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ABSTRACT
A well-designed test suite for benchmarking novel optimizers

for constrained multiobjective optimization problems (CMOPs)

should be diverse enough to detect both the optimizers’ strengths

and shortcomings. However, until recently there was a lack of

methods for characterizing CMOPs, and measuring the diversity

of a suite of problems was virtually impossible. This study utilizes

the landscape features proposed in our previous work to charac-

terize frequently used test suites for benchmarking optimizers in

solving CMOPs. In addition, we apply the t-distributed Stochastic

Neighbor Embedding (t-SNE) dimensionality reduction approach

to reveal the diversity of these test suites. The experimental re-

sults indicate which ones express sufficient diversity.

KEYWORDS
constrained multiobjective optimization, benchmarking, land-

scape feature, t-SNE

1 INTRODUCTION
Real-world optimization problems frequently involve multiple

objectives and constraints. These problems are called constrained
multiobjective optimization problems (CMOPs) and have been

gaining a lot of attention in the last years [13]. As with other

theoretically-oriented optimization studies, a crucial step in test-

ing novel algorithms in constrained multiobjective optimization

is the preparation of a benchmark test.

One of the key elements of a benchmark test is the selection of

suitable test CMOPs [1]. A well-designed benchmark suite should

include “a wide variety of problems with different characteris-

tics” [1]. This way the benchmark problems are diverse enough
to “highlight the strengths as well as weaknesses of different

algorithms” [1]. However, until recently there existed only few

and limited techniques proposed to explore CMOPs [13]. For this

reason, the test suites of CMOPs were insufficiently understood

and measuring their diversity was virtually impossible.

To overcome this situation, in our previous work [13], we

experimented with various exploratory landscape analysis (ELA)

techniques and proposed 29 landscape features to characterize

CMOPs, including their violation landscapes—a similar concept

as the fitness landscape where fitness is replaced by the overall
constraint violation.
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In this study, we employ the landscape features proposed

in [13] to express and discuss the diversity of frequently used test

suites of CMOPs. This is achieved by firstly computing the land-

scape features and then employing the t-distributed Stochastic

Neighbor Embedding (t-SNE), a dimensionality reduction tech-

nique, to embed the 29-D CMOP feature space into the 2-D space.

Note that due to space limitations, only selected results are shown

in this paper. The complete results can be found online
1
.

The rest of this paper is organized as follows. Section 2 pro-

vides the theoretical background. In Section 3, we present the

landscape features and the t-SNE algorithm. Section 4 is dedi-

cated to the experimental setup, while the results are discussed in

Section 5. Finally, Section 6 summarizes the study and provides

an idea for future work.

2 THEORETICAL BACKGROUND
A CMOP can be formulated as:

minimize 𝑓𝑚 (𝑥), 𝑚 = 1, . . . , 𝑀

subject to 𝑔𝑖 (𝑥) ≤ 0, 𝑖 = 1, . . . , 𝐼
(1)

where 𝑥 = (𝑥1, . . . , 𝑥𝐷 ) is a search vector, 𝑓𝑚 : 𝑆 → R are objective
functions, 𝑔𝑖 : 𝑆 → R constraint functions, 𝑆 ⊆ R𝐷 is a search
space of dimension 𝐷 , and𝑀 and 𝐼 are the numbers of objectives

and constraints, respectively.

If a solution 𝑥 satisfies all the constraints, 𝑔𝑖 (𝑥) ≤ 0 for 𝑖 =

1, . . . , 𝐼 , then it is a feasible solution. For each of the constraints

𝑔𝑖 we can define the constraint violation as 𝑣𝑖 (𝑥) = max(0, 𝑔𝑖 (𝑥)).
In addition, an overall constraint violation is defined as

𝑣 (𝑥) =
𝐼∑
𝑖

𝑣𝑖 (𝑥) . (2)

A solution 𝑥 is feasible iff 𝑣 (𝑥) = 0.

