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ABSTRACT  
This paper presents an approach to activity recognition and 
fall detection using wearable accelerometers placed on 
different locations of the human body. We studied how the 
location and the number of wearable accelerometers 
influence on the performance of the recognition of the 
activities and the falls. The final goal was to build a machine 
learning model that can correctly recognize the activities and 
the falls using as few accelerometers as possible. The model 
was evaluated on a public dataset consisting of more than 
850 GB of data, recorded by 17 people. In total we evaluated 
15 combinations of four accelerometers placed on the belt, 
the left ankle, the left wrist and the neck. The results showed 
that the neck and the ankle accelerometers proved sufficient 
to correctly recognize all the activities and falls with 94.2% 
accuracy. Each of the sensors used individually achieved 
94.02% and 93.4% accuracy respectively. 
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1 INTRODUCTION 
According to United Nations World Population Prospects 
2019, by 2050, one in six people in the world will be over the 
age of 65 [1]. As people are getting older, their risk for falls 
also increases. Falls are a major public health problem in 
elderly people often causing fatal injuries. It is important to 
assure that injured people receive assistance as quickly as 
possible. Because of this, building a good fall detection 
system is of a big importance to help medicine solve this 
problem. 

The ϐield of Human Activity Recognition (HAR) and fall 
detection has become one of the trendiest research topics 
due to availability of low cost, low power consuming sensors, 
i.e., accelerometers. The recognition of human activities has 
been approached in two different ways, namely using 
ambient and wearable sensors [2]. In the former, the sensors 
are ϐixed in predetermined points of interest on the body of 
the subject, so the inference of activities entirely depends on 

the voluntary interaction of the users with the sensors. In the 
latter, the sensors are attached to the user.  

This paper presents a machine learning approach to 
activity recognition and fall detection using wearable 
accelerometers placed on different locations of the human 
body. The goal of the paper is to study how the location and 
the number of wearable accelerometers inϐluence on the 
performance of the recognition of the activities and the falls. 
This study is of practical importance of such systems, i.e., to 
build a machine learning model that can correctly recognize 
the activities and the falls using as few accelerometers as 
possible.  

2 RELATED WORK 
A considerable amount of work has been done in human 
activity recognition for the last decade where a lot of studies 
aim to identify activities based on data obtained from 
accelerometers as sensors widely integrated into wearable 
systems [3][4].  

Researchers have reported high accuracy scores in 
detecting activities when investigating the best placement of 
the accelerometer on the human body [5][6][7]. Increasing 
the number of sensors increases the complexity of the 
classiϐication problem. For these reasons, a number of 
studies have investigated the use of a single accelerometer. 
However, doing so generally decreases the number of 
activities that can be recognized accurately [8]. Consequently, 
one of the major considerations in activity recognition is the 
location or combination of locations of the accelerometers 
that provide the most relevant information. 

In [5] the authors study the best location to place 
accelerometers for fall detection, based on the classiϐication 
of postures. Four accelerometers were placed at the chest, 
waist, ankle and thigh. Statistical features were calculated for 
each axis of the accelerometer in addition to the magnitude. 
Results indicated that one accelerometer (chest or waist) by 
itself was not enough to sufϐiciently classify the activities 
(75%). There was, however, a signiϐicant improvement in 
classiϐication accuracy achieved by combining the 
accelerometer at the chest or waist with one placed on the 
ankle (91%). Following the work described in [5] we explore 
this approach using different dataset while investigating all 
possible sensor placement combinations.  
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3 ACTIVITY RECOGNITION 

3.1 Dataset 
In this research we used the UP-Fall Detection dataset, which 
is publicly available [9]. The dataset contains 17 Subjects that 
are performing 11 activities. Each activity is performed 3 
times. The activities performed are related to six simple 
human daily activities and ϐive human falls showed in Table 
1. These types of activities and falls are chosen from the 
analysis of those reported in literature [10][11]. All daily 
activities are performed during 60 s, except jumping that is 
performed during 30 s and picking up an object which it is an 
action done once within a 10-s period. A single fall is 
performed in each of the three ten seconds period trials. 

Table 1: Activities performed in the Dataset 

Activity ID Description Duration (s) 
1 Falling forward using hands 10 
2 Falling forward using knees 10 
3 Falling backwards 10 
4 Falling sideward 10 
5 Falling sitting in empty chair 10 
6 Walking 60 
7 Standing 60 
8 Sitting 60 
9 Picking up an object 10 
10 Jumping 30 
11 Laying 60 

In order to collect data from young healthy subjects 
without any impairment, is considered a multimodal 
approach for sensing the activities in three different ways 
using wearables, context-aware sensors and cameras, all at 
the same time. However, of our particular interest is how 
acceleration data can be used for the recognition of activities. 
The analyzed data is obtained from accelerometers placed on 
ankle, neck, wrist and belt. This way we created 15 different 

datasets representing every combination of these sensors to 
show the importance of the placement of the accelerometer.  

