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Abstract
This paper presents a comparative evaluation of three distinct

categories of models applied to groundwater level data: tradi-

tional batch learning methods, time series deep learning methods,

and time series foundation models. By enriching the water level

data with weather-related features, we significantly improved

the effectiveness of simpler models. The results demonstrate that,

despite their state-of-the-art performance on univariate datasets

and the corresponding publicity, advanced models without con-

textual feature support are still surpassed by traditional methods

trained on enriched datasets.

Keywords
groundwater level prediction, time series forecasting, deep learn-

ing, foundation models, contextual data

1 Introduction
Accurate water level prediction is crucial for mitigating the im-

pacts of climate change on water resources. By forecasting water

levels, we can better prepare for potential floods and droughts,

and more effectively manage our water supplies. However, pre-

dicting water levels presents a significant challenge due to the

dynamic nature of the data. As climate change leads to prolonged

droughts and increasingly erratic precipitation patterns, the need

for reliable forecasting methods becomes even more important

[2].

In this paper, we aim to compare the performance of various

models in forecasting groundwater levels. Specifically, we focus

on the differences between traditional batch learning methods

that utilize relevant contextual data and newer univariate time

series deep learning and foundation models.

The main contributions of this paper are:

• A comparative analysis of the performance of traditional

batch learning methods against state-of-the-art time series

deep learning techniques and time series foundation mod-

els, particularly in the context of feature vectors enriched

with relevant contextual data.

• The application of time series foundation models and deep

learning methods to the domain of groundwater level fore-

casting.

The groundwater dataset used in this study has previously been

employed for predictive modeling with traditional batch learning

methods [9], where extensive feature engineering was also per-

formed. Our work builds upon and extends this earlier research

by incorporating a different set of models.
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2 Methods
In our experiments, we employed three categories of methods:

traditional batch learning techniques, time series deep learning

models, and time series foundation models.

2.1 Traditional Batch Learning Methods
In the context of data-driven modelling of environmental is-

sues, traditional batch learning methods have historically demon-

strated significant success [5]. In this study, we employed linear

regression alongside two tree-based approaches: random forest

and gradient boosting [7] as baselines to evaluate whether the

newer, more prominent techniques, which have recently gathered

a considerable amount of attention, can perform competitively

in this specific setting.

All of the chosen batch learning techniques are regression-

based and are valued for their simplicity, speed, and ease of

use. However, they often lack the complexity necessary to fully

capture intricate patterns in the data. To mitigate this limitation,

we incorporated contextual features, such as weather data and

forecasts (e.g., precipitation, cloud cover, temperature). While the

data fusion problem is solved [8], this approach raises concerns

about the availability and relevance of the contextual data.

2.2 Time Series Deep Learning Methods
Time series deep learning models are explicitly designed for

forecasting time-dependent data. In our study, we employed N-

BEATS [12] and PatchTST [10], both of which have architectures

tailored to capture trends and seasonalities inherent in time se-

ries data. Despite their advanced capabilities, these models have

drawbacks, including longer training and inference times, the ne-

cessity for extensive hyperparameter tuning to achieve optimal

performance, and limited support for incorporating additional

features. Although certain models support multivariate time se-

ries, they were not utilized in our experiments.

2.3 Time Series Foundation Models
While deep learning methods require separate training and pre-

diction phases, time series foundation models aim to eliminate

the training step. Inspired by large languagemodels, these models

are pretrained on extensive time series datasets, enabling zero-

shot predictions on new time series without additional training.

We used CHRONOS [1], an open source foundation model. The

advantages of this approach include ease of use with minimal pa-

rameter adjustments and no need for training. However, similar

to deep learning models, they lack support for multivariate time

series.

Several studies have already evaluated the performance of

various deep learning and foundation models for time series fore-

casting [1] [13]. However, this research extends the application

of these forecasting models to groundwater level data, therefore

contributing to the better understanding of their effectiveness in

this domain.
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3 Experiment Setting
The experiments were conducted on a dataset of groundwater

levels in Slovenia. Due to the cumulative nature of water levels

and to facilitate comparison with the original study [9], predic-

tions were made on daily changes in water levels rather than on

absolute values.

3.1 Dataset
The groundwater dataset is a subset of the larger dataset used

in the study [9]. It consists of groundwater level measurements

taken daily from multiple stations across Slovenia. To apply tra-

ditional batch learning methods, we enriched the dataset with

weather data, associating each water measurement station with

the nearest weather station. Due to the availability of weather

data, only data from the years 2010 to 2017 was included in our

study. For consistency and ease of comparison with previous

study [9], we focused on data from two water measurement

stations located in Ljubljana.

In traditional batch learning within the environmental domain,

it is essential to not only use the raw data but also to engineer

relevant features. Initially, we removed the pressure and dew

point features, as they were either unrelated to the target variable

or highly correlated with other features [9]. We then created

additional features by shifting the data from 1 to 10 days, making

historical values available, and by computing the averages of

features over a 2- to 10-day window. This process resulted in

approximately 2,000 features. Given the excessive number of

features, which could degrade model performance, we employed

a feature selection algorithm to identify the most informative

subset.

