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Abstract
Feature selection is a crucial step in building effective machine
learning models, as it directly impacts model accuracy and in-
terpretability. Driven by the aim of improving stress prediction
models, this article evaluates multiple approaches for identify-
ing the most relevant features. The study explores filter-based
methods that assess feature importance through correlation anal-
ysis, alongside wrapper methods that iteratively optimize feature
subsets. Additionally, techniques such as Boruta are analysed for
their effectiveness in identifying all important features, while
strategies for handling highly correlated variables are also con-
sidered. By conducting a comprehensive analysis of these ap-
proaches, we assess the role of feature selection in developing
stress prediction models.
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1 Introduction
Machine learningmodels are increasingly being applied to predict
stress, which is critical in various domains such as healthcare,
workplace management, and wearable technology. However, one
of the major challenges in developing reliable predictive models
is identifying the most relevant features from extensive datasets,
comprising physiological and behavioural information.

Feature selection plays a key role in addressing this challenge.
By selecting only the most informative features, we can reduce
noise, prevent overfitting, and enhance model accuracy. As we
showed in previous work [8], even simple feature selection tech-
niques can increase the �1 score of predictive models. This paper
builds upon this finding and explores several feature selection
techniques, ranging from simple correlation-based methods to
more sophisticated wrapper approaches.

The aim of this work is to assess how feature selection can en-
hance stress prediction models. By comparing different methods,
we aim to identify the optimal strategies for feature selection in
stress prediction which would lead to more reliable and more
easily interpretable machine learning models.

2 Data collection
The data used in this work comes from the STRAW project [1],
results of which have been previously presented at Information
Society [6, 8]. The dataset includes the data of 56 participants,
recruited from academic institutions in Belgium (29 participants)
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and Slovenia (26 participants). They answered questionnaires
named Ecological Momentary Assessments (EMAs) roughly ev-
ery 90minutes, with smartphone sensor and usage data continu-
ously collected by an Android application [7], while also wearing
an Empatica E4 wristband recording physiological data. In 15
days of their participation, each participant responded to more
than 96 EMA sessions, on average, which resulted in around 2200
labels.

3 Target and feature extraction
To fully leverage the potential of the data, we computed a com-
prehensive set of features. While some sensors only reported
relatively rare events, such as phone calls, others had a high
sampling frequency, such blood volume pulse which sampled
data at 32Hz. On the other hand, labels were only available every
90min. Therefore, we preprocessed the data in several steps.

3.1 Target variable
While participants responded to various questionnaires, for this
study, we selected their responses to Stress Appraisal Measure-
ment [9] as the target variable. It was used to report stress levels
on a scale from 0 to 4, so using it as is the prediction task can be
approached as a regression problem.

However, many stress detection studies tend towards a dis-
crete approach, treating stress predominantly as a classification
task, often only working with a binary target variable. To con-
vert this into a classification problem, we discretized the target
variable into two distinct categories: “no stress”, which included
all responses with a value of 0, while all others were coded as
“stress”. With that, we ensured a balanced distribution of the
target variable values.

3.2 Features
3.2.1 Data preprocessing. In our work, features were calculated
on 30-minute intervals preceding each questionnaire session.
From the wide variety of smartphone data and physiological
measures, a total of 352 features were extracted and grouped into
22 categories, listed in Table 1. Using physiological data from
Empatica wristband, we first calculated specialized physiological
features on smaller windows (from 4 s to 120 s, depending on the
sensor; see [4] for more details), which were then aggregated
over 30min windows by calculating simple statistical features:
mean, median, standard deviation, minimum, and maximum. All
of the categorical features were converted into a set of binary
features using the one hot encoding technique and the missing
values were replaced with the mode.

First, some preliminary data cleaning was performed by ex-
cluding one of the feature in pairs exhibiting a correlation coeffi-
cient of |A | ≥ 0.95. Despite this, some of the remaining features
still exhibited quite strong correlations as shown in Fig. 1. An
interesting observation used in the later stages of feature selec-
tion was that high correlation, |A | ≥ 0.8, was mostly observed
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Table 1: Feature categories with the number of features
included in each category in parentheses

1. Empatica electrodermal activity (99)
2. Empatica inter-beat interval (50)
3. Empatica temperature (33)
4. Empatica accelerometer (23)
5. Empatica data yield (1)
6. Phone applications foreground (47)
7. Phone location (18)
8. Phone Bluetooth connections (18)
9. Phone calls (10)
10. Phone activity recognition (7)
11. Phone Wi-Fi connections (7)

12. Phone screen events (7)
13. Phone light (6)
14. Phone battery (5)
15. Phone speech (4)
16. Phone interactions (2)
17. Phone messages (2)
18. Phone data yield (1)
19. Baseline psychological features (7)
20. Language (2)
21. Gender (2)
22. Age (1)

between features of the same category. As an example, corre-
lations between features related to phone application use are
shown in Fig. 2.
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Figure 1: Correlation matrix of the initial feature set. Only
feature categories withmore than two features are labelled.
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Figure 2: Correlationmatrix of the feature set in the Phone
applications foreground category.

