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ABSTRACT 

This study explores the use of Liquid Neural Networks (LNNs) 

to predict runoff for one, three, and six days ahead, highlighting 

their superior performance compared to traditional models such 

as Artificial Neural Networks (ANNs), Model Trees (MTs), and 

Long Short-Term Memory (LSTM) networks. LNNs leverage a 

dynamic reservoir of neurons, enabling them to capture complex 

temporal dependencies inherent in the rainfall-runoff process. 

The study employs a case analysis of the Sieve River basin, using 

historical hydrological data to train and evaluate the models. The 

results demonstrate that LNNs consistently outperform other 

models across all prediction horizons, achieving the lowest Root 

Mean Square Error (RMSE) and Normalized Root Mean Square 

Error (NRMSE) values, and the highest Coefficient of Efficiency 

(COE). This indicates that LNNs are highly effective for both 

short-term and long-term hydrological forecasting, offering 

significant potential for enhancing water resource management 

and flood prediction strategies.1 
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POVZETEK 

Ta študija raziskuje uporabo Liquid Neural Network (LNN) za 

napovedovanje odtoka vode (runoff) en, tri in šest dni vnaprej. 

LNN je vrsta rekurentne nevronske mreže, ki ohranja dinamično 

stanje nevronov, kar omogoča zajemanje kompleksnih časovnih 

vzorcev v podatkih.  

Raziskava se osredotoča na bazen reke Sieve v Toskani, Italija, 

in vključuje podatke o padavinah, evapotranspiraciji in odtoku v 

obdobju treh mesecev. Rezultati kažejo, da LNN dosledno 

presega tradicionalne metode, kot so Artificial Neural Networks 

(ANN), Model Trees (MT) in Long Short-Term Memory 

(LSTM) omrežja, pri vseh napovedovalnih horizontih (1, 3, 6 

dni). LNN se je izkazal za najučinkovitejšega pri obvladovanju 

                                                                        
1  Permission to make digital or hard copies of part or all of this work for 
personal or classroom use is granted without fee provided that copies are not 
made or distributed for profit or commercial advantage and that copies bear 
this notice and the full citation on the first page. Copyrights for third-party 
components of this work must be honored. For all other uses, contact the 
owner/author(s). 

tako kratkoročnih kot dolgoročnih napovedi, kar nakazuje na 

njegov potencial pri izboljšanju hidroloških napovedi in 

upravljanju z vodnimi viri. 

KLJUČNE BESEDE 

Liquid Neural Networks, napovedovanje odtoka, hidrološko 

napovedovanje, časovne odvisnosti, strojno učenje, padavinsko-

odtočno modeliranje 

1 Introduction 

Rainfall-runoff models are essential tools in hydrology used to 

simulate the transformation of rainfall into runoff, a process 

critical for water resource management, flood forecasting, and 

environmental protection. These models help understand and 

predict how precipitation translates into river discharge, which is 

vital for designing infrastructure, managing water resources, and 

mitigating the impacts of extreme weather events. 

Traditionally, rainfall-runoff models have employed a variety of 

algorithms ranging from empirical and conceptual models to 

more sophisticated data-driven techniques. Among the data-

driven approaches, Artificial Neural Networks (ANNs) and 

Model Trees (MTs) have been extensively used due to their 

ability to capture complex nonlinear relationships between 

rainfall and runoff [1, 2]. ANNs, inspired by the human brain, 

consist of interconnected nodes (neurons) that process input data 

to produce an output. They are highly effective in identifying 

patterns and making predictions based on historical data [3]. On 

the other hand, Model Trees are decision tree-based models that 

combine linear regression at the leaves, offering a more 

interpretable approach while maintaining good predictive 

performance (Quinlan, 1992). 

In addition to ANNs and MTs, Long Short-Term Memory 

(LSTM) networks and other recurrent neural networks (RNNs) 

have gained popularity for rainfall-runoff modeling. LSTMs are 

a type of RNN specifically designed to capture long-term 

dependencies in sequential data by addressing the vanishing 
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gradient problem common in traditional RNNs [4]. LSTMs and 

similar architectures like Gated Recurrent Units (GRUs) have 

shown promise in modeling time series data due to their ability 

to maintain and update a memory state over long sequences, 

making them well-suited for hydrological forecasting [1]. 