We used a genetic feature selection algorithm from scikit-learn,

evaluated on 365-day part of training dataset, with the maximum

number of features set to 40. The algorithm was executed sepa-

rately for each model, focusing on one station and a prediction

horizon of three days, resulting in distinct feature vectors. Sub-

sequently, weather forecast features with longer offsets were

manually added to the selected feature set.

3.2 Evaluation Metrics
The dataset was split into a training set (approx. 2,500 days),

a validation set (100 days), and a test set (365 days) for model

evaluation. Model performance was evaluated using the R
2
score,

averaged across all tested stations. Although alternative metrics

such as root-mean-squared error (RMSE), and mean absolute

percentage error (MAPE) were considered, they, for this dataset,

produce results that are closely related to the R
2
. This metric was

selected due to its robustness against variations in data offset

and amplitude, and for direct comparability with the results in

the original study [9]. The R
2
score is defined as:

𝑅2 = 1 −
∑𝑛
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2∑𝑛
𝑖=1

(𝑦𝑖 − 𝑦)2
,

where 𝑦𝑖 is the i-th true value, 𝑦𝑖 is the i-th predicted value and

𝑦 is the average of true values.

3.3 Baseline Methods
The primary objective of our research was to compare the per-

formance of traditional batch learning methods, enriched with

relevant contextual features, against that of modern deep learn-

ing techniques and foundation models for time series forecasting.

Therefore, we selected linear regression, random forest regressor,

and gradient boosting regressor as our baseline methods. These

models were previously applied to the groundwater dataset [9],

necessitating a reproduction of the results as a benchmark.

3.4 Implementation Details
The prediction pipelines varied slightly between the different

types of models:

• For CHRONOS, we utilized the dataset without weather

features, as it only supports univariate time series. Since

no hyperparameter tuning was required, the data was

divided into training and test sets, omitting the validation

set. The model generated the predictions directly from the

water level data. We used the chronos-t5-large model from

the chronos library.

• For N-BEATS and PatchTST, the same dataset was used,

given the same limitation as mentioned previously. How-

ever, a validation set was required for hyperparameter

tuning. After selecting appropriate hyperparameters, the

models were trained on the training set and evaluated

on the test set. Implementations from the NeuralForecast

library were used for both models.

• For the linear regression, random forest regressor,
and gradient boosting regressor models, we included

both water level and weather data. Feature selection was

conducted to reduce the number of features, resulting in

42 features for linear regression, 30 for random forest, and

36 for gradient boosting. After feature selection, hyper-

parameters for the random forest and gradient boosting

models were tuned, and the data for linear regression was

normalized. The models were then trained on the train-

ing set and evaluated on the test set using scikit-learn’s

implementations.

The hyperparameters used for training are listed in Appendix

A, while a description of the selected features is provided in

Appendix B.

4 Results
The results for all tested models across various prediction hori-

zons are presented in Table 1. The reported R
2
scores were calcu-

lated based on the differences in water levels; if absolute water

levels had been used, the R
2
scores would have been significantly

higher. For example, in the case of CHRONOS with 1-day ahead

predictions, the R
2
score is 0.725 for relative level differences and

0.998 for absolute water levels.

Among the models, linear regression achieved the highest per-

formance, followed by the random forest. In contrast, the more

complex methods, including deep learning models and the foun-

dation model, showed generally lower performance, with the

exception of the 1-day prediction horizon, where N-BEATS out-

performed the tree-based models. Notably, the R
2
scores decrease

as the prediction horizon lengthens, with a more pronounced

decline observed in the deep learning and the foundation models

compared to the traditional batch learning methods.

Figures 2 and 3 display the predictions from CHRONOS, Patch-

TST, and linear regression compared to the true data for the 1-day

and 5-day prediction horizons. It is evident that the predictions

from CHRONOS and PatchTST begin to exhibit a rightward shift

as the horizon extends. Figure 1 visualizes the R
2
scores for all

models across the different prediction horizons.
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Table 1: R2 Scores for Different Prediction Horizons and Models.

Methods 1 day ahead 2 days ahead 3 days ahead 4 days ahead 5 days ahead

Chronos-large 0,725 0,365 0,175 0,04 -0,09

GradientBoostingRegressor 0,640 0,603 0,527 0,556 0,545

RandomForestRegressor 0,726 0,697 0,701 0,706 0,691

N-BEATS 0,742 0,397 0,17 -0,03 -0,143

PatchTST 0,721 0,394 0,215 0,109 -0,02

LinearRegression 0,792 0,781 0,785 0,784 0,780

The best and second-best results are bolded and underlined respectively.
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Figure 1: R2 Scores for All of the Methods and Prediction Horizons.
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Figure 2: Example Predictions for Three Models for 1-Day
Prediction Horizon.

