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Abstract  

This paper explores the use of LLMs in ontology engineering 

within the HumAIne project, focusing on the discovery, analysis, 

and extension of ontologies in Data Mining, Machine Learning, 

and manufacturing. The methodology leverages fine-tuned 

prompts and combines LLMs with traditional tools like Protege 

for validation. A multi-LLM approach improved domain-

specific concept coverage and reduced errors, though challenges 

remain in addressing deep domain-specific gaps and ensuring 

logical consistency.  
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1 Introduction 

The HumAIne project, funded by the European Commission 

under the Horizon Europe program, aims to develop a platform 

integrating advanced AI paradigms such as Active Learning 

(AL), Neuro-Symbolic AI, Swarm Learning, and Explainable AI. 

This platform is designed to enhance human-AI collaboration in 

dynamic, unstructured environments, with applications spanning 

healthcare, manufacturing, finance, energy grids, and smart cities. 

Its primary goal is to support decision-making by combining 

human expertise with AI capabilities. 

One of the project's key challenges is developing multiple 

ontologies that provide a structured framework for integrating 

domain-specific knowledge. This framework is essential for 

enhancing the clarity and reliability of AI-driven decisions, while 

ensuring adaptability across diverse applications. To construct 

these ontologies, we first explored publicly available ontologies 

relevant to the project's scope, then extended selected ones with 

concepts from HumAIne’s AI paradigms, starting with Active 

Learning 

However, manual ontology construction is a complex, 

resource-intensive process that requires expertise across multiple 

domains, collaboration among stakeholders. Ensuring 

modularity, reusability, and scalability adds to this complexity. 

Recent studies show that leveraging Large Language Models 

(LLMs) can streamline ontology construction by reducing 

manual effort and improving consistency and quality. For 

instance, [1] demonstrates semi-automatic knowledge graph 

construction using open-source LLMs, while [2] proposes 

methods for automatic concept hierarchy generation through 

LLM queries. Building on this research, this paper contributes a 

methodology that integrates LLMs with traditional tools like 

Protege to streamline the discovery, analysis, and extension of 

ontologies. By employing a multi-LLM approach, we address 

challenges in domain-specific concept identification and ensure 

more consistent, accurate results in ontology development for 

fields like Data Mining, Machine Learning, and manufacturing. 

2 LLM-Assisted Search and Analysis of Domain 

Ontologies 

Our experimentation with methodologies and tools for 

efficient web search and ontology analysis in Data Mining (DM), 

Machine Learning (ML), and manufacturing domains led to the 

development of the LLM-leveraging algorithm shown in Fig. 1. 

This algorithm uses carefully crafted prompts to guide LLMs in 

generating accurate, targeted queries. Before each step, the initial 

prompt is optimized through several iterations in a dialogue with 

the LLM to improve accuracy and relevance. Further details on 

the iterative query refinement process are provided in the 

Discussion section. 

Step 1: Define the Search Objective. At this stage, LLMs like 

Bing Chat, Google’s Bard, or ChatGPT with Web Browsing are 

employed to iteratively refine the search objectives initially 

formulated by the researcher, along with relevant keywords, 

phrases, and terms describing the ontologies or concepts of 

interest. For instance, our initial search objective for DM and ML 

ontologies was to "Find ontologies that offer up-to-date, detailed 

descriptions of the DM and ML domains, following best 

practices in ontology engineering." Keywords included "Active 

Learning" and "CRISP-DM standard." 

Step 2: Formulate Search Queries Using LLMs. Based on the 

refined search objectives and keywords, and using a carefully 

crafted prompt, LLMs generate targeted search queries. These 

queries are fine-tuned through feedback or early search results to 

maximize relevance and accuracy. For example, for a DM 

ontology, the LLM generated queries such as "Data Mining 

ontology for semi-supervised machine learning," which were 

further refined before finalizing the query. 

Step 3: Conduct Web Search. This step involves real-time 

browsing tools like Copilot in Microsoft Edge (GPT-4) and 

Perplexity AI to execute searches and identify relevant sources. 

Our study prioritized high-quality sources like ontology 
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repositories (e.g., BioPortal, OBO Foundry) and academic 

databases (Google Scholar, IEEE Xplore, ACM Digital Library). 

It is important to acknowledge that LLM-driven web 

searches are generally confined to public repositories and a 

limited range of academic databases. As a result, proprietary or 

lesser-indexed ontologies may require manual exploration to 

ensure a more thorough search. 