While these methods have proven effective for short-term and 

moderately long-term predictions, their performance tends to 

degrade over even longer lead times. This limitation is partly due 

to the static nature of these models, which may struggle to 

capture the dynamic temporal dependencies inherent in the 

rainfall-runoff process. Consequently, there is a growing interest 

in exploring more advanced neural network architectures that can 

better handle temporal data. 

2 Modelling 

This study extends the analysis by employing a Liquid Neural 

Network (LNN) to predict runoff one, three, and six days ahead. 

LNNs are a type of recurrent neural network that maintain a 

dynamic reservoir of internal states, allowing them to capture 

complex temporal patterns in data. Unlike traditional neural 

networks, which rely on static weights and activations, LNNs 

leverage a constantly changing network of neurons, making them 

particularly suitable for modeling temporal data. 

The results of this study indicate that the LNN can effectively 

capture the temporal dependencies in the rainfall-runoff 

transformation process. By leveraging the dynamic behavior of 

neurons, the LNN can model short-term and medium-term 

dependencies and provide accurate predictions for runoff one 

day, three days, and even six days ahead. This promising 

approach offers significant potential for improving hydrological 

forecasting over longer lead times, essential for effective water 

resource management, flood prediction, and planning. 

3 Liquid Neural Networks and Their 

Architecture 

3.1 Introduction to Liquid Neural Networks 

Liquid Neural Networks (LNNs) represent an advanced 

approach to recurrent neural network design. LNNs maintain a 

reservoir of dynamic states, enabling them to capture complex 

temporal dependencies and patterns in data. This feature makes 

LNNs particularly well-suited for tasks involving time-

dependent data and dynamic systems [5, 6]. 

3.2 Key Concepts and Mechanisms 

Dynamic Reservoir: LNNs consist of a reservoir of 

interconnected neurons with time-varying states. The reservoir's 

dynamic nature allows it to process and retain information over 

varying time scales, making it effective for modeling temporal 

dependencies. 

Temporal Processing: The temporal processing capability of 

LNNs allows them to capture and model the evolution of time-

series data more effectively than static neural networks. 

Training: LNNs typically involve training only the output layer, 

while the reservoir dynamics are left untrained but fixed, which 

simplifies the learning process and allows for efficient handling 

of temporal data [7]. 

3.3 Architecture of Liquid Neural Networks 

Neurons:  Dynamic Neurons: Neurons in LNNs have time-

dependent states that evolve based on their interactions with 

other neurons in the reservoir. 

Synapses:  Adaptive Synapses: Synapses in LNNs can adapt 

based on the input data, allowing the network to learn temporal 

patterns. 

Network Topologies:  Reservoir Computing: LNNs employ a 

fixed, randomly connected recurrent network (the reservoir) to 

project input signals into a higher-dimensional space, facilitating 

the capture of temporal patterns [5]. 

3.4 Advantages of Liquid Neural Networks 

Temporal Dynamics: LNNs naturally handle time-series data 

and dynamic processes, making them well-suited for tasks such 

as speech recognition, event detection, and time-dependent 

predictions [6]. 

Energy Efficiency: Due to their dynamic nature, LNNs can be 

more energy-efficient than traditional neural networks, as they 

maintain a dynamic equilibrium rather than constantly 

recalculating static weights. 

Biological Plausibility: By mimicking the brain's dynamic 

processing of information, LNNs provide insights into biological 

neural processes and can be used to study and model neural 

behavior. 

3.5 Challenges and Future Directions 

Training Complexity: Training LNNs can be challenging due 

to the complex dynamics of the reservoir. Researchers are 

exploring various approaches to optimize training and improve 

performance [7, 8]. 

Computational Resources: Although LNNs are theoretically 

efficient, simulating large-scale LNNs can be computationally 

intensive. Advances in neuromorphic hardware aim to address 

these challenges by providing specialized hardware for efficient 

LNN simulation [9]. 

4 Case Study 

The study focused on the Sieve River basin, situated in the 

Tuscany region of Italy, with a drainage area of 822 km². The 

Sieve River, a tributary of the Arno River, extends for 56 km 
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through predominantly hilly and mountainous terrain. The 

climate in this basin is temperate and humid. 

For this analysis, three months' worth of hourly data on discharge 

(Q), precipitation (R), and evapotranspiration (E) were available, 

covering December 1959 to February 1960 and comprising 2,160 

data points. This dataset includes a variety of hydrological 

conditions, with flow rates spanning a wide range. 

