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Abstract  

Federated learning (FL) represents a pivotal advancement 

in applying Machine Learning (ML) in healthcare. It addresses 

the challenges of data privacy and security by facilitating model 

transferability across institutions. This paper explores the 

effective employment of FL to enhance the deployment of large 

language models (LLMs) in healthcare settings while 

maintaining stringent privacy standards. Through a detailed 

examination of the challenges in applying LLMs to the 

healthcare domain, including privacy, security, regulatory 

constraints, and training data quality, we present a federated 

learning architecture tailored for LLMs in healthcare. This 

architecture outlines the roles and responsibilities of 

participating entities, providing a framework for secure 

collaboration. We further analyze privacy-preserving techniques 

such as differential privacy and secure aggregation in the context 

of federated LLMs for healthcare, offering insights into their 

practical implementation.  

Our findings suggest that federated learning can 

significantly enhance the capabilities of LLMs in healthcare 

while preserving patient privacy. In addition, we also identify 

persistent challenges in areas such as computational and 

communicational efficiency, lack of benchmarks and tailored FL 

aggregation algorithms applied to LLMs, model performance, 

and ethical concerns in participant selection. By critically 

evaluating the proposed approach and highlighting its potential 

benefits and limitations in real-world healthcare settings, this 

work provides a foundation for future research in secure and 

privacy-preserving ML deployment in healthcare. 
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1 Introduction  

The advancements in hardware and software technologies, 

hyper-connectivity, and the fourth industrial revolution lead to 

the creation of mass amounts of health-related data. Machine 

learning and AI, in general, are the biggest winners from this 

endless pool of structured and unstructured data, as these 

technologies thrive on large datasets to identify patterns and 

make predictions. The novel adaptable, predictive approach to 

generating insights, decision support, and assistance in tasks that 

have long been considered solely reserved for human expertise 

is based on this paradigm's capabilities to recognize patterns 

from the data without being explicitly programmed.  

Conventional machine learning implies that the data owner 

communicates with a specific central server with significant 

computational power. The central server consumes data from 

different sources and applies training techniques and algorithms 

to devise an effective model. ML requires large amounts of data 

to satisfy the expectations for the model's performance. 

Large-language models (LLMs), as representative of ML 

advancements, have been a particular point of interest in recent 

years. They have already proven their applicability and massive 

potential in multiple fields [30]. LLMs are designed to 

understand, generate, and interact with human-like text and can 

understand context, making them suitable for performing a wide 

range of complex language-related tasks. They are trained in two 

main phases. First, the model learns general knowledge about 

language patterns in the pre-training phase. Then, it can be fine-

tuned to execute downstream tasks to specialize its expertise in a 

specific domain [28].  

However, like other machine learning models researched and 

implemented, this paradigm is data-hungry, meaning that it 

inherently requires massive training data to achieve the expected 

performance [10]. Thus, LLMs are designed to perform better 

with an increase in training data volume and computational 

power. 

Various unfortunate scenarios related to the misuse of private and 

personal data cast a shadow on AI's capabilities, underscoring the 

growing concerns about data privacy, specifically in the phases 

when the models are trained. [13]. The year 2016 is particularly 

significant for two key developments aiming to overcome these 

challenges. The first is the attempt to regulate personal data 

collection, processing, and storing by introducing the General 

Data Protection Regulation (GDPR) in Europe [12]. The second 

key development was the introduction of Federated Learning 

(FL) by Google researchers, which provided a groundbreaking 

scientific approach to addressing data privacy and security 

concerns in ML [16].  

This paper aims to discuss the possibility of satisfying the 

needs of both data owners and ML experts by leveraging the 

concept of federated learning. On the one hand, data owners can 

be supported to participate in collaborative training in a privacy-

preserving manner when their data is insufficient to craft a high-
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performance model, such as LLM. On the other hand, ML 

experts can develop and advance their approaches by utilizing 

large volumes of real-life institutional data and access to diverse 

scenarios, which are essential for building a robust model.  

Being aimed at investigating the FL potential for application 

in the health domain, the insights presented in this work offer 

support in finding a more robust, secure, and effective use of AI 

that does not require technical proficiency of the medical experts, 

ultimately contributing to improved patient care and data 

protection.  

