
Hierarchical classification of educational resources
Gregor Žunič

Jožef Stefan Institute
Ljubljana, Slovenia
gregor.zunic@ijs.si

Erik Novak
Jožef Stefan Institute

Jožef Stefan International Postgraduate School
Ljubljana, Slovenia
erik.novak@ijs.si

ABSTRACT
This paper describes an approach to automate the process of la-
belling hierarchically structured data. We propose a top-down level-
based approach with SVMs to classify the data with scientific do-
main labels. The model was trained on labeled open education
lectures and returns high accuracy predictions for lectures in the
English language. We found that our model performs better with
the traditional text extraction method TF-IDF than with pre-trained
language model XLM-RoBERTa.

KEYWORDS
hierarchical classification, support vector machine, multi-class clas-
sification, machine learning, open educational resources

ACM Reference Format:
Gregor Žunič and Erik Novak. 2020. Hierarchical classification of educa-
tional resources. In Proceedings of Slovenian KDD Conference (SiKDD’20).
ACM, New York, NY, USA, Article 4, 4 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
Manually labeling data can be tedious work; one must have suf-
ficient background knowledge about the data and have clear in-
structions in the labeling process. This becomes even more difficult
when the data needs to be annotated with hierarchically structured
labels.

In this paper we present a top-down level-based approach us-
ing support vector machines (SVMs) for labeling open education
resources (OERs). The labels are in a hierarchical structure and
represent different scientific domains. We compare different lecture
representations using TF-IDF and XLM-RoBERTa and find that the
TF-IDF representations yield better results. Even though the paper
focuses on OERs the method can be generalized to any textual data
set.

The remainder of the paper is structured as follows. Section 2
describes the related work done on the topic of hierarchical classifi-
cation. Next, we present the data used in the evaluation in Section 3.
The methodology is described in Section 4. The evaluation setting
and its results are described in Section 5 followed by a discussion
in Section 6. We present the future work in Section 7 and conclude
the paper in Section 8.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SiKDD’20, October 2020, Ljubljana, Slovenia
© 2020 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

2 RELATEDWORK
There are two approaches to hierarchically classify the data: (1) the
Big-bang, and (2) the Top-down level-based approach [4, 8, 9].

The big-bang approach works by training (complex) global
classifiers which consider the entire class hierarchy as a whole.
Each global classifier is binary and decides if the material fits the
entire hierarchy (entire hierarchy is for example “Computer Sci-
ence/Machine Learning/Support Vector Machine”). The advantage
of this approach is that it avoids class-prediction inconsistencies
across multiple levels. The major drawback of this approach is the
high complexity due to the enforcing the model to correctly predict
the whole hierarchy branch, which can be difficult to achieve.

The top-down level-based approach works by training local
classifiers at each level to distinguish between its child nodes. An
example will first, at the root level, be classified into a second-
level category. It will then be further classified at the lower level
category until it reaches one or more final categories where it can
not be classified any further. The main advantage of this model is
its simplicity. The disadvantage is the difficulty to detect an error
in the parent category which could lead to false classification.

The most common implementation of a local classifier [3] is the
support vector machine [7, 11]. In the later papers they propose to
train separate SVMs for every level of a branch in the hierarchy.

3 DATA SET
The data set used in the experiment consists of 28,769 OER lec-
tures available at Videolectures.NET [10], an award winning video
OER repository. For each lecture we collected the following meta-
data: title, description, labels, language, authors, date published and
the length of the lecture. The description is present in 58% of the
lectures. The data set contains 24532 lectures in English, 3930 in
Slovene and 307 lectures in other 16 languages.

Preprocessing. For our methodology we used only the lecture’s
title, description, language and categories. Each lecture is labeled
with one or more scientific (sub-)domains most relevant for the
lecture (e.g. “Computer Science”, "Computer Science/Crowd Sourc-
ing"). Figure 1 shows the distribution of lectures per number of
labels.

Almost half of the lectures have more than one label. Lectures
with no labels are placed under the “No Labels” category. These
lectures are mostly introductory speakers’ presentations in confer-
ences. We focus on predicting a single label with high accuracy. We
prescribed to only have one label per lecture. We achieve this by
duplicating a lecture 𝑛 times, where 𝑛 is the number of labels of
the lecture and assign a distinct label to each duplicate. Although
the duplicates may reduce the performance of the models we do
not reduce the already small number of lectures used during the

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

SiKDD’20, October 2020, Ljubljana, Slovenia Gregor Žunič and Erik Novak

Figure 1: Distribution of lectures per number of correspond-
ing labels. Most of the lectures have only one label.

training process. Figure 2 shows the top scientific domain labels in
the data set.

Figure 2: Top scientific domain labels in the data set. The
most frequent label is Computer_Science.

