
Smart Issue Retrieval Application
Jernej Zupančič

jernej.zupancic@ijs.si
Jožef Stefan Institute

Jamova cesta 39
Ljubljana, Slovenia

Jožef Stefan International
Postgraduate School
Ljubljana, Slovenia

Borut Budna
borut.budna@ijs.si

Faculty of Computer and
Information Science
Ljubljana, Slovenia

Miha Mlakar
Maj Smerkol

miha.mlakar@ijs.si
maj.smerkol@ijs.si
Jožef Stefan Institute

Jamova cesta 39
Ljubljana, Slovenia

Figure 1: SIRA screenshot

ABSTRACT
We present Smart Issue Retrieval Application (SIRA), a customer
support tool for searching of relevant email threads or issues
when an email thread and keywords are given. Presented are the
overall application architecture, the processing pipeline, which
transforms the data into a search friendly form, and the search
algorithm itself.

KEYWORDS
customer support, language models, information retrieval

1 INTRODUCTION
Customer support is an important part of many large businesses
and high quality customer support can improve the user experi-
ence and help businesses retain their customer for longer periods.
For larger companies, it can also be a strain on their human re-
sources as many customer support issues need to be resolved
in short time. While the customer support team may resolve
most issues on their own sometimes they need the help of the
development department. Often similar issues are presented to
the developers multiple times.

In order to minimize the number of issues that need attention
from other departments, we have developed an application to
help the customer support technicians resolve issues without help
from developers. While some issues will still need the attention of

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
Information society ’20, October 5–9, 2020, Ljubljana, Slovenia
© 2020 Copyright held by the owner/author(s).

developers, SIRA can help find existing answers to questions that
have already been resolved by developers and therefore reduce
the amount of distractions for the development team.

We use language models in order to retrieve information about
the question from the issue at hand. Using multiple different ap-
proaches, application searches the database of resolved issues in
order to find a developers’ answers to same or similar questions.

2 SIRA ARCHITECTURE
SIRA comprises five main application components (Fig. 2):

(1) Database. PostgreSQL [6] is used as the application data-
base, since it includes decent built-in text search capabili-
ties and change data capture options.

(2) Processing daemon. Python [7] process responsible for data
processing for search in the event of change data capture.

(3) Back-end application. Python Flask-based back-end appli-
cation exposing the application programming interface
for SIRA.

(4) Front-end application. React-based [8] single-page applica-
tion for interacting with SIRA.

(5) Documentation. MKdocs-based user documentation for
final users, admins, and developers.

Each SIRA component is packaged within a Docker [4] im-
age and can be managed using “docker-compose” [2] tool. This
enables deterministic packaging of application code for develop-
ment, testing and production.

3 SIRA FUNCTIONALITY
The main goal of SIRA is to enable customer support staff to
quickly find answers to similar questions that have already been
resolved in the past. Search is therefore the primary functionality
of the application and can be split into three parts:



Information society ’20, October 5–9, 2020, Ljubljana, Slovenia Novak, et al.

Figure 2: SIRA architecture overview

(1) Processing. Upon new data arrival, pre-processes the text
to obtain representation suitable for search.

(2) Search. Computing relevancy scores upon search request
by taking into account as much information about issue
or email thread as possible.

(3) Logging. To improve the search in the future the search re-
sults and structured user feedback is gathered and stored.

In the rest of this section we will describe each part in more
details.

3.1 Processing
For the search to be efficient it is beneficial to pre-process the
raw emails. The processing daemon runs as a separate python
process and utilizes PostgreSQL’s logical replication functionality
in order to transform new content as soon as it is written to the
database. The following steps are executed when processing the
issues:

(1) HTML clean. Beautiful Soup [1] library is used to extract
only relevant text from email XML markup.

(2) Empty line removal. Python script is used to detect and
remove empty lines.

(3) Repeated emails removal. Parts of emails are deleted if they
already appear within some previous mails of the same
issue.

(4) Semi-structured emails handling. Some emails are actually
a filled out form in an email format. A python script is
used to extract only the relevant information.

(5) Non-author lines removal. A machine learning model was
developed and is deployed for tackling this task.

(6) Non-alphanumeric-only characters lines removal. Python
script is used to detect and remove those lines.

(7) Word vector representation computation and update. Fast-
Text [3] word vectors are used to compute word vector
representation of text.

(8) Storing of processed text. The processed text is stored into
database, where built-in database indexing is utilized to
further prepare the text for efficient text searching.