A feasible solution 𝑥 ∈ 𝑆 is said to dominate a solution 𝑦 ∈ 𝑆 if

𝑓𝑚 (𝑥) ≤ 𝑓𝑚 (𝑦) for all 1 ≤ 𝑚 ≤ 𝑀 , and 𝑓𝑚 (𝑥) < 𝑓𝑚 (𝑦) for at least
one 1 ≤ 𝑚 ≤ 𝑀 . In addition, 𝑥∗ ∈ 𝑆 is a Pareto-optimal solution
if there exists no 𝑥 ∈ 𝑆 that dominates 𝑥∗. All feasible solutions
represent a feasible region, 𝐹 = {𝑥 ∈ 𝑆 | 𝑣 (𝑥) = 0}. Besides,
all nondominated feasible solutions form a Pareto-optimal set,
𝑆o. The image of the Pareto-optimal set is the Pareto front, 𝑃o =

{𝑓 (𝑥) | 𝑥 ∈ 𝑆o}. A connected component (a maximal connected

subset with respect to the inclusion order) of the feasible region

is called a feasible component, F ⊆ 𝐹 .

In [13], we introduced analogous terms from the perspective

of the overall constraint violation. A local minimum-violation
solution is thus a solution 𝑥∗ for which exists a 𝛿 > 0 such

that 𝑣 (𝑥∗) ≤ 𝑣 (𝑥) for all 𝑥 ∈ {𝑥 | 𝑑 (𝑥∗, 𝑥) ≤ 𝛿}. If there is

no other solution 𝑥 ∈ 𝑆 for which 𝑣 (𝑥∗) > 𝑣 (𝑥), then 𝑥∗ is a

1
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(global) minimum-violation solution. We denoted the set of all

local minimum-violation solutions by 𝐹
l
and called a connected

componentM ⊆ 𝐹
l
a local minimum-violation component.

In order to express the modality of a violation landscape, we

defined a local search procedure to be a mapping from the search

space to the set of local minimum-violation solutions, 𝜇 : 𝑆 → 𝐹
l
,

such that 𝜇 (𝑥) = 𝑥 for all 𝑥 ∈ 𝐹
l
. A basin of attraction of a local

minimum-violation componentM and local search 𝜇 is then a

subset of 𝑆 in which 𝜇 converges towards a solution from M ,

i.e., B(M) = {𝑥 ∈ 𝑆 | 𝜇 (𝑥) ∈ M}. The violation landscape is

unimodal if there is only one basin in 𝑆 andmultimodal otherwise.

3 METHODOLOGY
3.1 ELA Features
The landscape features used in this study were introduced in our

previouswork [13] and can be categorized into four groups: space-

filling design, information content, random walk and adaptive

walk features. They are summarized in Table 1.

The space-filling design features are used to quantify the fea-

sible components, the relationship between the objectives and

constraints, and measure the feasibility ratio and proportion of

boundary Pareto-optimal solutions. Next, the information con-

tent features are mainly used to express the smoothness and

ruggedness of violation landscapes. They are derived by ana-

lyzing the entropy of sequences of overall violation values as

obtained from a random sampling of the search space. Then, the

random walk features considered in this study are used to quan-

tify the number of boundary crossings from feasible to infeasible

regions. They are used to categorize the degree of segmentation

of the feasible region. Finally, features from the last group are

derived from adaptive walks through the search space. They are

used to describe various aspects of basins of attraction in the

violation landscapes.

3.2 Dimensionality Reduction with t-SNE
The t-SNE algorithm is a popular nonlinear dimensionality re-

duction technique designed to represent high-dimensional data

in a low-dimensional space, typically the 2-D plane [12]. First, it

converts similarities between data points to distributions. Then,

it tries to find a low-dimensional embedding of the points that

minimizes the divergence between the two distributions that

measure neighbor similarity—one in the original space and the

other in the projected space. This means that t-SNE tries to pre-

serve the local relationships between neighboring points, while

the global structure is generally lost.