The most frequent label is “Computer Science”. In addition, a
large number of lectures are not labeled; this is because a lot of
lectures are presentations that do not correspond to any of the
scientific domains. The data set is unbalanced on both domain and
sub-domain levels.

4 METHODOLOGIES
In this section we describe the methods used to perform the feature
extraction of the text, the implementation of multi class classifier
model and the lectures’ weights.

The input to the classifier is a raw string created by concatenating
the title and the description if the description is available. It is then
converted to a vector. In this paper we experimented with two
approaches: TF-IDF and XLM-RoBERTa.

4.1 Feature Extraction
TF-IDF. Each lecture is represented with a vector of its TF-IDF
values [6]. TF measures how frequently a term occurs in a lecture’s
text. The IDF is a measure of how much information the word
provides. If it is common across all lectures its value is close to 0.
The terms with the highest TF-IDF scores are usually the ones that
characterize the topic of the lecture best.

The size of the lecture’s vector representation is exactly the same
as the total number of unique words. Since most of the features are
zero the lecture vectors are sparse.

XLM-RoBERTa. The model is based on the RoBERTa model
released in 2019. It is a large language model trained on 2.5 TB
of CommonCrawl data [2]. The model achieves state-of-the-art
performance on cross-lingual classification, sequence labeling and
question answering. The most useful feature of the model is that
it does not require the sentence language as an input. In theory, it
extracts the same vectors for similar words in 100 languages.

The length of the vector that the model outputs is 768. To ex-
tract the features a CUDA-enabled GPU is required and the model
training is very slow.

4.2 Multi-class SVM Classifier
We chose the top-down level-based approach for our classifier. The
raw text input is firstly vectorized following one of the two feature
extraction approaches described in Section 4.1. The vector is then
input to the main SVM which determines the first category. Then
the input is handled by the second SVM, trained specifically for sub-
labels of first classified category. If a sub-label tops the threshold
of 0, this step is repeated, otherwise the model outputs the lowest
level parent category.

For example “Computer Science” is the first determined cate-
gory. Then the input is handled by the SVM trained on sub-labels
of “Computer Science”, which determines that the input does not
match with any of the sub-labels. The model puts the lecture in the
“Computer Science” category. This is visually explained in figure 3.

Input

SVM

Feature
extract ion

“Computer
Science”

“Social
Sciences”

“Business”

..
.

. . .

0 . 1

- 0 . 7

. . .- 1 . 0

“Machine
Learning”

“Semantic
Web”

- 0 . 2

- 0 . 7

..
.

SVM

SVM

SVM

Figure 3: Visual representation of hierarchical SVM classi-
fier. The example shows a lecture classified as belonging to
the “Computer Science” category

Each SVM is an implementation of a multi-class classifier using
the one-vs-rest approach. Predicted class should always be domi-
nant otherwise the recommendation is not relevant.

4.3 Lecture Weights
Each lecture is assigned a weight of 1

𝑛𝑥 , 𝑥 = 4, where 𝑛 is the
number of total labels in the original lecture and 𝑥 is a parameter.
If 𝑥 < 4 the accuracy is greatly reduced, if 𝑥 > 4 the accuracy is
increased by a small margin. It converges when 𝑥 → ∞. When
increasing the parameter 𝑥 the weight comes closer to 0 which
means that the model accounts for data less during training. This
means that the 4th power is a sufficient balance between excluding
some data and reducing the accuracy.

The other approach could be to ignore multi-label lectures during
testing phase (1

𝑛∞).
Because some labels are so scarce, we limit ourselves to labels

with at least 20 lectures. This reduces the total number of labels in
the data set from 502 to 244.

Hierarchical classification of educational resources SiKDD’20, October 2020, Ljubljana, Slovenia

5 EVALUATION
5.1 Parameters and Specifications
SVM. The SVM implementation used in the evaluation is the Lin-
earSVC [1] with the default parameters.

XLM-RoBERTa. The model used for representation generation
is the hugging face’s pretrained model [5] which was trained on
default parameters found in the paper [2]. The training was exe-
cuted on the Google Colab (online hosted Jupyter notebook) free
tier machine (12GB RAM, dual core CPU, NVIDIA K80).

5.2 Results
Table 1 shows the performance of the different models with linear
kernel. We have also evaluated other kernels (polynomial, RBF,
sigmoid), but the performance was worse than using linear kernel.
That is why we omitted them from the performance table.

TF-IDFwith linear kernel SVM. Using the TF-IDF method for
feature extraction we found that the SVMs performed the best with
linear kernel. One explanation for such results is that the dimension
of the features is large (more than 60k), which means that other
more advance kernels might lead to over-fitting.