In the rest of this sectionwe focus on the non-trivial processing
steps.

3.1.1 Repeated emails removal. There were two reasons for re-
moving repeated emails from an email thread. First, when dis-
playing an email, usually also all the previous emails are included,
which results in poor readability. Second, some methods for com-
paring the text take into account the number of occurrences of a

particular word. This is sensible for cases when the word actu-
ally repeats in the content. However, if it repeats due to the text
duplication it could negatively impact the search results.

We define a repeated email as an email body that appears
within another email body. This is usually a result of using a
“Reply” functionality when responding to an email within an
email client.

To delete email 𝐴 from email 𝐵, the following method is used:
(1) Extract only alphanumeric characters from the two email

bodies𝐴 and𝐵 to get alphanumeric(𝐴) and alphanumeric(𝐵).
(2) If alphanumeric(𝐴) appears within alphanumeric(𝐵), mark

it for removal from alphanumeric(𝐵).
(3) If alphanumeric(𝐴) does not appearwithin alphanumeric(𝐵),

iterate over substrings of alphanumeric(𝐵) and compute
the matching percentage of consecutive alphanumeric
blocks from alphanumeric(𝐴). The substring with the max-
imum match is a candidate for removal. If it exceeds a
predefined threshold it is indeed marked for removal from
alphanumeric(𝐵).

(4) Reconstruct 𝐵 by dropping the substring marked for re-
moval and all non-alphanumeric characters positioned
within the marked substring when expanded with all the
characters.

3.1.2 Non-author lines removal. An email body usually com-
prises:

(1) Relevant content
(2) Signature
(3) Confidentiality notice
(4) Previous email headers
(5) Previous email content
The only text that should be used for text comparison is the

relevant content part. While previous email content was mostly
removed in the repeated emails removal step (3.1.1), other email
body parts can still impact text comparison results. Machine
learning was utilized to develop a model for determining whether
a particular line in the email body belongs to the relevant content
part of an email or not.

Dataset preparation. First, we implemented an application
with a basic graphical user interface that enabled us to label each
line with one of the following categories:

(1) AUTHOR. The relevant content falls into this category.
(2) QUOTED. This is the previous email content.
(3) AUTO-PERSONALIZED. This is the text, that was set by

a user in the email client, which is automatically inserted
by the email client. Signature is an example of this.

(4) AUTO-NON-PERSONALIZED. This is the text inserted
by the email client automatically. An example of this is
previous email headers.

(5) NEEDS-PRETTIFY. Sometimes the whole email body is
present in one line only. To properly label the body it
should be further split into multiple lines.

(6) OTHER. Everything else.
Second, we labeled each line belonging to 100 random issues.

This way we generated a dataset of 37,421 labeled lines in 586
emails. Since the assumption was that the “QUOTED” lines are
already filtered out using remove repeated emails method, we
omit those lines from the dataset. This left us with 9,848 labeled
lines.

Features. The computed features were of two types: local
features that took into account just the current line, and global



Smart Issue Retrieval Application Information society ’20, October 5–9, 2020, Ljubljana, Slovenia

features that took into account the relative position and content
of a line within the whole email.

Local features:
(1) Number and proportion of capitalized words
(2) Number and proportion of non-alphanumeric characters
(3) Number and proportion of numeric characters
(4) “CountVectorizer” from the scikit-learn ([5]) package
(5) “TfidfVectorizer” from the scikit-learn package
(6) Word vector line representation
Global features:
(1) Line position from the start
(2) Line position until the end
(3) Does “regard” appear before this line, within this line, after

this line
(4) Do four or more consecutive non-alphanumeric characters

appear before this line, within this line, after line
(5) Does a date-like string appear before this line, within this

line, after this line
(6) Does a time-like string appear before this line, within this

line, after this line
In order to smooth the predictions we also tested hierarchical

modeling by first building a model for “AUTHOR” detection and
then using the predictions on the lower level as additional fea-
tures for the higher level. One approach for using the predictions
from the lower level was to just use the “AUTHOR” predictions
of lines just before and just after the current line. The predictions
were padded with 1 at the beginning of an email and with 0 at
the end. The second approach was based on the sum of three
consecutive “AUTHOR” class probabilities for: lines, just before
the current line, lines where the current line is in the middle, and
lines just after the current line. We padded the predictions with
1s at the beginning of an email and with 0s at the end.