Finding the best embedding is an optimization problem with

a non-convex fitness function. To solve it, t-SNE uses a gradient

descent method with a random starting point, which means that

different runs can yield different results. The output of t-SNE

depends also on other parameters, such as the perplexity (similar

to the number of nearest neighbors in other graph-based dimen-

sionality reduction techniques), early exaggeration (separation of

clusters in the embedded space) and learning rate (also called 𝜀).

The gradients can be computed exactly or estimated using the

Barnes-Hut approximation, which substantially accelerates the

method without degrading its performance [11].

4 EXPERIMENTAL SETUP
We studied eight suites of CMOPs which are most frequently

used in the literature. These are CTP [2], CF [14], C-DTLZ [5],

NCTP [7], DC-DTLZ [8], LIR-CMOP [3], DAS-CMOP [4], and

Table 1: The ELA features used to characterize CMOPs cat-
egorized into four groups: space-filling design, informa-
tion content, random walk, and adaptive walk [13].

Space-filling design features

𝑁F Number of feasible components

Fmin Smallest feasible component

F
med

Median feasible component

Fmax Largest feasible component

O(Fmax) Proportion of Pareto-optimal solutions in Fmax

Fopt Size of the “optimal” feasible component

𝜌F Feasibility ratio

𝜌min Minimum correlation

𝜌max Maximum correlation

𝜌𝜕𝑆𝑜 Proportion of boundary Pareto-optimal solutions

Information content features

𝐻max Maximum information content

𝜀𝑠 Settling sensitivity

𝑀0 Initial partial information

Random walk features

(𝜌𝜕𝐹 )min Minimal ratio of feasible boundary crossings

(𝜌𝜕𝐹 )med
Median ratio of feasible boundary crossings

(𝜌𝜕𝐹 )max Maximal ratio of feasible boundary crossings

Adaptive walk features

𝑁B Number of basins

Bmin Smallest basin

B
med

Median basin

Bmax Largest basin

(BF)min Smallest feasible basin

(BF)med
Median feasible basin

(BF)max Largest feasible basin

∪BF Proportion of feasible basins

𝑣 (B)
med

Median constraint violation over all basins

𝑣 (B)max Maximum constraint violation of all basins

𝑣 (Bmax) Constraint violation of Bmax

O(Bmax) Proportion of Pareto-optimal solutions in Bmax

Bopt Size of the “optimal” basin

MW[9]. In addition, we included also a novel suite named RCM [6].

In contrast to other suites which consist of artificial test prob-

lems, RCM contains 50 instances of real-world CMOPs based

on physical models. Note that we actually used only 11 RCM

problems, since only continuous and low-dimensional problems

were suitable for our analysis. We considered three dimensions of

the search space: 2, 3, 5. It is to be noted that large-scale CMOPs

were not taken into account since the methodology described

in Section 3 is not sufficiently scalable. This limits our results to

low-dimensional CMOPs. Table 2 shows the basic characteristics

of the studied test suites.

For dimensionality reduction, we used the t-SNE implemen-

tation from the scikit-learn Python package [10] with default

parameter values. That is, we used the Euclidean distance metric,

random initialization of the embedding, perplexity of 30, early

exaggeration of 12, learning rate of 200, the maximum number of

iterations of 1000, and the maximum number of iterations with-

out progress before aborting of 300. The gradient was computed

by the Barnes-Hut approximation with the angular size of 0.5.

5 RESULTS AND DISCUSSION
The results obtained by t-SNE are shown in Figures 1 and 2.

Specifically, the figures show the 2-D embedding of the 29-D
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Table 2: Characteristics of test suites: number of problems,
dimension of the search space 𝐷 , number of objectives
𝑀 , and number of constraints 𝐼 . The characteristics of se-
lected RCM problems are shown in parentheses.