4 Prediction models
4.1 Model performance and validation
To evaluate the performance of the models we used balanced
accuracy score which is defined as the average of recall obtained

on each class. When adjusted for random chance, it is calculated
as

Balanced accuracy =
)%

)% + �#
+ )#

)# + �%
− 1,

in the binary case, where )% is the number of true positives,
)# is the number of true negatives, �# is the number of false
negatives and �% is the number of false positives. This definition
is equivalent to Youden’s J [11], which assigns a 0 to a random
classifier (indeed, a dummy classifier achieved a score of 0.0208
in our case), while a perfect classifier would achieve a score of 1.

To evaluate the stress detection models described in the fol-
lowing sections, we considered several ways of data partitioning.
Since the variations in the results depending on the data split
were significant, in order to achieve more consistent accuracy,
we employed shuffled 5-fold cross-validation.

We also considered a leave-one-subject-out cross-validation
technique. However, this method yielded poor results: using all
available features, balanced accuracy was 0.05, while with the
5-fold cross validation it was 0.45. This suggested that the partici-
pants were quite different from each other, making it challenging
to generalize predictions for a subject the model had not encoun-
tered.

4.2 Baseline model
Our initial approach for building a prediction model was to use
all available features. This served as a baseline, which we aimed
to improve through feature selection.

We evaluated various predictive models, as shown in Table 2,
all as implemented in scikit-learn [10]. Among these, the
Random Forest model yielded the best performance.

In this work, we aimed to find the best model for predicting
stress and improve it using the optimal feature subset. Conse-
quently, we used the Random Forest as the benchmark for com-
paring feature selection algorithms.

Table 2: Performance of different models for the classifica-
tion problem. The mean over five folds, its standard error,
and the maximum are shown.

Model Mean Max SEM

Logistic Regression 0.077 0.151 0.025
Support Vector Machines 0.090 0.158 0.022
Gaussian Naive Bayes 0.061 0.122 0.020
Stochastic Gradient Descent 0.027 0.054 0.007
Random Forest 0.475 0.558 0.026
XGBoost 0.441 0.473 0.013

In Table 2, SEM represents the Standard Error of the Mean.
It measures how far the sample mean of the data is likely to be
from the true population mean.

4.3 Correlation-Based Feature Reduction
We began the feature selection process by eliminating highly
correlated features. For each highly correlated pair, we removed
the feature with the lower rank when sorted by mutual informa-
tion, setting the correlation threshold at |A | ≥ 0.8 to maintain
a manageable number of features. This reduction left us with
approximately 180 features out of the original 352 for model
training and evaluation.

While selecting the optimal set of features for stress prediction,
we aimed to retain all 22 different categories from Table 1, as
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Figure 3: Correlation matrix of the feature set after
correlation-based feature reduction. Only feature cate-
gories with more than two features are labelled.

each could provide unique information. Comparing Figs. 1 and 3,
we were left with about half the number of features which were
still moderately correlated.

4.4 Feature Selection using the mutual
information scoring function

Before applying more complex feature selection algorithms, it
was necessary to reduce computational complexity by further
reducing our set of 180 features obtained through correlation-
based reduction. Therefore, we used the SelectKBest method
and the mutual information scoring function to retain the top 100
features.This resulted in features derived from 19 to 20 categories,
as categories language, gender, and, in some cases, Empatica
accelerometer were not deemed important for predicting stress.

Going forward, we will refer to the elimination of features
within highly correlated pairs and the selection of the top 100
features using the mutual information scoring function as the
preprocessing step.

4.5 Recursive Feature Elimination with
Cross-Validation (RFECV)

One of the previously mentioned complex feature selection meth-
ods we employed was Recursive Feature Elimination with Cross-
Validation (RFECV) [3]. The feature set we got after the prepro-
cessing step was passed to the RFECV algorithm for thorough
evaluation.

RFECV operates by initially fitting a model to the dataset
and evaluating its performance through cross-validation. After
the initial fit, RFECV ranks feature importance and iteratively
removes the least important features based on the models feature
importances attributes, which in the case of Random Forest are
impurity-based feature importances. This process continues until
there is no significant improvement in the model’s performance.
To ensure a reasonable duration for the feature selection process,
we set the cross-validation in RFECV to 3 folds. The number

of features selected varied across folds, ranging from 50 to 93
features.

4.6 Sequential Forward Selection
Another feature selection method we employed was Sequential
Feature Selector (SFS), a wrapper-based technique [2]. SFS and
RFECV differ in their approaches. SFS constructs models for each
feature subset at every step, while RFECV builds a single model
and evaluates feature importance scores. Consequently, SFS is
more computationally expensive, as it must evaluate numerous
feature combinations before identifying the optimal subset.

In the absence of specified parameters for number of fea-
tures to select (n_features_to_select) and tolerance (tol), the
method defaults to selecting half of the available features. The
default configuration was used in our analysis, leading the SFS
to select the top 50 features.