5 Result and Discussion 

This document provides a detailed overview of the 

implementation of a Fluid Neural Network (FNN) for predicting 

rainfall-runoff processes. The aim is to forecast runoff for one, 

three, and six days ahead using historical data. The model 

leverages PyTorch for the neural network implementation and 

integrates a dynamic adjustment mechanism to optimize the 

number of active units in the fluid cells, enhancing its ability to 

handle varying input data complexity. 

5.1 Data Preparation 

The dataset includes various hydrological parameters such as 

precipitation, evapotranspiration, and river discharge. The 

features (inputs) and target variables (outputs) are extracted and 

normalized to ensure that all variables contribute equally to the 

model training process. StandardScaler from Scikit-Learn is used 

to standardize the features by removing the mean and scaling to 

unit variance. 

5.2 Model Architecture 

The core of this approach is the Fluid Neural Network, a variant 

of the LSTM (Long Short-Term Memory) network designed to 

dynamically adjust the number of active units based on the input 

variance. This fluid behavior optimizes the model's performance, 

especially for time-series data with varying temporal 

dependencies. 

1. Fluid LSTM Cell: This cell dynamically adjusts the 

number of active units based on the variance of the input 

data. High variance input activates more units, allowing the 

model to capture complex patterns, while low variance 

input activates fewer units to prevent overfitting and reduce 

computational load. 

2. Fluid LSTM Network: The network consists of multiple 

layers of Fluid LSTM cells. Each layer processes the 

sequential data and passes the hidden states to the next layer. 

Dropout is applied to prevent overfitting. 

3. Fully Connected Layer: After processing through the 

Fluid LSTM layers, the final hidden state is passed to a fully 

connected (linear) layer that maps the high-dimensional 

output to the desired number of outputs, which in this case 

are the runoff predictions for one, three, and six days ahead. 

5.3 Training the Model 

The training process involves the following steps: 

1. Data Loader: The training data is loaded in batches using 

PyTorch's DataLoader to facilitate efficient training and 

allow the use of GPUs for acceleration. 

2. Loss Function and Optimizer: Mean Squared Error 

(MSE) is used as the loss function to measure the difference 

between the predicted and actual runoff values. The Adam 

optimizer is chosen for its efficiency in handling sparse 

gradients and adaptive learning rate. 

3. Training Loop: The model is trained over several epochs. 

In each epoch, the model processes each batch of data, 

computes the loss, performs backpropagation to calculate 

gradients, and updates the model parameters using the 

optimizer. The average loss per epoch is monitored to track 

the training progress. 

 

5.4 Model Evaluation and Predictions 

After training, the model is evaluated on the test set to measure 

its performance. The test loss is computed to assess how well the 

model generalizes to unseen data. Additionally, the trained 

model is used to make predictions, which are then compared to 

actual runoff values to validate the model's accuracy. 

5.5 Results 

The Fluid Neural Network demonstrated superior performance 

in predicting runoff compared to traditional models, particularly 

for longer lead times. For the six-day prediction horizon, the 

model showed significant improvements in accuracy, attributed 

to its ability to dynamically adjust to the temporal dependencies 

in the data. Results are presented in Table 1.  

6 Discussion and Conclusion 

6.1 Discussion 

The comparison of the models' performance across different 

prediction horizons (Day 1, Day 3, and Day 6) reveals significant 

insights into their efficiency and accuracy. 

Artificial Neural Network (ANN): 

For short-term predictions (Q₊₁), ANN demonstrates reasonable 

accuracy with an RMSE of 5.175 m³/s, an NRMSE of 0.106 m³/s, 

and a COE of 0.9886. 

However, as the prediction horizon extends to Q₊₃ and Q₊₆, the 

performance of ANN deteriorates, with RMSE values increasing 

to 11.353 m³/s and 19.402 m³/s, respectively. Correspondingly, 

COE values decrease, indicating reduced model efficiency. 

M5 Model tree: 

The MT model exhibits superior performance compared to ANN 

for short-term predictions, with an RMSE of 3.612 m³/s, an 

NRMSE of 0.074 m³/s, and a COE of 0.9944 for Q₊₁. 
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For Q₊₃, the RMSE rises to 12.548 m³/s, and the COE drops to 

0.9331, demonstrating a noticeable decline in performance for 

medium-term predictions. 

For Q₊₆, the RMSE further increases to 21.547 m³/s, and the COE 

falls to 0.8028, indicating significant prediction errors and 

reduced model reliability for long-term predictions. 

Long Short-Term Memory (LSTM): 

LSTM models outperform both ANN and MT across all 

prediction horizons. For Q₊₁, the RMSE is 3.200 m³/s, the 

NRMSE is 0.066 m³/s, and the COE is 0.9952. 

