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Abstract—Federated learning (FL) represents a pivotal 

advancement in applying Machine Learning (ML) in 

healthcare. It addresses the challenges of data privacy and 

security by facilitating model transferability across institutions. 

This paper explores the effective employment of FL to enhance 

the deployment of large language models (LLMs) in healthcare 

settings while maintaining stringent privacy standards. 

Along a detailed examination of the challenges in applying 

LLMs to the healthcare domain, including privacy, security, 

regulatory constraints, and training data quality, we present a 

federated learning architecture tailored for LLMs in healthcare. 

This architecture outlines the roles and responsibilities of 

participating entities, providing a framework for secure 

collaboration. We further analyze privacy-preserving 

techniques such as differential privacy and secure aggregation 

in the context of federated LLMs for healthcare, offering 

insights into their practical implementation.  

Our findings suggest that federated learning is a viable 

choice for enhancing he capabilities of LLMs in healthcare while 

preserving patient privacy. In addition, we also identify 

persistent challenges in areas such as computational and 

communicational efficiency, lack of benchmarks and tailored 

FL aggregation algorithms applied to LLMs, model 

performance, and ethical concerns in participant selection. By 

critically evaluating the proposed approach and highlighting its 

potential benefits and limitations in real-world healthcare 

settings, this work provides a foundation for future research in 

secure and privacy-preserving ML deployment in healthcare.  

Keywords—Federated Learning, Large Language Models, 

Data Privacy, Healthcare ML, Privacy Preservation, Model 

Transferability 

I. INTRODUCTION  

The advancements in hardware and software technologies, 
hyper-connectivity, and the fourth industrial revolution lead to 
the creation of mass amounts of health-related data. Machine 
learning and AI, in general, are the biggest winners from this 
endless pool of structured and unstructured data, as these 
technologies thrive on large datasets to identify patterns and 
make predictions. [1]. The novel adaptable, predictive 
approach to generating insights, decision support, and 
assistance in tasks that have long been considered solely 
reserved for human expertise is based on this paradigm's 
capabilities to recognize patterns from the data without being 
explicitly programmed to do so.  

Conventional machine learning implies that the data 
owner communicates with a specific central server with 
significant computational power. The central server consumes 

data from different sources and applies training techniques 
and algorithms to devise an effective model. ML requires 
large amounts of data to satisfy the expectations for the 
model's performance. 

Large-language models (LLMs), as representative of ML 
advancements, have been a particular point of interest in 
recent years. They have already proven their applicability and 
massive potential in multiple fields [1]. LLMs are designed to 
understand, generate, and interact with human-like text and 
can understand context, making them suitable for performing 
a wide range of complex language-related tasks. They are 
trained in two main phases. First, the model learns general 
knowledge about language patterns in the pre-training phase. 
Then, it can be fine-tuned to execute downstream tasks to 
specialize its expertise in a specific domain [2].    

However, like other machine learning models researched 
and implemented, this paradigm is data-hungry, meaning that 
it inherently requires massive training data to achieve the 
expected performance [3]. Thus, LLMs are designed to 
perform better with an increase in training data volume and 
computational power. 

Various unfortunate scenarios related to the misuse of 
private and personal data cast a shadow on AI's capabilities, 
underscoring the growing concerns about data privacy, 
specifically in the phases when the models are trained [4], [5]. 
The year 2016 is particularly significant for two key 
developments aiming to overcome these challenges. The first 
is the attempt to regulate personal data collection, processing, 
and storing by introducing the General Data Protection 
Regulation (GDPR) in Europe [6]. The second key 
development was the introduction of Federated Learning (FL) 
by Google researchers, which provided a groundbreaking 
scientific approach to addressing data privacy and security 
concerns in ML [7]. Their approach introduced a collaborative 
technique for training global machine-learning models 
without exposing or sharing sensitive data.  

This paper aims to discuss the possibility of satisfying the 
needs of both data owners and ML experts by leveraging the 
concept of federated learning. On the one hand, data owners 
can be supported to participate in collaborative training in a 
privacy-preserving manner when their data is insufficient to 
craft a high-performance model, such as LLM. On the other 
hand, ML experts can develop and advance their approaches 
by utilizing large volumes of real-life institutional data and 
access to diverse scenarios, which are essential for building a 
robust model.  

Being aimed at investigating the FL potential for 
application in the health domain, the insights presented in this 
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work offer support in finding a more robust, secure, and 
effective use of AI that does not require technical proficiency 
of the medical experts, ultimately contributing to improved 
patient care and data protection.  