  

Figure 1: Key steps of LLM-leveraging algorithm 

Step 4: Retrieve and Summarize Information. LLMs (Google 

Bard, Copilot (GPT-4), Perplexity AI) were employed to extract 

and summarize key information from ontology descriptions 

found in publications, technical papers, and repository 

documentation identified during the search. Using a specifically 

tuned prompt, LLMs extracted 11 characteristics for each of the 

34 identified DM and ML ontologies. These characteristics 

included purpose, availability, ontology metrics, reused 

ontologies, software editors, representation language, and 

evaluation methodologies. This structured data, organized in 

table format, provided valuable insights into each ontology’s 

scope, quality, and reusability. From these results, we selected 6 

ontologies for further exploration, prioritizing comprehensive 

coverage of DM and ML concepts, adherence to ontology 

engineering best practices, and alignment with established 

standards in these domains. 

Step 5: Analyze and evaluate ontologies. LLMs were further 

utilized to assess the relevance, content, and structure of the 

selected ontologies. In our study of DM and ML ontologies, 

LLMs such as GPT-4, which can process, explain, and generate 

OWL and RDF code, were used alongside ontology tools like 

Protege. This combination ensured that the ontologies addressed 

relevant concepts and aligned with frameworks like CRISP-DM. 

GPT-4 helped significantly in bridging the gap between textual 

descriptions and formal ontology representations. 

Step 6: Cross-Reference and Compare Findings. LLMs with 

contextual understanding were employed to integrate and refine 

information from multiple sources. For this task, we used. 

Additionally, ChatGPT (GPT-4) categorized 65 manufacturing 

ontologies categorized 65 manufacturing ontologies, assessing 

them for relevance to process planning, standardization, industry 

adoption, interoperability, and support for advanced 

manufacturing concepts. Further exploration of the top 8 LLM-

scored ontologies showed strong alignment with expert 

evaluations, but domain-specific tasks required carefully crafted 

prompts and human oversight for effectiveness.  

Step 7: Provide Recommendations for Further Exploration. 

LLMs generated recommendations for the most suitable 

ontologies or areas for additional research based on the previous 

step's results. This includes identifying underexplored concepts 

and areas needing further investigation. 

Step 8: Validate and Document Findings. The findings were 

manually validated for accuracy and relevance, then 

systematically documented. ChatGPT (GPT-4) was used to 

summarize and structure the documentation. 

Step 9: Iterate and Refine Search (if needed). When results 

were too broad or irrelevant (e.g., Active Learning 

misinterpreted as an educational method), we refined the search 

prompt by adding more context. 

By using this LLM-based algorithm, we conducted 

comprehensive web searches and extracted relevant information 

to identify the most suitable ontologies for the HumAIne project. 

In the DM and ML domains, we selected the OntoDM suite 

(OntoDM-Core, Onto-KDD, and OntoDT). For the 

manufacturing domain, we identified the Industrial Ontologies 

Foundry Core (IOF Core) as the best fit. 

3 LLM-Assisted Ontology Extension with 

Active Learning Concepts 

Integrating Active Learning (AL) into an ontology requires 

extending it with new classes, properties, and relationships 

representing key AL concepts. While traditional methods of 

building and extending ontologies are well-documented, we 

leveraged GPT-4 for this task using iteratively refined prompts 

(see Discussion section). This section outlines how LLMs, 

particularly GPT-4, were used to extend the IOF Core ontology 

with AL concepts. 

Step 1: Define the Problem and Objectives. Through 

iteratively refined prompts, LLMs formulated clear objectives, 

specifying the domain (e.g., manufacturing) and key concepts 

(e.g., Active Learning). These outputs were used to guide further 

steps, with LLMs leveraging contextual understanding, 

knowledge synthesis, and language generation to suggest 

relevant AL applications such as adaptive scheduling. Queries 

like "How can Active Learning improve adaptive scheduling in 

manufacturing?" generated valuable insights into potential use 

cases. where AL would be most beneficial. 

Step 2: Analyze the Ontology to be Extended. By combining 

Protege’s visualization and navigation tools with GPT-4’s ability 
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to process textual and machine-readable data (e.g., OWL/RDF), 

we thoroughly examined the IOF Core ontology structure and 

identified areas for introducing AL concepts. For example, GPT-

4 helped uncover key classes like “Process,” “Resource,” and 

“PerformanceMetric” within IOF Core, highlighting relevant 

properties for AL integration. Queries such as "What aspects of 

IOF Core can benefit from AL integration?" and "What key 

concepts are missing from the IOF Core ontology for integrating 

Active Learning in manufacturing?" guided us in identifying 

areas for improvement, including handling uncertainty and 

adjusting dynamic processes. 