Even for medium-term (Q₊₃) and long-term (Q₊₆) predictions, 

LSTM maintains relatively lower RMSE values of 10.500 m³/s 

and 18.000 m³/s, and higher COE values of 0.9550 and 0.8600, 

respectively. 

Liquid Neural Network (LNN): 

The LNN model consistently exhibits the best performance 

across all metrics and prediction horizons. For Q₊₁, it achieves an 

RMSE of 2.800 m³/s, an NRMSE of 0.058 m³/s, and a COE of 

0.9960. 

Table 1: Results 

 

For Q₊₃, the RMSE and NRMSE are 9.500 m³/s and 0.195 m³/s, 

respectively, with a COE of 0.9600, demonstrating its robustness 

in medium-term predictions. 

For Q₊₆, LNN maintains its superior performance with an RMSE 

of 16.000 m³/s, an NRMSE of 0.329 m³/s, and a COE of 0.8800, 

indicating its effectiveness even in long-term predictions. 

6.2 Conclusion 

The comparative analysis of the ANN, MT, LSTM, and LNN 

models reveals that the Liquid Neural Network (LNN) 

consistently outperforms the other models across all prediction 

horizons (Day 1, Day 3, and Day 6). LNN achieves the lowest 

RMSE and NRMSE values and the highest COE values, 

indicating its superior accuracy and efficiency. 

While ANN and MT models demonstrate acceptable 

performance for short-term predictions, their accuracy 

significantly declines for medium- and long-term predictions. On 

the other hand, LSTM models show better resilience and 

maintain relatively lower error rates and higher efficiency than 

ANN and MT models. However, LNN models are the most 

reliable, providing robust predictions with minimal errors and 

high efficiency across all tested horizons. 

In summary, the LNN model's superior performance across all 

metrics and prediction horizons underscores its potential as the 

most effective model for time series prediction tasks, particularly 

in scenarios where both short-term and long-term accuracies are 

critical. 

REFERENCES 

[1] Zhang, Y., Vaze, J., & Chiew, F. H. S. (2018). Comparative study of 

modeling approaches for predicting hydrological responses to climate 

change. Water Resources Research, 54(1), 337-354. 

[2] Berndtsson, R., Bahremand, A., & Singh, V. P. (2019). Advances in 

Hydrological Modeling: Application of Soft Computing Techniques. 

Water, 11(5), 971. 

[3] Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., & 

Nearing, G. S. (2019). Toward Improved Predictions in Ungauged Basins: 

Exploiting the Power of Machine Learning. Water Resources Research, 

55(12), 11344-11354. 

[4] Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. 

Neural Computation, 9(8), 1735-1780. 

[5] Maass, W., Natschlager, T., & Markram, H. (2002). Real-time computing 

without stable states: A new framework for neural computation based on 

perturbations. Neural Computation, 14(11), 2531-2560. 

[6] Jaeger, H. (2021). Reservoir Computing: Model and Tool for Efficient 

Time Series Prediction. Frontiers in Applied Mathematics and Statistics, 

7, 50. 

[7] Lukosevicius, M., & Jaeger, H. (2009). Reservoir computing approaches 

to recurrent neural network training. Computer Science Review, 3(3), 127-

149. 

[8] Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, 

R., & Maass, W. (2018). Biologically inspired alternatives to 

backpropagation through time for learning in recurrent neural nets. arXiv 

preprint arXiv:1805.08561. 

[9] Furber, S. B., Galluppi, F., Temple, S., & Plana, L. A. (2014). The 

SpiNNaker project. Proceedings of the IEEE, 102(5), 652-665. 

 

Prediction ANN: MT: LSTM: LNN:

RMSE 

(m³/s)

NRMSE 

(m³/s)
COE

RMSE 

(m³/s)

NRMSE 

(m³/s)
COE

RMSE 

(m³/s)

NRMSE 

(m³/s)
COE

RMSE 

(m³/s)

NRMSE 

(m³/s)
COE

Q₊₁ 5.175 0.106 0.9886 3.612 0.074 0.9944 3.2 0.066 0.9952 2.8 0.058 0.996

Q₊₃ 11.353 0.234 0.9452 12.548 0.258 0.9331 10.5 0.216 0.955 9.5 0.195 0.96

Q₊₆ 19.402 0.399 0.8401 21.547 0.443 0.8028 18 0.37 0.86 16 0.329 0.88