The remainder of this paper is organized as follows: 
Sections II and III introduce FL and LLMs, and their relevance 
to healthcare; section IV presents our proposed FL 
architecture for LLMs in healthcare, detailing the system 
components and their roles; section V discusses challenges in 
implementing LLMs in healthcare using FL; and section VI 
explores privacy-preserving techniques for integration with 
our FL architecture. 

II. LLM-BASED HEALTHCARE APPLICATIONS 

LLMs are usually trained on high-quality public data, but 
their performance is often limited when tasked with 
specialized or narrower-spectrum tasks. With specific 
expertise in mind, such as healthcare, different approaches 
should be considered to build that corpus. Healthcare 
institutions can use their local datasets, leading to less efficient 
LLM, or they can join other collaborative efforts to make 
high-quality training data facing the inevitable challenges of 
privacy and regulations. 

LLMs are attractive in the healthcare area because of their 
capability to simplify the interaction with an intelligent system 
without needing technical expertise. Lack of technological 
proficiency of medical experts can decrease the adoption of a 
specific software solution and can be marked as overly 
complex. The core principles of the LLMs allow users to 
interact with their domain rules, persistent knowledge, and 
past experiences without the need to rely on their computer 
literacy. One of the enormous benefits of utilizing LLMs in 
medical workflows is due to the nature of the output, which is 
in an understandable form of natural language. The ease of use 
of natural language to provide instructions and ask for 
decision support bridges the gap between the domain experts 
and the utilization of an intelligent computer system. In the 
past several years, we have already witnessed the potential of 
LLMs in healthcare in many areas, such as interpreting images 
from a specific medical domain, summarizing reports and 
medical history, identifying patterns in electronic health 
records (EHR), and offering support for decision-making 
processes. The use of natural language can also influence 
patient engagement processes [16]. 

Furthermore, much of the data that persists within 
healthcare institutions is in unstructured formats, such as 
clinical notes, conversations, diagnoses, prescriptions, and 
research articles. LLMs are particularly effective at processing 
and using these natural language texts. In that way, the 
transparency is increased, and the expert can examine the 
reasoning behind the provided answers in a straightforward 
manner. Even though efforts to provide suitable LLMs for 
healthcare are already in place and the community is verifying 
the theoretical and conceptual findings, the decision of one 
healthcare institution to utilize such a system can face a lot of 
hesitation. Most of the training data for the LLMs comes from 
publicly available sources, lacking the nuances that bring the 
real-life data isolated in the infrastructure of a single 
healthcare institution. Additionally, each institution has many 
characteristics that make it unique in how it works. 
Workflows, dictionaries, specific characteristics of the 
population it serves, or particular domain attributes can result 
in difficulties for off-the-shelf LLMs in providing the correct 

output to the instruction given. This calls for the institutions to 
further tailor and tune the capabilities of the LLM. Although 
state-of-the-art LLMs allow for such modifications and fine-
tunings and making this process feasible, this comes with a 
heavy involvement and effort by the institution 
representatives and with extensive computational resources. 
Finally, even if one institution is capable of making efforts to 
adapt a generalized LLM for its use, it faces the inevitable 
obstacle of data insufficiency. In general, a single institution 
either cannot provide enough data to receive proper, correct 
output for the downstream task or is incapable of solving 
instruction of so-called new events or conditions. 

Clearly, healthcare institutions need support in multiple 
areas to make the process easier to follow and adopt. As a 
result, processes related to finding a suitable LLM model, 
maintaining it, and keeping it up to date should be outsourced 
to a separate body owning the expertise. To effectively adapt 
LLMs in the healthcare domain, every proposed solution must 
address and guarantee the resolution of the challenges 
discussed in section II. Therefore, collaboration among 
institutions in compliance with the industry regulations should 
be established to build a rich training corpus.  

III. OVERVIEW OF FEDERATED LEARNING PRINCIPLES AND 

THEIR RELEVANCE TO HEALTHCARE DATA PRIVACY AND 

SECURITY 

A. Overview of Federated Learning Principles 

In healthcare, data is often distributed across multiple 

institutions, each possessing unique and valuable patient 

information. Traditional approaches to AI model training 

require centralizing this data, which poses significant privacy 

and security risks. Federated learning provides a solution by 

enabling collaborative model training without exchanging 

raw data. Instead, each institution trains the model locally and 

shares only aggregated updates with a central server. This 

method ensures that sensitive patient data remains within the 

institution, facilitating the transfer and deployment of AI 

models across different settings without compromising data 

security. FL is an iterative process, and each communication 

round aims to improve the model's performance. A typical FL 

scenario consists of two main phases in each round: local 

training of the model done on the participant side and 

aggregation of updates, which aims to create the most 

accurate consensus model.  