The remainder of this paper is organized as follows: Sections 

2 and 3 introduce FL and LLMs, and their relevance to 

healthcare; section 4 presents our proposed FL architecture for 

LLMs in healthcare, detailing the system components and their 

roles; section 5 discusses challenges in implementing LLMs in 

healthcare using FL; and section 6 explores privacy-preserving 

techniques for integration with our FL architecture. 

2 LLM-based Healthcare Applications 

LLMs are usually trained on high-quality public data, but 

their performance is often limited when tasked with specialized 

or narrower-spectrum tasks. With specific expertise in mind, 

such as healthcare, different approaches should be considered to 

build that corpus. Healthcare institutions can use their local 

datasets, leading to less efficient LLM, or they can join other 

collaborative efforts to make high-quality training data facing the 

inevitable challenges of privacy and regulations. 

LLMs are attractive in the healthcare area because of their 

capability to simplify the interaction with an intelligent system 

without needing technical expertise. Lack of technological 

proficiency of medical experts can decrease the adoption of a 

specific software solution and can be marked as overly complex. 

The core principles of the LLMs allow users to interact with their 

domain rules, persistent knowledge, and past experiences 

without the need to rely on their computer literacy. One of the 

enormous benefits of utilizing LLMs in potential areas of 

medical workflows relies on the output, which is in an 

understandable form of natural language. The ease of use of 

natural language to provide instructions and ask for decision 

support bridges the gap between the domain experts and the 

utilization of an intelligent computer system. Furthermore, much 

of the data that persists within healthcare institutions is in 

unstructured formats, such as clinical notes, conversations, 

diagnoses, prescriptions, and research articles. LLMs are 

particularly effective at processing and using these natural 

language texts. In that way, the transparency is increased, and the 

expert can examine the reasoning behind the answers provided 

straightforwardly. 

In the past several years, we have already witnessed the 

potential of LLMs in healthcare in many areas, such as 

interpreting images from a specific medical domain, 

summarizing reports and medical history, identifying patterns in 

electronic health records (EHR), and offering support for 

decision-making processes. The use of natural language can also 

influence patient engagement processes [16]. 

Even though exceptional remarks on providing suitable 

LLMs for healthcare are already in place and the community is 

verifying the theoretical and conceptual findings, the decision of 

one healthcare institution to utilize such a system can face a lot 

of hesitation. Most of the training data for the LLMs comes from 

publicly available sources, lacking the nuances that bring the 

real-life data isolated in the infrastructure of a single healthcare 

institution. Additionally, each institution has many 

characteristics that make it unique in how it works. Workflows, 

dictionaries, specific characteristics of the population it serves, 

or particular domain attributes can result in difficulties for off-

the-shelf LLMs in providing the correct output to the instruction 

given. This calls for the institutions to further tailor and tune the 

capabilities of the LLM. Although state-of-the-art LLMs allow 

for such modifications and fine-tunings and making this process 

feasible, this comes with a heavy involvement and effort by the 

institution representatives and with extensive computational 

resources. Finally, even if one institution is capable of making 

efforts to adapt a generalized LLM for its use, it faces the 

inevitable obstacle of data insufficiency. In general, a single 

institution either cannot provide enough data to receive proper, 

correct output for the downstream task or is incapable of solving 

instruction of so-called new events or conditions. 

A healthcare institution would need support in multiple areas 

to make the process easier to follow and adopt. As a result, 

processes related to finding a suitable LLM model, maintaining 

it, and keeping it up to date should be outsourced to a separate 

body owning the expertise. To effectively adapt LLMs in the 

healthcare domain, collaboration among institutions in 

compliance with the industry regulations should be established 

to build a rich training corpus. 

3 FL Principles Relevant to Healthcare Data 

Privacy and Security 

In healthcare, data is often distributed across multiple 

institutions, each possessing unique and valuable patient 

information. Traditional approaches to AI model training require 

centralizing this data, which poses significant privacy and 

security risks. Federated learning provides a solution by enabling 

collaborative model training without exchanging raw data. 

Instead, each institution trains the model locally and shares only 

aggregated updates with a central server. This method ensures 

that sensitive patient data remains within the institution, 

facilitating the transfer and deployment of AI models across 

different settings without compromising data security. FL is an 

iterative process, and each communication round aims to 

improve the model's performance. A typical FL scenario consists 

of two main phases in each round: local training of the model 

done on the participant side and aggregation of updates, which 

aims to create the most accurate consensus model.  

