize
them to the length of the longest signal. Samples with a gross
weight below 5 kN were excluded from both the training and
test datasets. Each signal was cropped by removing data to the
left of the leftmost peak value minus 100 and to the right of the
rightmost peak value plus 100. The peak values were calculated
in advance.

To address the limited availability of data required for deep
learning, which typically necessitates tens of thousands of sam-
ples for effective training, synthetic data generation was em-
ployed. The original dataset comprised 1,478 samples (from Janu-
ary 2022 to December 2023) i.e. passing of a vehicle, each contain-
ing 10 signals per vehicle. An additional 20,000 synthetic samples
were generated using a specific algorithm. This algorithm oper-
ates by iterating 20,000 times, during each of which a random
training sample and a random strain factor were selected. The
strain factor is a random value ranging between 0.5 and 0.99. The
selected signal from the training sample was then scaled by the
chosen strain factor. This scaling process effectively models the
feature that doubling the amplitude of the signal corresponds to
doubling its weight.

A crucial aspect of data preprocessing involved the normal-
ization of sensor signals to ensure uniformity across the dataset.
Each signal was normalized to have a mean of zero and a stan-
dard deviation of one, which helps in improving the convergence
of machine learning algorithms by ensuring that each feature
contributes equally to the learning process.

The selection of training and test data was conducted using a
rolling window approach [3]. Specifically, for each testing month,
the training data comprised all available data up to but not includ-
ing the testing month. For instance, if May 2023 was designated
as the testing month, the training dataset consisted of data from
January 2022 through April 2023. This process was systematically
repeated for each testing month from March 2022 to December
2023.

4 Methodology

Four methods were identified as applicable for predicting vehicle
axle weights. The first method, known as SIWIM traditional [11],
calculated the number of axles, axle lengths, and axle weights by
utilizing influence lines to model the signal and determine the
correct output. For validation purposes, each predicted output
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Figure 1: Architecture of CNN for predicting axle weights.

was stored in a separate file alongside the signal data, enabling
direct comparison with the actual values.

The second method used the random forest [6] (named IJS
RF) for predicting vehicle axle weights. The model relied on ac-
curately identifying the positions of peaks to function correctly.
Peak values were determined using the find_peaks method from
the SciPy library, which identifies peaks based on a specified
minimum height. Once the peaks were identified, the algorithm
extracted values within a +5 range of each peak. These extracted
values were then used as input features for the random forest
model. Additionally, the random forest model incorporated tem-
perature, axle distances and gross weight as input features. Ran-
dom forest algorithms are not inherently suited for time series
data; however, they perform effectively with numerical data such
as temperature, axle distance, and gross weight. Therefore, this
algorithm was chosen for analyzing this type of input data.

The third method integrated the first two approaches by aver-
aging the outputs from the SIWIM traditional and IJS RF models
(named AVERAGE(IJS, STWIM traditional)). This approach is mo-
tivated by the concept that combining multiple models can often
yield more accurate results than relying on a single model alone
[12].

The final method employed a convolutional neural network
(CNN) to predict axle weights. The CNN utilized synthetic data,
as detailed in section 3, during the training phase. This method
processed all 10 signals as input to calculate the axle weights.
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The detailed architecture of the CNN is shown in Figure 1. 2D
Convolutional layers (Conv2D) were used instead of 1D Convolu-
tional layers due to the input data consisting of 10 sensor signals.
The number of filters and kernel size are specified within the
parentheses of each Conv2D layer, while the pooling size is de-
fined in each 2D MaxPooling layer parentheses (MaxPooling2D).
The last Dense layer has 100 neurons. To mitigate overfitting, a
Dropout layer was added after the final Dense layer. Additionally,
Batch Normalization was applied after each 2D Convolutional
layer to further reduce the risk of overfitting.

Although Long Short-Term Memory (LSTM) and Gated Re-
current Unit (GRU) neural networks could be used for this task,
a Convolutional Neural Network (CNN) was chosen instead be-
cause of its strengths in capturing spatial hierarchies and local
patterns within the data. CNNs are highly effective at extracting
local features and detecting patterns, while LSTM and GRU are
better suited for handling temporal dependencies, which are not
that relevant to this specific task.

5 Results

Accuracy of all algorithms for each testing month

—— ISRF
SWIMold
-~ AVERAGE(I]S. SIWIM traditional)
—— NN

“Esting month

Figure 2: Accuracies of all algorithms for each testing
month.