There are three main types of FL based on how the data 

is distributed across participants. In horizontal federated 

learning, the datasets share the same feature space but differ 

in the samples they contain. Vertical federated learning, on 

the other hand, involves datasets with the same samples but 

different features. Lastly, federated transfer learning 

encompasses datasets that vary in both their feature and 

sample spaces [8]. 

B. Relevance to healthcare data privacy and security 

In the context of machine learning (ML) applications 
involving healthcare data, there are three critical vulnerability 
points that require attention: the data itself, the training of ML 
models, and the communication and transfer of data. Each area 
carries specific challenges and risks that must be mitigated to 
ensure the privacy, security, and efficacy of ML systems in 
healthcare.  



 Health-related data is inherently complex, with 
characteristics such as high dimensionality, variance over 
time, heterogeneity, difficult interoperability, sparsity, and 
isolation [9]. Protecting the privacy of patients' personal and 
sensitive health information is crucial. Due to the sensitive 
nature of healthcare data, security breaches can lead to severe 
consequences, including identity theft, fraud, and violation of 
patient confidentiality.  

Healthcare data often comes from various sources, such as 
hospitals, clinics, wearable devices, and electronic health 
records (EHRs). This data is typically non-independent, 
identically distributed (non-iid), unbalanced, and fragmented 
across different systems. Additionally, data may be sparse or 
isolated, making it challenging to build comprehensive patient 
profiles or conduct large-scale analyses. 

Federated learning offers a promising approach to 
overcoming these challenges by allowing ML models to be 
trained across multiple decentralised data sources while 
keeping data local. This technique improves data privacy and 
security by not requiring raw data to be transferred to a central 
location. In an FL environment, each data controller defines 
its governance processes and privacy policies. This includes 
setting conditions for data access, training, and validation 
phases [10], [11], [12], [13] .  

Communication between institutions, especially when 
dealing with healthcare data, must adhere to strict regulatory 
requirements, such as the Health Insurance Portability and 
Accountability Act (HIPAA) in the U.S. and GDPR in Europe. 
Thus, privacy-preserving mechanisms should be implemented 
"by design" and "by default" to ensure that sensitive patient 
information is processed securely. A compliant ML system 
requires secure data transfer mechanisms, consent 
management, and audit trails. The FL setting can offer 
advancement in this area by letting institutions keep sensitive 
information, prevent unnecessary data transfers and 
processing that could violate regulatory requirements, and 
minimize the risk of data breaches [14]. 

 Training ML models with healthcare data presents unique 
challenges, including addressing data bias, limited sample 
sizes, and ensuring model performance. Healthcare data may 
be biased due to demographic imbalances, socio-economic 
factors, or varying levels of care access across populations.  

Training ML models with diverse datasets enhances their 
generalizability and robustness. By incorporating data from 
various sources and populations, models can better adapt to 
new and unforeseen health events, improving their predictive 
power and reliability. Federated learning, in particular, 
enables the use of diverse datasets while maintaining privacy, 
thus improving overall model performance [15] [16]. 

The following section introduces a FL-based architecture 
devised to address the challenges outlined above, detailing the 
role of each of its components in that process. 

IV. PRESENTATION OF A TYPICAL FL ARCHITECTURE THAT 

CAN BE DEPLOYED FOR LLM-BASED HEALTHCARE 

APPLICATIONS 

Figure 1 depicts the three major components of a typical 

FL architecture. The participants involved in our cross-silo 

FL setting are the healthcare institutions, the manager (e.g., 

aggregation server or global server), and the communication-

computation layer, which aggregates local updates and 

orchestrates communication phases in the ecosystem.  Each 

component has its own responsibilities, which are essential 

for the model to satisfy the preset expectations.  

Leveraging FL in utilizing LLMs adds a layer of 

complexity and implies different approaches based on the 

level of decentralization that needs to be achieved [17]. FL 

can help in both the pre-training and fine-tuning phases of 

LLM, and it is up to the requirements' specific characteristics 

and the parties involved computational power to choose the 

right strategy [18], [19]. We will cover the different 

approaches while examining the three major architecture 

components. 