Further, the features were scaled using the StandardScaler and
the feature space dimensionality was reduced using the principal
component analysis - PCA, both from the scikit-learn package.

Models. For modeling we utilized scikit-learn package and
tested the following algorithms: (1) Logistic regression, (2) Multi-
nomial Naive Bayes, (3) Support vector machine, (4) Random
forest classifier.

Rudimentary hyper-parameter tuning was done to pick the
best ones.

Evaluation. Each pipeline was evaluated using 10-fold cross
validation with the splits over issues. This means that all the lines
belonging to one issue were either in the training or the testing
set to prevent data leaking.

Model selection. The performance of all models was tracked
through various metrics:

(1) Confusion matrix
(2) Precision and recall at different minimum recall thresholds
(3) Precision-recall curve
(4) “AUTHOR” probabilities for each line in the test set
The main concern regarding the model performance was that

it should prioritize keeping the “AUTHOR” lines (“AUTHOR”
recall) over average model accuracy. This is a direct result of the
application architecture – if the line would be removed by the
chosenmodel, it wouldn’t be possible to search over it. This would
directly impact the performance in the real-world. Additionally,
few additional lines shouldn’t hinder the readability too much.

The gathered metrics enabled us to closely inspect each model
and overview the performance regarding real-world application.

A basic GUI was built to inspect the models and overview the
miss-classified examples. In the end, the hierarchical model was
chosen with most of the presented features, with the exception of
“CountVectorizer” and “TfidfVectorizer” features. The additional
chosen higher-level feature was the sum of three consecutive
“AUTHOR” probabilities. Random forest was chosen as the clas-
sification algorithm, without feature standardization or dimen-
sionality reduction step. The threshold probability was lowered
to 0.12 so recall could be kept high.

The final model miss-classified 59 out of 2,394 rows marked
as “AUTHOR” (recall = 0.975) and 629 out of 7,454 rows marked
as “OTHER” (recall = 0.806).

3.1.3 Word vector representation computation and update. Word
vector representation of content is used to compare email bodies
and email subjects between different issues.

To compute the word vector representation of text, either
issue body or issue subject, the following steps are executed: (1)
Tokenize text, (2) Remove stop-words, (3) Query word vector
representation for each word using fastText common crawl word
vectors with dimension 300, (4) Computemean of all word vectors
belonging to the words in the text, (5) Normalize the mean vector
by dividing the mean vector by the mean vector length.

Instead of generating the representation vectors on-the-fly,
they are pre-computed and only read when needed, which greatly
reduces the inference time. To update word vector representation
of a particular text, the corresponding row in the word vector
matrix is updated with the new values and stored on disk as a
Numpy array.

3.2 Search
Each issue consists of: subject, document (the email body of text),
and keywords the user marked the issues with. The keywords can
be positive, meaning that a keyword is related with the contents
of the issue, or negative when keyword is not related with the
contents of the particular issue. Additionally, a keyword can
be explicit, where a user uses the keyword for searching when
considering a particular issue. On the other hand, a keyword can
be implicit – soft keywords, where the user searched for relevant
issues using a keyword, but the search results were not marked
as relevant.

When computing the relevancy of issues, given a starting
issue and some keywords, several relevancy sub-scores are first
computed and then aggregated to form a single relevancy score.
In Table 1 all combinations for relevance sub-scores are listed.

The final score is computed as a weighted average, as in equa-
tion 1. The weights𝑤𝑖 were determined based on the final user
feedback.

(1)

finalScore = 𝑤1 · KeywordToKeywordScore
+𝑤2 · KeywordToSoftKeywordScore
+𝑤3 · KeywordToDocumentScore

+𝑤4 · KeywordToSubjectdScore
+𝑤5 · DocumentToKeywordScore

+𝑤6 · DocumentToSoftKeywordScore

+𝑤7 · DocumentToDocumentScore

+𝑤8 · SubjectToKeywordScore
+𝑤9 · SubjectToSoftKeywordScore
+𝑤10 · SubjectToSubjectScore



Information society ’20, October 5–9, 2020, Ljubljana, Slovenia Novak, et al.