There are three main types of FL based on how the data is 

distributed across participants. In horizontal federated learning, 

the datasets share the same feature space but differ in the samples 

they contain. Vertical federated learning, on the other hand, 

involves datasets with the same samples but different features. 

Lastly, federated transfer learning encompasses datasets that 

vary in both their feature and sample spaces [8]. 

FL in healthcare is predominantly covered in theoretical 

research, with many studies exploring its potential, such as for 

improved personalized treatment and public health monitoring. 

However, there are real-life applications, such as in radiology, 

where FL enables collaborative training on medical images like 

MRIs and X-rays without sharing patient data [23]. 
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In the context of machine learning (ML) applications 

involving healthcare data, there are three critical vulnerability 

points that require attention: the data itself, the training of ML 

models, and the communication and transfer of data. Each area 

carries specific challenges and risks that must be mitigated to 

ensure the privacy, security, and efficacy of ML systems in 

healthcare. Health-related data is inherently complex, with 

characteristics such as high dimensionality, variance over time, 

heterogeneity, difficult interoperability, sparsity, and isolation 

[4]. Protecting the privacy of patients' personal and sensitive 

health information is crucial. Due to the sensitive nature of 

healthcare data, security breaches can lead to severe 

consequences, including identity theft, fraud, and violation of 

patient confidentiality.  

Healthcare data often comes from various sources, such as 

hospitals, clinics, wearable devices, and electronic health records 

(EHRs). This data is typically non-independent, identically 

distributed (non-iid), unbalanced, and fragmented across 

different systems. Additionally, data may be sparse or isolated, 

making it challenging to build comprehensive patient profiles or 

conduct large-scale analyses. 

Federated learning offers a promising approach to 

overcoming these challenges by allowing ML models to be 

trained across multiple decentralised data sources while keeping 

data local. This technique improves data privacy and security by 

not requiring raw data to be transferred to a central location. In 

an FL environment, each data controller defines its governance 

processes and privacy policies. This includes setting conditions 

for data access, training, and validation phases [3, 7, 19].  

Communication between institutions, especially in healthcare, 

must adhere to strict regulatory requirements, such as the Health 

Insurance Portability and Accountability Act (HIPAA) in the U.S. 

and GDPR in Europe. Thus, privacy-preserving mechanisms 

should be implemented "by design" and "by default" to ensure 

that sensitive patient information is processed securely. A 

compliant ML system requires secure data transfer mechanisms, 

consent management, and audit trails. The FL setting can offer 

advancement in this area by letting institutions keep sensitive 

information, prevent unnecessary data transfers and processing 

that could violate regulatory requirements, and minimize the risk 

of data breaches [27].  

Training ML models with healthcare data presents unique 

challenges, including addressing data bias, limited sample sizes, 

and ensuring model performance. Healthcare data may be biased 

due to demographic imbalances, socio-economic factors, or 

varying levels of care access across populations.  

Training of ML models with diverse datasets enhances their 

generalizability and robustness. By incorporating data from 

various sources and populations, models can better adapt to new 

and unforeseen health events, improving their predictive power 

and reliability. Federated learning, in particular, enables the use 

of diverse datasets while maintaining privacy, thus improving 

overall model performance [21, 17]. 

4  FL Architecture for LLM-Based Healthcare 

Applications 

Figure 1 depicts the three major components of a typical FL 

architecture. The participants involved in our cross-silo FL 

setting are the healthcare institutions, the manager (e.g., 

aggregation server or global server), and the communication-

computation layer, which aggregates local updates and 

orchestrates communication phases in the ecosystem.  Each 

component has its own responsibilities, which are essential for 

the model to satisfy the preset expectations.  

Leveraging FL in utilizing LLMs adds a layer of complexity and 

implies different approaches based on the level of 

decentralization that needs to be achieved [29]. FL can help in 

both the pre-training and fine-tuning phases of LLM, and it is up 

to the requirements' specific characteristics and the parties 

involved computational power to choose the right strategy [2, 

11]. We will cover the different approaches while examining the 

three major architecture components. 