 

 
Figure 1 Typical FL Architecture in LLM. The global  server is responsible 
for the aggregation of local updates and orchestration of communication 

phases, and the participants in the form of    healthcare institutions are 

responsible for training the LLM 

A. Global server 

The global server plays a central role, and due to the lack 

of properly established taxonomy and standards, this 

component in the literature is also considered as the manager 

or creator of the whole ecosystem. It is often referred to as 

the "manager" or "aggregation server" tasked with overseeing 

the entire collaboration and ensuring its smooth functioning. 

In healthcare, the manager can be a single healthcare 

institution that holds a lot of data and wants to leverage the 

FL setting to collaborate with other institutions, either to 

complete the missing domains and dimensions (by utilizing 

Vertical FL) or to enrich and expand the feature set in the 

same dimension (Horizontal FL). The global server's 

responsibilities can be broken down into several distinct 

areas: strategy for choosing a foundation model, strategy for 

exploiting data distribution and the client selection.  

The foundation model, also called the base model, forms 

the initial point of the LLM training in the FL setting. It 

represents a starting point for institutions to leverage the pre-

training process with their own data or fine-tune it to perform 

specific downstream tasks since foundation models are 

usually trained on publicly available datasets. The pre-

training process is computationally and time-consuming, 

meaning that the global server must find the most suitable 

scenario for satisfying requirements. 

There are two main kinds of pre-training models: one 

based on the BERT model and the other on the GPT model. 

Both perform differently for different tasks and scenarios 



[20], [21]. Many attempts are made to use publicly available 

literature specific to the medical domain and create ready 

LLM models for usage, such as BioBert, PubMedBert, and 

ClinicalBert,  which show superior performance than general 

pre-trained models [22], [23].  

One approach is to select a suitable foundation model 

based on the options examined before or to initialize FL pre-

training, where each party will contribute to the pre-training 

of the foundation LLM model. The latter approach requires 

the institutions to have expertise and sufficient computational 

power in their infrastructure to complete the assignment. 

Another consideration is the model's size and complexity, 

which will influence the following steps if not chosen 

according to the participant's IT infrastructure. 

Federated learning can work differently depending on 

how data is spread and distributed across entities. In 

horizontal FL, each institution has data with similar features 

(for example, multiple hospitals with similar patient data). In 

vertical FL, institutions have different features for the same 

set of patients (for example, one entity has clinical data, and 

another has genetic data). Transfer learning can also be used 

when the model needs to generalize across different datasets 

[24]. The global server is responsible for choosing the 

appropriate strategy based on the data distribution and the 

desired outcomes.  

Client selection in FL refers to choosing which 

institutions to participate in each training round. The global 

server must ensure that diverse institutions contribute to 

model updates without overloading the communication 

system. Institutions with more data or better computational 

resources might participate more frequently. Still, the system 

should be flexible enough to rotate clients or dynamically 

adjust client participation based on resource availability. 

B. Participants 

The entities participating in this collaboration technique 

are also tasked with significant responsibilities. In the 

medical domain, these institutions own huge structured or 

unstructured datasets and are willing to participate in a 

distributed training process. Their responsibilities can be 

broken down into the pre-training process, fine-tuning, value 

alignment, and strategy for local updates.   

If the FL-specific training approach is adopted, as 

discussed previously in the strategy for choosing the 

foundation model, then each institution may pre-train the 

selected model on its data and ensure that the initial model 

updates sent to the global server are more relevant and 

valuable. This capability in an FL setting can depend 

significantly on the institution's computational power, and 

even though possible and theoretically feasible, it can require 

a lot of additional expertise for the healthcare institution to 

engage in this kind of activity. 

Fine-tuning is crucial in adopting an LLM in the 

healthcare domain. The approach of LLM fine-tuning is to 

make downstream tasks required by the domain be instructed 

with human feedback [25]. Each institution should provide 

input-output pairs where instructions are explicitly offered to 

solve some already defined downstream tasks. These datasets 

are designed to give the model an idea of what kind of output 

is expected. The expectation is that the LLM will learn to 

generalize and can handle novel instructions even though 

they were not a part of the fine-tuning instruction dataset. 

The variety of downstream tasks that LLMs can perform 

in the healthcare domain is often the critical reason 

institutions engage with this concept. Based on a benchmark 

for generalist biomedical AI, some of the most frequently 

performed medical-relevant tasks suitable for the LLM 

domain are question answering, visual question answering 

(for example, based on radiology or pathology images), 

report summarization and generation, and medical image and 

medical documents classification [26]. Additionally, relation 

extraction in combination with named entity recognition can 

be added to the list of medical-relevant tasks. This is helpful 

in the medical domain to extract medical terms such as 

diseases, conditions, procedures, and symptoms from 

unstructured data and find suitable interpretations and 

connections in the unstructured data pool. 