4.7 Boruta method
Thefinal feature selection technique we employed was the Boruta
method [5]. With the assistance of “shadow features”, which are
original features that have been randomly shuffled, the method
identifies a subset of features that are relevant to the classification
task at hand. In our case, shadow features were introduced into
the feature subset obtained after the preprocessing step.

The updated dataset was trained using the Random Forest
model for 100 iterations. In each iteration, all original features
ranked higher in importance than the highest-ranked shadow
feature were marked as relevant.

Ultimately, a binomial distribution is used to evaluate which
features have enough confidence to be kept in the final selection.
The number of features selected varied across folds, ranging from
47 to 55 features.

5 Results
In Table 3, the final scores for a Random Forest model built on
various feature subsets, as derived from the methods described
above, are presented. The data was split using shuffled 5-fold
cross-validation, to ensure that the results were not overly de-
pendent on a data split.

Table 3: Adjusted balanced accuracy scores of a Random
Forest model, trained on the different feature sets. Last
column represents a number of features selected.

Feature set Mean Max SEM N

All available features 0.464 0.498 0.011 352
Correlation-based reduction 0.483 0.507 0.007 ∼180
Correlation-based, 100 best 0.486 0.498 0.006 100
Preprocessing, RFECV 0.471 0.511 0.012 50 to 93
Preprocessing, SFS 0.483 0.520 0.017 50
Preprocessing, Boruta 0.481 0.545 0.020 47 to 55

RFECV only 0.465 0.494 0.020 16 to 89
SFS only 0.426 0.468 0.017 30
Boruta only 0.456 0.509 0.015 ∼75

From Table 3, we can see that the most significant improve-
ment in accuracy came after removing the highly correlated
features, with the average adjusted balanced accuracy score ris-
ing from 0.46 to 0.48. Best mean accuracy was achieved after the
preprocessing step, with only a minor improvement from 0.483
to 0.486.
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After eliminating highly correlated features, wrapper methods
did not significantly improve the accuracy on average (rows 3
to 6 in Table 3). The Boruta method performed best among the
three, with the highest overall maximum accuracy in a single fold.
These results led us to investigate whether the wrapper feature
selection method alone could manage correlated features without
their prior removal and to evaluate the impact of the correlation
threshold.

We employed the RFECV, SFS, and Boruta method on the
entire feature set of 352 features without applying the prepro-
cessing step. For SFS, only 30 features were selected due to its
computational complexity. As shown in the last three rows of
Table 3, none of the methods alone were able to improve the
result achieved with correlation removal. Highly correlated fea-
tures were left in the final feature set: for example, we identified
three pairs of features with a correlation coefficient exceeding
|A | ≥ 0.8 using SFS alone. Poor results could be attributed either
to the importance of the correlation removal step or to the feature
subset being too small in the case of the SFS.

5.1 Selecting the best correlation threshold
As previously mentioned, the biggest improvement in score came
from removing the feature inside the highly correlated pair.There-
fore, we have also experimented with different correlation cut-off
values to determine the best threshold.

The highest score was achieved with a correlation threshold
of |A | ≥ 0.75 (Table 4). Considering the impact of cross-validation
splits and the relatively minor variance in scores, it appears that
our initial threshold of |A | ≥ 0.8 was also quite effective.

Table 4: Adjusted balanced accuracy scores of a Random
Forest model trained on a feature subset excluding features
above the correlation threshold. The number of features
left after correlation-based feature selection differed over
validation folds and its range is shown in the final column.

Threshold Mean Max SEM N

0.55 0.462 0.506 0.018 28 to 33
0.60 0.467 0.493 0.009 39 to 41
0.65 0.474 0.498 0.008 47 to 50
0.70 0.460 0.501 0.017 61 to 65
0.75 0.498 0.526 0.012 74 to 80
0.80 0.470 0.543 0.022 101 to 107

6 Conclusions
This paper examined different feature selection algorithms to
find the most effective subset for stress prediction. The model
using the feature subset after correlation removal achieved the
highest adjusted balanced accuracy score of 0.483.

Alternative feature selection approaches, including the wrap-
per methods SFS and RFECV, as well as the Boruta method, ap-
plied to the preprocessed feature subset, did not lead to further
optimization of the feature subset in terms of model performance.
Additionally, applying these methods to the entire set of features
did not achieve accuracy levels as high as those obtained after
the correlation-based reduction. In the case of SFS, this may be
attributed to its selection of only 30 features.

Therefore, our results underscore the critical role of the correlation-
based reduction step. In contrast, when this step was omitted

wrappermethods alonewere unable to effectively perform correlation-
based feature reduction. We can therefore conclude that simply
relying on feature selection methods, however sophisticated, is
not as effective as also considering relationships between fea-
tures.

It should be noted that the improvements in balanced accuracy
are low in all cases. This indicates that results cannot be easily
generalized and correlation-based feature selection should not
be seen as sufficient in general. Instead, we can speculate that
no single feature selection method is the best one and that sev-
eral should be considered. We should also note that the Pearson
correlation coefficient that we used in this work only considers
linear relationships between features. Other methods can select
features even if they are related in a different way.
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