 

 

Figure 1: Typical FL Architecture that can be deployed for 

LLM-based applications  

4.1 Global Server  

The global server plays a central role, and due to the lack of 

properly established taxonomy and standards, this component in 

the literature is also considered as the manager or creator of the 

whole ecosystem. It is often referred to as the "manager" or 

"aggregation server" tasked with overseeing the entire 

collaboration and ensuring its smooth functioning. In healthcare, 

the manager can be a single healthcare institution that holds a lot 

of data and wants to leverage the FL setting to collaborate with 

other institutions, either to complete the missing domains and 

dimensions (by utilizing Vertical FL) or to enrich and expand the 

feature set in the same dimension (Horizontal FL). The global 

server's responsibilities can be broken down into several distinct 

areas: strategy for choosing a foundation model, strategy for 

exploiting data distribution and the client selection.  

The foundation model, also called the base model, forms the 

initial point of the LLM training in the FL setting. It represents a 

starting point for institutions to leverage the pre-training process 

with their own data or fine-tune it to perform specific 

downstream tasks since foundation models are usually trained on 

publicly available datasets. The pre-training process is 

computationally and time-consuming, meaning that the global 

server must find the most suitable scenario for satisfying 

requirements. 
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There are two main kinds of pre-training models: one based 

on the BERT model and the other on the GPT model. Both 

perform differently for different tasks and scenarios [5, 22]. 

Many attempts are made to use publicly available literature 

specific to the medical domain and create ready LLM models for 

usage, such as BioBert, which show superior performance than 

general pre-trained models [15].  

One approach is to select a suitable foundation model based 

on the options examined before or to initialize FL pre-training, 

where each party will contribute to the pre-training of the 

foundation LLM model. The latter approach requires the 

institutions to have expertise and sufficient computational power 

in their infrastructure to complete the assignment. Another 

consideration is the model's size and complexity, which will 

influence the following steps if not chosen according to the 

participant's IT infrastructure. 

Federated Learning can work differently depending on how 

data is spread and distributed across entities. In horizontal FL, 

each institution has data with similar features (for example, 

multiple hospitals with similar patient data). In vertical FL, 

institutions have different features for the same set of patients 

(for example, one entity has clinical data, and another has genetic 

data). Transfer learning can also be used when the model needs 

to generalize across different datasets [20]. The global server is 

responsible for choosing the appropriate strategy based on the 

data distribution and the desired outcomes.  

Client selection in FL refers to choosing which institutions to 

participate in each training round. The global server must ensure 

that diverse institutions contribute to model updates without 

overloading the communication system. Institutions with more 

data or better computational resources might participate more 

frequently. Still, the system should be flexible enough to rotate 

clients or dynamically adjust client participation based on 

resource availability. 

4.2 Participants 

The entities participating in this collaboration technique are 

also tasked with significant responsibilities. In the medical 

domain, these institutions own huge structured or unstructured 

datasets and are willing to participate in a distributed training 

process. Their responsibilities can be broken down into the pre-

training process, fine-tuning, value alignment, and strategy for 

local updates.   

If the FL-specific training approach is adopted, as discussed 

previously in the strategy for choosing the foundation model, 

then each institution may pre-train the selected model on its data 

and ensure that the initial model updates sent to the global server 

are more relevant and valuable. This capability in an FL setting 

can depend significantly on the institution's computational 

power, and even though possible and theoretically feasible, it can 

require a lot of additional expertise for the healthcare institution 

to engage in this kind of activity. 

Fine-tuning is crucial in adopting an LLM in the healthcare 

domain. The approach of LLM fine-tuning is to make 

downstream tasks required by the domain be instructed with 

human feedback [18]. Each institution should provide input-

output pairs where instructions are explicitly offered to solve 

some already defined downstream tasks. These datasets are 

designed to give the model an idea of what kind of output is 

expected. The expectation is that the LLM will learn to 

generalize and can handle novel instructions even though they 

were not a part of the fine-tuning instruction dataset. 

The variety of downstream tasks that LLMs can perform in the 

healthcare domain is often the critical reason institutions engage 

with this concept. Based on a benchmark for generalist 

biomedical AI, some of the most frequently performed medical-

relevant tasks suitable for the LLM domain are question 

answering, visual question answering (for example, based on 

radiology or pathology images), report summarization and 

generation, and medical image and medical documents 

classification [26]. Additionally, relation extraction in 

combination with named entity recognition can be added to the 

list of medical-relevant tasks. This is helpful in the medical 

domain to extract medical terms such as diseases, conditions, 

procedures, and symptoms from unstructured data and find 

suitable interpretations and connections in the unstructured data 

pool. 