XLM-RoBERTawith linear kernel SVM. The model’s perfor-
mance was worse than using TF-IDF. The accuracy of the main
classifier was 19% compared to 70% when using TF-IDF. The other
SVM kernels (polynomial, RBF, sigmoid) performed worse com-
pared to linear kernel. Table 1 shows the performance of the model.

SVM. The problem with current SVM implementation is that it
can only put the lecture in one category. One way to solve the issue
of only one label would be to firstly predict one label. Then, if the
user (editor) wants another prediction, the model can output the
prediction with second highest certainty.

TF-IDF vs XLM-RoBERTa. The advantage of choosing XLM-
RoBERTa over of TF-IDF is that it works with 100 languages. The
vector outputs are similar [2] for all languages. This was proven
by translating the same text input into multiple languages (using
Google Translate) and the predicted category did not change. When
using TF-IDF you have to split the original data set into subsets
containing a single language and train the model from scratch. That
would be possible with enough data. For some languages (German,
French) the the data set contains less than 30 lectures, which means
that you can not train an SVM sufficiently.

6 DISCUSSION
Unbalanced Data Set. We found the SVM trained on an over-
sampled data set to be working better than the SVM trained on the
raw data set. Due to the unbalanced data if the data set is not re-
sampled the bias towards the strongest category (Computer Science)
is strongly presented. For example neutral words such as “ ”, “the”
etc. are classified as belonging in Computer Science category.

Comparing Word Embedding Techniques. The TF-IDF ap-
proach performs much better than XLM-RoBERTa which is surpris-
ing. Pre-trained models usually perform better than legacy feature
extractors. The reason could be that the hyper parameters of the
model were not set correctly, but we did not find the right balance
for the model to perform any better. The production versions could
include both models. For languages with a lot of data in the data set,

the model would opt for SVMs trained on features extracted using
TF-IDF, because of the better performance. All other languages
would be handled by SVMs trained by XLM-RoBERTa, because the
classifier performs much better than random.

The TD-IDF method could also be used to classify lectures that
are in the non-english languages by firstly translating the text to
English before using them during training. With this approach the
model could work in all languages and retain the simplicity of TF-
IDF. Note that that this approach would be strongly dependant on
the quality of the translations.

Weighting the errors during the training process. We did
not use the hierarchy structure for calculating the error between
the predicted and the actual labels hence all the errors types during
training were the same. This is not ideal because the error should
be more significant when the classifier incorrectly predicts the
main branch versus when it incorrectly predicts a lower level label.
For example, if we take a lecture that is labeled as “Computer
Science/Machine Learning” then the error should be bigger if our
classifier predicts the “Biology” label rather than the “Computer
Science/Semantic Web” label.

7 FUTUREWORK
We intend to improve the performance of the XLM-RoBERTa and
to experiment with other language models and try to achieve better
performance.

One additional direction for future work might be training a
multiclass classifier to predict more than one label to a given lecture.
We tried implementing the multi label output classifier using the
MultiOutputClassifier wrapper on SVM but the precision of the
model was noticeably lower.

Themodel is ready to be used in production in Videolectures.NET
as a recommender engine to help the editors. The service could
either be wrapped in a Flask microservice or directly into Videolec-
tures.NET’s backend.

8 CONCLUSION
In this paper we explore a top-down level-based approach for clas-
sifying OER lectures with scientific domain labels. We used over-
sampling to handle label unbalance and experimented with two
text representation approaches, TF-IDF and XLM-RoBERTa. We
found that the model using the TF-IDF representations gives better
results.

ACKNOWLEDGMENTS
This work was supported by the Slovenian Research Agency and
X5GON European Unions Horizon 2020 project under grant agree-
ment No 761758.

REFERENCES
[1] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas

Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël
Varoquaux. 2013. API design for machine learning software: experiences from
the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining
and Machine Learning. 108–122.

[2] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guil-
laume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer,
and Veselin Stoyanov. 2019. Unsupervised Cross-lingual Representation Learning
at Scale. arXiv preprint arXiv:1911.02116 (2019).

SiKDD’20, October 2020, Ljubljana, Slovenia Gregor Žunič and Erik Novak

parent
category

TF-IDF XLM-RoBERTa materialsacc. recc. F prec. acc. recc. F prec.