Thanks to the LLaMA, each institution can make 

significant attempts to build its domain-specific instruction 

set and contribute to global instruction tuning in the FL 

setting. With the FL paradigm, each downstream task can be 

trained on multiple datasets instead of a single dataset, giving 

more suitable responses and outputs [27].  

In the FL setting, the value-alignment step occurs on the 

participant's side during local training. Its purpose is to ensure 

that the model's objectives are aligned with each institution's 

values and goals. This step is particularly crucial in the 

medical field, where ethical guidelines and patient care 

standards are of the utmost importance. 

Technically, value-alignment is solved similarly to 

instruction tuning, with each participant's preference dataset 

containing combinations of instruction, preferred, and 

misreferred responses.  

In FL, participants typically have far fewer 

computational resources than centralized cloud servers and 

fine-tuning all parameters of LLMs can be an obstacle. 

Parameter-efficient tuning techniques, such as Lora, are used 

to address this limitation [28]. Instead of updating the entire 

pre-trained model weights to obtain local updates, 

participants modify only specific parameters and send them 

back to the global server for aggregation. 

C. Communication-computation layer 

As presented above, the global server is responsible for 

managing the whole ecosystem, and one of the most complex 

tasks is related to the communication-computation layer. The 

global server should manage the aggregation process of local 

model updates and ensure that the global LLM and updates 

are securely transmitted across the system. 

 Choosing the suitable FL algorithm for combining 

all findings and improvements made by each participant in 

the form of parameter weights is a step that has attracted 

many researchers and experts. One of the first and most used 

algorithms is Federated Averaging (FedAvg), but more 

sophisticated approaches may be necessary in different 

scenarios [7]. The model's performance relies significantly on 

how model updates are aggregated. 

 Even though the only data transmitted through the 

network in an FL setting are the model and its updates, the 

communication layer is responsible for ensuring that the 

transfer is done securely and continuously. The 

communication layer component must develop a strategy for 

creating a pipeline from a live data connection to the model 

and inference to transmitting new model parameters via 



secure channels to the aggregating server. Size and 

complexity of the model must be considered as well, since 

they can cause a bottleneck. 

In addition, the communication layer also ensures that 

the data transfer is seamless and uninterrupted. This 

component is tasked with developing a robust strategy to 

create an efficient pipeline, from managing real-time data 

connections to facilitating model utilization and transmitting 

updated model parameters securely to the central aggregation 

server. A key consideration for the communication layer is 

the size and complexity of the used model. Large models with 

huge parameter lists can introduce significant bottlenecks 

during transmission, especially when dealing with limited 

bandwidth or less powerful devices. As such, the 

communication layer must be adept at handling these 

challenges, ensuring that updates are transferred efficiently 

without compromising the speed or security of the system.  

V. CHALLENGES FOR LLM APPLICATION IN HEALTHCARE 

FROM A FEDERATED LEARNING PERSPECTIVE 

Implementing LLMs in healthcare using FL presents a 

set of intertwined challenges when viewed through the lenses 

of privacy and security. There is a foundational challenge 

between the need for diverse and high-quality data generated 

by institutions in the specific domain and the importance of 

protecting sensitive information. FL enables availability and 

access to a broader spectrum of data sources while 

maintaining privacy. Still, the inability to directly act upon 

raw data can impact the convergence of the model and model 

performance. Data transfer needs in FL, even though 

minimized to just model updates, still introduce a risk for 

security attacks. This risk increases with the communication 

overhead caused by distributing complex and large LLMs. By 

introducing a central figure in the architecture in the name of 

the global aggregation server, the FL setting in LLM opens 

up a single point of failure in the ecosystem. Adversarial 

attacks can be performed, compromising model integrity, 

which could lead to data breaches and incorrect outputs.  

FL is still a young and immature topic in the context of 

LLM. One of the biggest challenges is the lack of benchmarks 

and comprehensive reviews that can examine the solution's 

success based on different tasks, architectures, the number of 

clients, network bandwidth, computational resources, etc. 

These reviews and benchmarks can further expose security 

and privacy-preserving issues and initiate proper risk 

mitigation strategies.  Multiple algorithms exist in the 

literature for aggregating local updates, but no specific 

algorithm is proposed or adapted for LLMs.  