Step 3: Identify Active Learning Concepts. The main tasks of 

this step and the role of LLMs in supporting each task are 

summarized in the Table 1: 

Table 1: LLMs applications for Identifying AL Concepts 

Task LLM Application Example Output 

1. Identify 

fundamental 

AL concepts 

Use LLMs to 

generate a list of 

core AL strategies 

and techniques 

Concepts like“Uncertainty 

sampling,” “Query-by-

committee”  

2. Extract 

domain-

specific AL 

concepts 

Query LLMs about 

AL in specific 

industrial contexts  

Concept like "Query 

Efficiency" in decision-

making for manufacturing 

   

3. Mine AL 

concepts from 

literature 

 

 

4. Assign 

properties to 

new classes 

Process academic 

papers, reports to 

extract relevant AL 

terms 

 

Generate properties 

for AL ontology 

classes 

Concepts like “Stream-based 

selective sampling” from 

papers on AL in 

manufacturing 

 

QueryStrategy class 

properties: 

“hasuncertaintySampling” 

“queryByCommittee”  

5. Refine and 

validate 

terminology 

Ensure definitions, 

resolve overlaps 

Refined and validated terms 

based on domain-specific 

standards 

 

By prompting, LLMs generated nearly 200 fundamental AL 

concepts, structuring them into a hierarchy by leveraging their 

vast training data. Additionally, LLMs helped generate 

definitions, assisting in verifying and refining concepts. 

However, after a point, LLMs began repeating concepts or 

producing less relevant terms. LLMs were also effective in 

generating domain-specific concepts through targeted queries. 

For instance, querying AL in manufacturing led to concepts like 

"uncertainty management" and "query efficiency." More 

specialized concepts required extraction from academic papers, 

which were cross-referenced with existing standards in DM, ML, 

and manufacturing (e.g., CRISP-DM, IEEE 7000 Series, ISA-95, 

ISO 15531). Ontology learning tools like Text2Onto and 

OntoLearn were combined with LLMs for cross-verification. 

Step 4: Develop Ontology Extensions.LLMs helped create 

AL-related classes, properties, and relationships based on the 

identified concepts, using OWL-compliant syntax (see Fig. 2). 

By combining GPT-4’s knowledge synthesis with Protege’s 

structural reasoning and consistency checking, we improved the 

efficiency and accuracy of reviewing, debugging, and validating 

OWL code.  

 

 
 

Figure 2: Screenshot of LLM-generated code defining the 

“LearningAlgorithm” class with properties “trainingData” 

and “validationData” 

Step 5: Ensure Semantic Consistency. LLMs, such as GPT-

4, assisted in ensuring semantic consistency by reviewing new 

and existing ontology elements and suggesting how new 

concepts could align with the existing framework. For example, 

an LLM suggested how an AL “QueryStrategy” class fits within 

the IOF Core ontology.  

Example Prompt: " Review the new QueryStrategy class and 

suggest how it can align with the existing classes in IOF Core." 

LLM Output: The QueryStrategy class aligns with decision-

making aspects of the Process concept. Strategies such as 

“UncertaintySampling,” “QueryByCommittee,” 

“ExpectedModelChange,” and “ExpectedErrorReduction” can 

be viewed as specialized decision-making processes within the 

broader process framework of IOF Core. 

However, LLMs cannot guarantee logical consistency and face 

limitations in handling complex relationships, making it necessary 

to use ontology reasoners, such as Protege or HermiT, to perform 

consistency checks. 

Step 6: Map to Existing Ontologies. LLMs, such as GPT-4, 

assist in generating initial mapping suggestions by analyzing 

similarities in definitions, relationships, and properties between 

new and existing concepts. This involves creating explicit 

relationships like “owl:sameAs,” “owl:equivalentClass”, and 

“owl:equivalentProperty”. 

Example LLM Output: 

:FeedbackMechanism a owl:Class ; 

    owl:equivalentClass :ControlSystem ; 

    rdfs:label "Feedback Mechanism" ; 

    rdfs:comment "Mechanisms that provide feedback in 

Active Learning to control systems."  

While LLMs are effective in identifying high-level 

similarities, they may face challenges with complex or domain-

specific relationships, requiring further refinement. Although we 

didn’t encounter these issues during our initial work extending 

IOF Core with AL concepts, we used Protege’s alignment plug-

ins to refine LLM-generated mappings. For more complex 

mappings, tools like AgreementMaker or COMA can further 

refine the suggestions.  
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Step 7: Prototype and Test. LLMs, such as GPT-4, were 

prompted to generate validation scenarios, competency questions, 

and SPARQL queries based on the integrated AL concepts. For 

instance, a prompt like "Suggest validation scenarios for adaptive 

scheduling with Active Learning" helped us produce realistic test 

cases, including prototype code, descriptions of initial setup, 

process flows, validation steps, and queries based on newly 

integrated concepts.  