Root 70% 69% 72% 75% 19% 11% 19% 68% 27009
Computer Science 59% 59% 60% 61% 9% 4% 8% 50% 12935
Machine Learning 60% 55% 59% 64% 11% 5% 9% 26% 3260
Semantic Web 75% 71% 75% 79% 23% 20% 31% 68% 454
Computer Vision 82% 79% 81% 83% 57% 55% 59% 63% 140

Social Sciences 73% 72% 73% 74% 35% 24% 34% 60% 2928
Society 74% 72% 72% 72% 36% 28% 38% 60% 890
Politics 76% 66% 75% 86% 59% 43% 54% 73% 83

Law 96% 96% 96% 96% 57% 41% 51% 67% 112
Journalism 100% 100% 100% 100% 91% 88% 90% 92% 53

Technology 84% 82% 82% 82% 50% 43% 50% 60% 970
Nanotechnology 69% 59% 69% 83% 46% 37% 46% 62% 78

Business 74% 72% 73% 74% 43% 36% 43% 54% 1009
Transportation 63% 53% 61% 71% 33% 22% 32% 56% 267

Humanities 85% 83% 84% 85% 55% 48% 55% 65% 873
Biology 71% 66% 67% 68% 23% 17% 22% 31% 430
Science 78% 77% 78% 79% 53% 51% 52% 53% 656
Medicine 89% 88% 89% 90% 39% 34% 48% 83% 326
Computers 83% 83% 83% 83% 55% 48% 53% 59% 731
Mathematics 89% 87% 89% 91% 41% 36% 38% 40% 421
Physics 86% 81% 85% 89% 36% 32% 38% 46% 227
Arts 88% 87% 85% 83% 45% 40% 49% 63% 338
Visual Arts 100% 100% 100% 100% 62% 56% 70% 92% 159
Design 52% 46% 55% 68% 23% 9% 14% 30% 104

Chemistry 100% 100% 100% 100% 85% 83% 91% 100% 161
Environment 94% 94% 93% 92% 71% 66% 73% 81% 161
Earth Sciences 73% 67% 74% 82% 50% 51% 50% 49% 27

Table 1: Comparison of model performance using the linear kernel. The performance of the TF-IDF approach is better than
that of XLM-RoBERTa.

[3] Susan Dumais and Hao Chen. 2000. Hierarchical Classification of Web Content.
In Proceedings of the 23rd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR ’00). Association for Computing
Machinery, New York, NY, USA, 256–263. https://doi.org/10.1145/345508.345593

[4] A. D. Gordon. 1987. A Review of Hierarchical Classification. Journal of the Royal
Statistical Society: Series A (General) 150, 2 (1987), 119–137. https://doi.org/10.
2307/2981629 arXiv:https://rss.onlinelibrary.wiley.com/doi/pdf/10.2307/2981629

[5] huggingface. 2020. huggingface.co - pretrained models. https://huggingface.co/
transformers/pretrained_models.html.

[6] J.D. Rajaraman, A.; Ullman. 2011. Mining of Massive Datasets. pp. 1–17. http:
//i.stanford.edu/~ullman/mmds/ch1.pdf.

[7] Ahmad Shalbaf, Reza Shalbaf, Mohsen Saffar, and Jamie Sleigh. 2020. Monitor-
ing the level of hypnosis using a hierarchical SVM system. Journal of Clini-
cal Monitoring and Computing 34, 2 (2020), 331–338. https://doi.org/10.1007/
s10877-019-00311-1

[8] Carlos N. Silla and Alex A. Freitas. 2011. A survey of hierarchical classification
across different application domains. Data Mining and Knowledge Discovery 22, 1
(2011), 31–72. https://doi.org/10.1007/s10618-010-0175-9

[9] Aixin Sun, Ee-Peng Lim, and Wee-Keong Ng. 2003. Performance measurement
framework for hierarchical text classification. Journal of the American Society for
Information Science and Technology 54, 11 (2003), 1014–1028. https://doi.org/10.
1002/asi.10298 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.10298

[10] VideoLectures.Net. 2020. VideoLectures.NET - VideoLectures.NET. https://
videolectures.net/. Accessed: 2020-08-20.

[11] S. V. M. Vishwanathan and M. Narasimha Murty. 2002. SSVM: a simple SVM
algorithm. 3 (2002), 2393–2398 vol.3.

https://doi.org/10.1145/345508.345593
https://doi.org/10.2307/2981629
https://doi.org/10.2307/2981629
http://arxiv.org/abs/https://rss.onlinelibrary.wiley.com/doi/pdf/10.2307/2981629
https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
http://i.stanford.edu/~ullman/mmds/ch1.pdf
http://i.stanford.edu/~ullman/mmds/ch1.pdf
https://doi.org/10.1007/s10877-019-00311-1
https://doi.org/10.1007/s10877-019-00311-1
https://doi.org/10.1007/s10618-010-0175-9
https://doi.org/10.1002/asi.10298
https://doi.org/10.1002/asi.10298
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.10298
https://videolectures.net/
https://videolectures.net/

	Abstract
	1 Introduction
	2 Related Work
	3 Data Set
	4 Methodologies
	4.1 Feature Extraction
	4.2 Multi-class SVM Classifier
	4.3 Lecture Weights

	5 Evaluation
	5.1 Parameters and Specifications
	5.2 Results

	6 Discussion
	7 Future Work
	8 Conclusion
	Acknowledgments
	References