The analysis of the three major components in the 

previous section pointed out the responsibilities, approaches, 

and strategies that need to be considered in order to 

collaboratively design and implement training, and utilize 

LLM properly. The analysis emphasized that training LLMs 

in a federated learning setting requires a thoughtful, tailored 

approach to address the unique challenges. Additionally, 

there are various approaches to take, depending on factors 

such as participant resources, data distribution, model size 

and complexity, data transfer, etc.  

The client selection process, in which the ecosystem 

manager decides which participants should be involved, can 

raise many ethical concerns, such as fairness. The purpose of 

the collaboration is to make the LLM more robust. Still, some 

participants' data volume and computational power can 

squeeze out institutions that are not on that level but still can 

add to the diversity and offer unique cultural, ethical, and 

contextual values. While FL addresses many privacy 

concerns by design, it also introduces new security 

considerations that must be carefully managed. Successfully 

navigating these challenges requires a detailed approach that 

balances privacy protection, security enhancement, and the 

pursuit of practical and robust LLM in healthcare. 

VI. PRIVACY-PRESERVING TECHNIQUES  

The deployment of LLMs in the healthcare field through 

FL promises advancements in preparing models to react to 

given domain-specific downstream tasks. The FL can 

enhance LLMs' effectiveness and proper application while 

safeguarding patient confidentiality and ensuring regulatory 

compliance, providing medical professionals greater 

confidence in adopting these tools.  

However, while FL enables collaborative learning 

without direct data sharing, it's not immune to privacy threats. 

With this approach, raw data remains local, but the model 

updates shared during training can still leak information. In 

addition, LLMs trained with healthcare data could memorize 

and potentially regenerate sensitive patient information. A 

privacy breach in this context can cause severe consequences, 

including exposure to medical history, compromising patient 

confidentiality, and misuse of sensitive health information 

[29].  

During this collaborative process, the model or its 

updates could become targets for various attacks. For 

instance, model inversion attacks performed on the global 

model might allow the reconstruction of individual patient 

records. Similarly, membership inference attacks could 

reveal the presence of specific institutions or patient data in 

the training, potentially exposing the entire medical history. 

Malicious participants in the process could poison the model 

by introducing biases or backdoors, potentially leading to 

improper results generated by the LLMs [30], [31].  

To counter these risks and threats, researchers and 

practitioners evaluate the effects of several privacy-

preserving techniques, such as secure aggregation and 

differential privacy. Secure aggregation, a cryptographic 

protocol, allows the central server to observe aggregated 

results without accessing individual model updates. This 

approach maintains accuracy but adds significant 

communication costs. Differential privacy, on the other hand, 

adds calibrated noise to data or model parameters, offering 

statistical privacy guarantees. While effective against 

inference attacks, it may reduce model accuracy and require 

additional workload in the parameter-tuning process [32]. 

The choice of privacy-preserving techniques must be 

made with a thorough understanding of the specific use case, 

the sensitivity of the data involved, and the potential impacts 

of privacy breaches. The tailored approach should calibrate 

the trade-off between model performance and data protection. 

More robust privacy protection might require limiting the 

model’s access to much-needed data for LLMs to offer a 

proper answer to a specific task, degrading the model 

performance and increasing the computational and 

communicational overhead. Finding the right balance 

between privacy, system performance, and efficiency will be 

crucial for deploying LLMs in healthcare using FL. 



VII. CONCLUSION 

This paper explored the potential of federated learning 

(FL) in enhancing the deployment of large language models 

(LLMs) in healthcare settings. By enabling privacy-

preserving collaboration, FL allows healthcare institutions to 

collectively train and improve LLMs without compromising 

sensitive patient data. This approach not only addresses 

fundamental privacy concerns but also enhances model 

performance by leveraging diverse datasets across 

institutions, potentially improving the generalizability and 

robustness of LLMs in healthcare applications. To facilitate 

the implementation of healthcare LLM with FL, we examined 

a tailored architectural framework that outlines the roles and 

responsibilities of participating entities. In addition, 

challenges and consideration of risks and threats were 

reviewed, especially in combination with privacy-preserving 

techniques.  

Looking ahead, several areas require further research and 

development. Optimization of computational and 

communication efficiency for LLMs, development of 

standardized benchmarks, establishment of ethical 

frameworks for participant selection, and exploration of 

advanced privacy-preserving techniques are crucial for future 

work. 
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