SPARQL queries generated by LLMs were executed using 

Protege with SPARQL plugins to assess the ontology’s ability to 

retrieve relevant information and answer competency questions. 

However, some LLM-generated scenarios revealed 

limitations in domain-specific knowledge, resulting in generic 

outputs that required refinement. Additionally, LLMs struggled 

with modeling intricate relationships or complex data retrieval 

conditions, making human oversight essential for ensuring 

accuracy and thorough testing. 

Step 8: Iterative Refinement. Following initial prototyping 

and testing, we gathered feedback from domain experts and users 

to further refine the ontology. Validation reports were uploaded 

to AskPDF Research Assistant (GPT-4), where LLMs reviewed 

the reports, extracted key improvement suggestions, and refined 

task lists. The LLM provided insights into areas where ontology 

relationships or properties required adjustments and identified 

additional concepts that might have been overlooked.  

Step 9: Document and Disseminate. LLMs like ChatGPT or 

Bard were instrumental in generating comprehensive 

documentation, including details on the ontology extensions. 

Additionally, LLMs contributed to drafting technical reports and 

research papers. 

Using this methodology, we successfully extended the IOF 

Core ontology with Active Learning (AL) concepts. Future 

stages of the HumAIne project will focus on further validation 

and refinement, particularly during pilot case implementations. 

4 Discussion 

This study highlights LLMs' potential in ontology 

engineering by reducing manual effort and increasing efficiency. 

LLMs rapidly identified key ontologies like OntoDM and IOF 

Core and generated structured classes, properties, and 

relationships, reducing the need for manual OWL/RDF code 

generation and concept mapping. However, LLMs face 

challenges in domain-specific precision, requiring human 

oversight to refine outputs and address nuances in specialized 

fields. While tools like Protege excel at ensuring logical 

consistency, LLMs offer dynamic capabilities for generating new 

concepts and relationships. Despite these advantages, traditional 

tools like AgreementMaker and COMA are still necessary to 

refine and validate LLM-generated mappings. 

One strategy to mitigate LLM limitations was iterative 

prompt engineering. We refined prompts for ontology search and 

extension tasks through multiple cycles of improvement. These 

cycles, with LLMs like GPT-4, involved clarifying questions, 

refining queries, and generating more focused outputs. Initial 

prompt for starting the cycle can be the following: 

“Your role is my Prompt Creator. Your goal is to craft the 

best possible prompt for my needs. The prompt will be used by 

you, [LLM's name]. I want to write about: [keyword/topic]. 

Based on my input, you will now generate 3 sections. a) Revised 

prompt (clear, concise, and easily understood by you), b) 

Suggestions (on what details to include in the prompt to improve 

it), and c) Questions (ask any relevant questions to improve the 

prompt). We will continue this iterative process with me 

providing additional information to you and you updating the 

prompt until it's complete.” 

After 4-5 cycles, the prompts were highly optimized, 

ensuring relevant outputs. This refinement process reduced 

inconsistencies and improved LLM-generated content across 

both search and extension phases. 

We integrated multiple LLMs, including Bing Chat (GPT-4), 

Google’s Bard, and Perplexity AI, to cross-validate outputs, 

reducing errors and refining results. This ensured consistency in 

LLM-generated ontologies and mappings.  

To evaluate this multi-LLM approach, we propose the 

following metrics: Inter-Model Consistency (measures 

alignment between LLM outputs). Error Rate Reduction (Tracks 

how often one LLM corrects another’s errors),.Coverage of 

Relevant Concepts (assesses LLMs' ability to capture domain-

specific concepts). Although these metrics provide a framework, 

formal measurements are yet to be implemented.  

Future stages will involve applying these metrics to validate 

outputs and testing extended ontologies in real-world 

applications. This hybrid method combines LLMs and traditional 

tools, ensuring both efficiency and accuracy in scalable ontology 

development. 

5 Conclusions 
This study demonstrates how LLMs can streamline ontology 

engineering by automating the search, analysis, and extension of 

domain-specific ontologies. Leveraging multiple LLMs, we 

successfully identified and extended key ontologies, including 

OntoDM and IOF Core, for the HumAIne project, improving 

efficiency in generating classes, properties, and relationships.  

While LLMs significantly enhance the process, they face 

challenges in domain-specific precision and require human 

oversight, particularly for complex relationships. Traditional 

tools like Protege and ontology reasoners remain critical for 

ensuring logical consistency and validation. 

Future work will focus on refining these extended ontologies 

through real-world pilot tests and applying evaluation metrics to 

LLM-generated outputs. This hybrid approach, combining LLM 

automation with traditional validation tools, offers a scalable 

solution that balances efficiency with the need for human 

expertise. 
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