The results indicate that traditional methods, when supple-

mented with relevant contextual features, outperform more com-

plex models that do not incorporate such data. While the 1-day

ahead predictions show comparable performance across all meth-

ods, as the prediction horizon extends, the accuracy of CHRONOS,

PatchTST, and N-BEATS declines sharply. In contrast, the tradi-

tional models, supported by contextual features, maintain their

predictive accuracy much more effectively, as shown in Figure 1.

A closer examination of the predictions in Figures 2 and 3

reveals that for 1-day ahead predictions, all models track the true

data closely. However, in the 5-day ahead predictions, models

lacking contextual data begin to exhibit a rightward shift in their
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Figure 3: Example Predictions for Three Models for 5-Day
Prediction Horizon.

predictions. This likely occurs due to the absence of contextual

information, causing these models to lag in capturing the true

trajectory of water levels. In contrast, models with access to

weather data can predict further ahead by accounting for factors

such as the impact of rainfall patterns on water levels.

An unexpected finding is that among the baseline models,

linear regression outperforms the more sophisticated methods.

For instance, in the article [9], while linear regression produced

strong results, it did not surpass the performance of the other

two methods.
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5 Conclusion and Future Work
After evaluating all models on the groundwater level dataset,

we observed that traditional methods, when equipped with rel-

evant features, consistently outperformed newer and more so-

phisticated techniques, particularly as the prediction horizon

lengthened. This suggests that the emphasis on developing the

most powerful deep learning or foundation models for time se-

ries predictions may be overstated. With thoughtful selection of

contextual features, even the simplest models can outperform

modern approaches, which is a significant finding for fields with

sufficient contextual data, such as data-driven environmental

modelling.

To enhance the robustness of our evaluation, futurework could

involve testing additional methods, expanding the analysis to

include more measurement stations and surface water level data,

and incorporating deep learningmodels that support multivariate

time series, such as N-BEATSx [11] and N-HiTS [3]. Further

insights could be gained by exploring foundation models with

multivariate support, such as TimesFM [4], as well as some more

univariate models, like TimeGPT-1 [6]. Future research could

also compare the inference times of various models and assess

performance across different time series lengths.
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A Hyperparameters

Table 2: Hyperparameters Used for Gradient Boosting Re-
gressor and Random Forest Regressor.

Hyperparameter GradientBoosting RandomForest

n_estimators 28 164

max_features ’log2’ 0.5

max_depth 10 20

Table 3: Hyperparameters Used for N-BEATS and
PatchTST.

Hyperparameter N-BEATS PatchTST

loss HuberLoss /

n_harmonics 5 /

n_polynomials 5 /

scaler_type ’robust’ /

n_blocks [3, 3, 1] /

mlp_units [[128, 128]] /

horizon 5 5

input_size 15 71

learning_rate 0.001 0.001

max_steps 25 1323

encoder_layers / 12

n_heads / 16

hidden_size / 64

linear_hidden_size / 512

dropout / 0.2

fc_dropout / 0.1

head_dropout / 0.1

attn_dropout / 0.2

patch_len / 16

stride / 8

revin / True

B Selected Features
Due to the large number of features selected by the feature selec-

tion algorithm, we provide a summarized description of the most

frequently chosen features. The features that appearedmost often

include shifts and averages of precipitation, precipitation fore-

casts, temperature, altitude difference, cloud cover, humidity, and

snow accumulation. Notably, the majority of selected features

were derived features we generated, with only approximately

one original feature being selected per model.

In Table 4, the most common shifts and averages for each

individual model are presented. The table indicates that shifts

and averages of varying lengths were selected, with a slight

preference for shorter ones.

Table 4: Most Frequently Selected Shifts and Averages for
Various Methods.

Method Shifts (days) Averages (days)

GradientBoostingRegressor 4, 10 2, 6

RandomForestRegressor 2, 6 3, 9

LinearRegression 2, 10 2, 7

Combined 2, 10 2, 3

https://www.arso.gov.si/en/soer/freshwater.html
https://www.arso.gov.si/en/soer/freshwater.html
https://doi.org/10.3389/fenvs.2024.1291327
https://doi.org/10.3390/s19081955
https://doi.org/10.2166/aqua.2020.143
https://doi.org/https://doi.org/10.1016/j.ijforecast.2022.03.001
https://doi.org/https://doi.org/10.1016/j.asr.2024.08.024

	Abstract
	1 Introduction
	2 Methods
	2.1 Traditional Batch Learning Methods
	2.2 Time Series Deep Learning Methods
	2.3 Time Series Foundation Models

	3 Experiment Setting
	3.1 Dataset
	3.2 Evaluation Metrics
	3.3 Baseline Methods
	3.4 Implementation Details

	4 Results
	5 Conclusion and Future Work
	Acknowledgements
	A Hyperparameters
	B Selected Features