Test suite #problems 𝐷 𝑀 𝐼

CTP [2] 8 * 2 2, 3

CF [14] 10 * 2, 3 1, 2

C-DTLZ [5] 6 * * 1, *

NCTP [7] 18 * 2 1, 2

DC-DTLZ [8] 6 * * 1, *

DAS-CMOP [4] 9 * 2, 3 7, 11

LIR-CMOP [3] 14 * 2, 3 2, 3

MW [9] 14 * 2, * 1–4

RCM [6] 50 (11) 2–34 (2–5) 2–5 1–29 (1–8)

*Scalable parameter.

Figure 1: Embedding of the feature space as obtained by t-
SNE. The four regions are depicted in green, red, blue, and
orange. The points that are not contained in any region
are considered to be outliers.

feature space consisting of the landscape features presented in

Table 1. Each subfigure in Figure 2 corresponds to one of the

test suites. For example, Figure 2a exposes the embedding of the

CTP suite in blue, while the gray points correspond to the rest

of the test suites. Points with a shape of a plus (+) correspond
to CMOPs with two variables, points with a shape of a triangle

(▲) to CMOPs with three variables, and points with a shape of a

pentagon ( ) to CMOPs with five variables.

An additional analysis shows that the embedding of the fea-

ture space can be, based on the corresponding characteristics,

split into four regions: green, red, blue and yellow (Figure 1).

The green region corresponds to CMOPs with severe violation

multimodality, small basins of attraction, and rugged violation

landscapes. The red region corresponds to CMOPs with mod-

erate violation multimodality, rugged violation landscapes, and

small feasibility ratios. The blue region corresponds to relatively

low violation multimodality, rugged violation landscapes, small

feasibility ratios, and positive correlations between objectives

and constraints. Finally, the yellow region corresponds to uni-

modal CMOPs with large feasible components, smooth violation

landscapes, and large feasible regions.

As we can see from Figure 2a, almost all CTP problems are

located in the orange region. Therefore, many relevant character-

istics are poorly represented by CTP, e.g., violationmultimodality,

small feasibility ratios, etc. Similarly, NCTP fails to sufficiently

represent severe multimodality since it contains no problems

from the green region (Figure 2d). On the other hand, DC-DTLZ,

LIR-CMOP, and MW are biased towards highly multimodal viola-

tion landscapes or those with small basins of attraction (Figure 2e,

Figure 2g, and Figure 2h). Nevertheless, MW is one of the most

diverse suites considering other characteristics (Figure 2h).

The C-DTLZ and DAS-CMOP suites are mainly located in the

green and orange regions and fail to sufficiently represent the

characteristics of the red and blue regions.

Finally, the results show that CF and RCM are well spread

through the whole embedded feature space (Figure 2b and Fig-

ure 2i). As we can see, they have at least one representative CMOP

instance in each region. Therefore, CF and RCM are the most

diverse test suites according to the employed landscape features.

6 CONCLUSIONS
In this paper, we analyzed the diversity of the frequently used

test suites for benchmarking optimizers in solving CMOPs. For

this purpose, we considered 29 landscape features for CMOPs

that were proposed in our previous work. In addition, the t-SNE

algorithm was used to reduce the dimensionality of the feature

space and reveal the diversity of the considered test suites.

The experimental results show that the most diverse test suites

of CMOPs according to the applied landscape features are CF and

RCM. Indeed, they include the widest variety of CMOPs with

different characteristics. In addition, MW also proved to be a di-

verse suite except for unimodal CMOPs. Nevertheless, we suggest

to consider CMOPs from various test suites for benchmarking

optimizers in constrained multiobjective optimization.

One of the main limitations of our study is that only low-

dimensional CMOPs were used in the analysis. Therefore, we

were unable to adequately address the issue of scalability. For this

reason, a crucial task that needs to be addressed in the feature is

the extension of this work to large-scale CMOPs.
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