Thanks to the LLaMA, each institution can make significant 

attempts to build its domain-specific instruction set and 

contribute to global instruction tuning in the FL setting. With the 

FL paradigm, each downstream task can be trained on multiple 

datasets instead of a single dataset, giving more suitable 

responses and outputs [25].  

In the FL setting, the value-alignment step occurs on the 

participant's side during local training. Its purpose is to ensure 

that the model's objectives are aligned with each institution's 

values and goals. This step is particularly crucial in the medical 

field, where ethical guidelines and patient care standards are of 

the utmost importance. 

Technically, value-alignment is solved similarly to 

instruction tuning, with each participant's preference dataset 

containing combinations of instruction, preferred, and 

misreferred responses.  

In FL, participants typically have far fewer computational 

resources than centralized cloud servers and fine-tuning all 

parameters of LLMs can be an obstacle. Parameter-efficient 

tuning techniques, such as Lora, are used to address this 

limitation [6]. Instead of updating the entire pre-trained model 

weights to obtain local updates, participants modify only specific 

parameters and send them back to the global server for 

aggregation. 

4.3 Communication-Computation Layer 

As presented above, the global server is responsible for 

managing the whole ecosystem, and one of the most complex 

tasks is related to the communication-computation layer. The 

global server should manage the aggregation process of local 

model updates and ensure that the global LLM and updates are 

securely transmitted across the system. 

Choosing the suitable FL algorithm for combining all 

findings and improvements made by each participant in the form 

of parameter weights is a step that has attracted many researchers 

and experts. One of the first and most used algorithms is 

Federated Averaging (FedAvg), but more sophisticated 

approaches may be necessary in different scenarios [16]. The 

model's performance relies significantly on how model updates 

are aggregated. Even though the only data transmitted through 

the network in an FL setting are the model and its updates, the 

communication layer is responsible for ensuring that the transfer 

is done securely and continuously. The communication layer 
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component must develop a strategy for creating a pipeline from 

a live data connection to the model and inference to transmitting 

new model parameters via secure channels to the aggregating 

server. Size and complexity of the model must be considered as 

well, since they can cause a bottleneck. 

In addition, the communication layer also ensures that the 

data transfer is seamless and uninterrupted. This component is 

tasked with developing a robust strategy to create an efficient 

pipeline, from managing real-time data connections to 

facilitating model utilization and transmitting updated model 

parameters securely to the central aggregation server. A key 

consideration for the communication layer is the size and 

complexity of the used model. Large models with huge 

parameter lists can introduce significant bottlenecks during 

transmission, especially when dealing with limited bandwidth or 

less powerful devices. As such, the communication layer must be 

adept at handling these challenges, ensuring that updates are 

transferred efficiently without compromising the speed or 

security of the system. 

5 Hype, Vision and Challenges 

Implementing LLMs in healthcare using FL presents a set 

of intertwined challenges when viewed through the lenses of 

privacy and security. There is a foundational challenge between 

the need for diverse and high-quality data generated by 

institutions in the specific domain and the importance of 

protecting sensitive information. FL enables availability and 

access to a broader spectrum of data sources while maintaining 

privacy. Still, the inability to directly act upon raw data can 

impact the convergence of the model and model performance. 

Data transfer needs in FL, even though minimized to just model 

updates, still introduce a risk for security attacks. This risk 

increases with the communication overhead caused by 

distributing complex and large LLMs.  

By introducing a central figure in the architecture in the 

name of the global aggregation server, the FL setting in LLM 

opens up a single point of failure in the ecosystem. Adversarial 

attacks can be performed, compromising model integrity, which 

could lead to data breaches and incorrect outputs.  

FL is still a young and immature topic in the context of 

LLM. One of the biggest challenges is the lack of benchmarks 

and comprehensive reviews that can examine the solution's 

success based on different tasks, architectures, the number of 

clients, network bandwidth, computational resources, etc. These 

reviews and benchmarks can further expose security and privacy-

preserving issues and initiate proper risk mitigation strategies.  

Multiple algorithms exist in the literature for aggregating local 

updates, but no specific algorithm is proposed or adapted for 

LLMs.  