The results of each method described in Section 4 are illus-
trated in Figure 2. Among the methods evaluated, SIWIM tradi-
tional exhibited the poorest performance, with fluctuating trends
observed throughout the entire two-year period. The CNN be-
gan to outperform the other three approaches after December
2022. Conversely, the AVERAGE(IJS, SIWIM traditional) method
showed superior performance during the initial testing months
from March 2022 to June 2022.

The performance of the CNN improved with an increasing
amount of data, whereas the IJS RF and AVERAGE(IJS, SIWIM
traditional) methods were more effective during the initial phase
when less training data was available. However, the improvement
in CNN’s accuracy was not linear. This non-linear trend can be
attributed to the random initialization of the CNN’s weights
before each training session, occasionally leading to suboptimal
convergence.

An additional analysis was conducted to compare the perfor-
mance of the models under varying environmental conditions,
such as temperature fluctuations and differing traffic patterns.
This analysis revealed that the CNN model maintained its accu-
racy more consistently across different conditions, indicating its
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robustness and adaptability. Furthermore, the inclusion of syn-
thetic data in training the CNN model contributed to its superior
performance, as it allowed the model to learn from a more di-
verse set of examples. Future research should focus on expanding
the range of synthetic data and exploring additional ensemble
techniques to further enhance prediction accuracy.

Despite achieving high accuracy with the CNN model, with
the highest accuracy reaching 0.94, this most accurate method
still falls short of meeting the OIML R-134 recommendation by
4.4%. Furthermore, the results show that more static data could
be needed for the learning phase. Having 1000 static samples
which were augmented might not be sufficient to reach the OIML
R-134 recommendation.

In summary, the results indicate that while traditional meth-
ods such as IJS RF and AVERAGE(IJS, SIWIM traditional) perform
well with limited data, convolutional neural networks (CNNs)
demonstrate superior performance as more data becomes avail-
able, despite some variability in their convergence. In addition,
a sufficient number of training examples is needed to approach
the desired OIML R-134 recommendation.

6 Conclusion and Discussion

In this study, a performance comparison of various axle weight
prediction algorithms using time-series data collected from 10
sensors positioned on the Lopata bridge was conducted. The
algorithms evaluated encompassed traditional machine learning
models, such as random forests, and advanced deep learning
techniques, notably convolutional neural networks.

The major findings reveal that CNNs achieved significantly
better results in predicting axle weights during the latter months
of the experiment. The CNNs’ ability to adapt to and learn from
complex patterns within the time series data was a key factor in
their superior performance. Despite achieving high accuracy with
the CNN model, reaching a peak accuracy of 0.94, this method
still falls short of meeting the OIML R-134 recommendation by
4.4%.

Overall, there are three implications of this study. First, it
demonstrates the potential of deep learning techniques to en-
hance the accuracy of axle weight predictions where sufficient
data is available, thereby facilitating more reliable infrastructure
management. Second, for smaller datasets, it is more effective
to use classical machine learning systems in combination with
methods like SIWIM traditional. Third, it provides a valuable
benchmark for researchers and practitioners, guiding the de-
velopment and implementation of more effective axle weight
prediction systems.

To achieve the OIML R-134 recommendation, two options are
possible:

o Just add more data - if the trend continues, adding another
half a year of measurements would enable achieving the
standard. Another option would be to apply measurements
on a bridge with more traffic.

o Improve the methods by incorporating advanced ensemble
techniques.

To introduce the ensemble approaches, one potential improve-
ment involves modeling each sensor individually. This approach
entails building a separate CNN model for each of the ten sen-
sors, allowing for more specialized and potentially more accurate
predictions from each sensor’s data. By focusing on the unique
characteristics and data patterns of each sensor, the models can
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be better tailored to capture specific nuances in the time-series
data.

After developing individual models for each sensor, the next
step would be to combine the predictions from these models into
a single final prediction. This can be achieved using an ensemble
method, such as a random forest classifier. The random forest
classifier would take the ten individual predictions (one from
each sensor model) as input features and produce a consolidated
final axle weight prediction.

This method not only holds the potential to improve the ac-
curacy and robustness of the axle weight predictions but also
provides a scalable framework that can be adapted to different
datasets and sensor configurations. Future work should explore
the implementation of this approach, including the optimization
of individual sensor models and the integration of their predic-
tions through an ensemble method.

By advancing the CNN model in this manner, it is anticipated
that the performance gap relative to the OIML R-134 recommen-
dation could be further reduced, bringing the predictions closer
to the required accuracy levels with a smaller amount of data
and enhancing the overall efficacy of the axle weight prediction
system.
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