Table 1: Relevance sub-scores matrix

Other issues
(Not) Keyword Soft (Not-) keyword Document Subject

Cu
rr
en
ti
ss
ue (Not-) Keyword Exact match Exact match Full-text search Full-text search

Soft (Not) Keyword / / / /

Document Reverse full-text
search

Reverse full-text
search

Word vector cosine
similarity

/

Subject Reverse full-text
search

Reverse full-text
search

/ Word vector cosine
similarity

3.2.1 Exact match. This relevance score compares (soft) key-
words related to issues and those inserted in the keyword input
box. Given a (soft) keyword, search for all the documents that are
in relation to this exact (soft) keyword. Each relation can either
be positive or negative. Therefore, the returned score is positive
in case of positive relation and negative otherwise.

3.2.2 Full-text search. This relevance score compares keywords
entered in the keyword input box and issue documents or issue
subjects. Full-text search capability of PostgreSQL is leveraged for
this score. However, the results are modified to return negative
scores in case of not-keyword match.

3.2.3 Reverse full-text search. This relevance score compares
the selected issue document or subject and all existing (soft)
keywords. First, for each keyword a full-text search relevance
score is computed. Second, for each issue in the database do a
sum of its related keyword relevance scores.

3.2.4 Word vector cosine similarity. This relevance score com-
pares the selected issue document and subject to all existing issue
documents and subjects, respectively. Pre-computed word vec-
tors as described in Section 3.1.3 are used. The relevance score is
computed as:

(2)wordVectorSimilarity(𝑇1,𝑇2) = 1 −𝑇1 ·𝑇2 .
Since the word vectors used are normalized, this is actually

1− cosine distance between 𝑇1 and 𝑇2.
Two other methods for comparing the text were also tested:

PostgreSQL built-in trigram text similarity, which was too slow
for production use, and tf-idf representation of text and cosine
distance-based relevance score, which did not perform as well as
the word vectors method.

3.3 Logging
To improve the search performance in the future, several interac-
tions with the application are logged:

(1) Search results with relevance scores
(2) Viewed search results
(3) Relevant issue/belonging email found
(4) No relevant issue/belonging email found
Only after sufficient real-world usage of the application we

can quantitatively evaluate the performance of the whole search
pipeline and act upon the results.

4 DISCUSSION AND CONCLUSION
The SIRA system was developed and deployed, including five
docker-image packaged modules. The main functionalities of
the first major release include preprocessing of the text of the
issue, search integrating four different search algorithms and
a logging system that stores interactions with the system into

the database, including user defined keywords and appropriate
results marking.

Preprocessing is done without any user interaction and in-
volves multiple algorithms and AI methods to extract the text of
the issue from original encoded emails. Testing of the algorithms
shows good results both in terms of precision and recall. Word
vector representations are pre-computed in order to improve
performance of search algorithms.

Based on the extracted plain text of the issue the application
searches for similar issues that have already been resolved. The
users can therefore quickly find the information related to the
issue. The system is currently in use and only after some time of
real-world usage we will be able to evaluate the whole system.

Due to logging the interactions in the database we expect to
be able to analyze the usage and quality of the results. This will
allow us to improve the system and add other functionality that
will improve user experience and further improve the customer
support technicians’ workflow.

ACKNOWLEDGMENTS
Nicelabel d.o.o. funded the research presented in this paper. We
thank Gregor Grasselli, Zdenko Vuk and Miha Štravs for help in
application development.

REFERENCES
[1] Beautiful Soup Developers. 2019. Beautiful soup. https://

www.crummy.com/software/BeautifulSoup/. (2019).
[2] Docker Inc. 2019. Docker-compose. https://docs.docker.

com/compose/. (2019).
[3] Armand Joulin, EdouardGrave, Piotr Bojanowski, and Tomas

Mikolov. 2016. Bag of tricks for efficient text classification.
arXiv preprint arXiv:1607.01759.

[4] Dirk Merkel. 2014. Docker: lightweight linux containers
for consistent development and deployment. Linux journal,
2014, 239, 2.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.
Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.
Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn:
machine learning in Python. Journal of Machine Learning
Research, 12, 2825–2830.

[6] PostgreSQL Global Development Group. 2019. PostgreSQL,
version 12. http://www.postgresql.org. (2019).

[7] Python Software Foundation. 2018. Python language refer-
ence, version 3.7. http://www.python.org. (2018).

[8] React Developers. 2019. React. https://reactjs.org/. (2019).

https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
http://www.postgresql.org
http://www.python.org
https://reactjs.org/

	Abstract
	1 Introduction
	2 SIRA Architecture
	3 SIRA Functionality
	3.1 Processing
	3.2 Search
	3.3 Logging

	4 Discussion and Conclusion
	Acknowledgments