The analysis of the three major components in the previous 

section pointed out the responsibilities, approaches, and 

strategies that need to be considered in order to collaboratively 

design and implement training, and utilize LLM properly. The 

analysis emphasized that training LLMs in a federated learning 

setting requires a thoughtful, tailored approach to address the 

unique challenges. Additionally, there are various approaches to 

take, depending on factors such as participant resources, data 

distribution, model size and complexity, data transfer, etc. This 

section will further examine the challenges of implementing such 

LLM training in the FL setting. Fine-tuning LLMs in FL is a 

time-consuming and computationally expensive task [6].   

The client selection process, in which the ecosystem manager 

decides which participants should be involved, can raise many 

ethical concerns, such as fairness. The purpose of the 

collaboration is to make the LLM more robust. Still, some 

participants' data volume and computational power can squeeze 

out institutions that are not on that level but still can add to the 

diversity and offer unique cultural, ethical, and contextual 

values. While FL addresses many privacy concerns by design, it 

also introduces new security considerations that must be 

carefully managed. Successfully navigating these challenges 

requires a detailed approach that balances privacy protection, 

security enhancement, and the pursuit of practical and robust 

LLM in healthcare. 

6 Privacy-Preserving Techniques  

The deployment LLMs in the healthcare field through FL 

promises advancements in preparing models to react to given 

domain-specific downstream tasks. The FL can enhance LLMs' 

effectiveness and proper application while safeguarding patient 

confidentiality and ensuring regulatory compliance, providing 

medical professionals greater confidence in adopting these tools.  

However, while FL enables collaborative learning without 

direct data sharing, it's not immune to privacy threats. With this 

approach, raw data remains local, but the model updates shared 

during training can still leak information. In addition, LLMs 

trained with healthcare data could memorize and potentially 

regenerate sensitive patient information. A privacy breach in this 

context can cause severe consequences, including exposure to 

medical history, compromising patient confidentiality, and 

misuse of sensitive health information [1].  

During this collaborative process, the model or its updates 

could become targets for various attacks. For instance, model 

inversion attacks performed on the global model might allow the 

reconstruction of individual patient records. Similarly, 

membership inference attacks could reveal the presence of 

specific institutions or patient data in the training, potentially 

exposing the entire medical history. Malicious participants in the 

process could poison the model by introducing biases or 

backdoors, potentially leading to improper results generated by 

the LLMs [9, 24].  

To counter these risks and threats, researchers and 

practitioners evaluate the effects of several privacy-preserving 

techniques, such as secure aggregation and differential privacy. 

Secure aggregation, a cryptographic protocol, allows the central 

server to observe aggregated results without accessing individual 

model updates. This approach maintains accuracy but adds 

significant communication costs. Differential privacy, on the 

other hand, adds calibrated noise to data or model parameters, 

offering statistical privacy guarantees. While effective against 

inference attacks, it may reduce model accuracy and require 

additional workload in the parameter-tuning process [14]. The 

choice of privacy-preserving techniques must be made with a 

thorough understanding of the specific use case, the sensitivity 

of the data involved, and the potential impacts of privacy 

breaches. The tailored approach should calibrate the trade-off 

between model performance and data protection. More robust 

privacy protection might require limiting the model’s access to 
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much-needed data for LLMs to offer a proper answer to a specific 

task, degrading the model performance and increasing the 

computational and communicational overhead.  As research in 

this field progresses, finding the right balance between privacy, 

system performance, and efficiency will be crucial for deploying 

LLMs in healthcare using FL. 

7 Conclusion 

This paper has explored the potential of FL in enhancing the 

deployment of LLMs in healthcare settings. By enabling privacy-

preserving collaboration, FL allows healthcare institutions to 

collectively train and improve LLMs without compromising 

sensitive patient data. This approach not only addresses 

fundamental privacy concerns but also enhances model 

performance by leveraging diverse datasets across institutions, 

potentially improving the generalizability and robustness of 

LLMs in healthcare applications. To facilitate the 

implementation of healthcare LLM with FL, we examined a 

tailored architectural framework that outlines the roles and 

responsibilities of participating entities. In addition, challenges 

and consideration of risks and threats were reviewed, especially 

in combination with privacy-preserving techniques.  

Looking ahead, several areas require further research and 

development. Optimization of computational and 

communication efficiency for LLMs, development of 

standardized benchmarks, establishment of ethical frameworks 

for participant selection, and exploration of advanced privacy-

preserving techniques are crucial for future work. 
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