In our research the sampling rate of the sensor is 18 Hz, 
which means 18 samples are provided every second. In 
Figure 1Error! Reference source not found. the raw data 
from 3-axis accelerometer is shown from person who is 
performing three activities: standing, falling forward using 
hands and laying.  

3.2 Feature Extraction 
Feature extraction is really important step in the activity 
recognition process in order to ϐilter relevant information 
and obtain quantitative measures that allow signals to be 
compared. In our research we used statistical features to 
create the feature vectors. All the attributes are computed by 
using the technique of overlapping sliding windows [5]. 

Because the ϐinal sampling frequency of our 
accelerometers was 18 Hz, we chose a window size of 18, 
which is one second time interval. We decided for one-
second time interval because in our target activities there are 
transitional activities (standing up and going down) that 
usually last from one to four seconds. Statistical attributes 
are extracted for each axis of the accelerometer. 

The feature extraction phase produces 36 features 
(summarized in Table 2) from the accelerations along the x, 
y, and z axes. The ϐirst three features (Mean X/Y/Z,) provide 
information about body posture, and the remaining features 
represent motion shape, motion variation, and motion 
similarity (correlation). 

Once the features are extracted (and selected), a feature 
vector is formed. During training, feature vectors extracted 
from training data are used by a machine learning algorithm 
to build an activity recognition model. During classiϐication, 
feature vectors extracted from test data are fed into the 
model, which recognizes the active. 

Table 2: Overview of the extracted features. The 
number of features is represented with # 

Feature name # 
Mean (X, Y, Z) 3 
Standard deviation (X, Y, Z) 3 
Root mean square (X, Y, Z) 3 
Maximal amplitude (X, Y, Z) 3 
Minimal amplitude (X, Y, Z) 3 
Median (X, Y, Z) 3 
Number of zero-crossing (X, Y, Z) 3 
Skewness (X, Y, Z) 3 
Kurtosis (X, Y, Z) 3 
First Quartile (X, Y, Z) 3 
Third Quartile (X, Y, Z) 3 
Autocorrelation (X, Y, Z) 3 

3.3 Methods 
Machine learning approach was used for the activity 
recognition. In this study, the machine learning task is to 
learn a model that will be able to classify the target activities 

Figure 1 Raw Data from 3-Axis Accelerometer 
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(e.g. standing, sitting, falling, etc.) of the person wearing 
accelerometers. For this purpose, we used 4 different 
machine learning algorithms: Random Forest, Support 
Vector Machine, k-Nearest Neighbors and Multilayer 
Perceptron. 

The Random Forest (RF) classiϐier, like its name implies, 
consists of a large number of individual decision trees that 
operate as an ensemble. The fundamental concept behind RF 
is the low correlation between any of the individual 
constituent models protecting each other from their 
individual error. 

The Support Vector Machine (SVM) method has also been 
broadly used in HAR although they do not provide a set of 
rules understandable to humans. SVMs rely on kernel 
functions that project all instances to a higher dimensional 
space with the aim of ϐinding a linear decision boundary (i.e., 
a hyperplane) to partition the data. 

The k-Nearest Neighbors (k-NN) is a supervised 
classiϐication technique that uses the Euclidean distance to 
classify a new observation based on the similarity (distance) 
between the training set and the new sample to be classiϐied.  

The Multilayer Perceptron (MLP) [12], is an artiϐicial 
neural network with multilayer feed-forward architecture. 
The MLP minimizes the error function between the 
estimated and the desired network outputs, which represent 
the class labels in the classiϐication context. Several studies 
show that MLP is efϐicient in non-linear classiϐication 
problems, including human activity recognition. Brief study 
of MLP and other classiϐication methods is shown in [13][14]. 

4 EXPERIMENTS 

4.1 Evaluation Techniques 
To properly evaluate the models, we divided the data into 
train and test using leave-one-person-out cross-validation. 
With the leave-one-person-out each fold is represented by 
the data of one person. This means the model was trained on 
the data recorded for 16 people and tested on the remaining 
person's data. This procedure was repeated for each person 
data (17 times) and the average performance was measured.  

Four evaluation metrics are commonly used in activity 
recognition: the recall, precision, accuracy and F-measure. 
We have analyzed the accuracy score, which shows how 
many of the predicted activities are correctly classiϐied.  

4.2 Results 
For the ϐirst experiment we compared 4 ML models using the 
ankle accelerometer - shown in Figure 2. We used the ankle 
accelerometer because our initial studies showed that it 
performs the best. Random Forest showed the best results 
with 92.92% of accuracy. Therefore, it was used for further 
experiments.  

Table 3 shows the comparison of activity recognition 
accuracy using 4 accelerometers placed on ankle, belt, neck 
and wrist. It shows how the number and placements of 
accelerometer can affect the recognition of particular 
activities. 

 

 

Figure 2: Comparison of different algorithms using 
Ankle Accelerometer 

Placing the accelerometer on the belt can distinguish 
sitting, standing or jumping, but distinguishing different kind 
of falls that include some transitions, like standing, falling 
and then laying is a problem. Adding one accelerometer on 
the neck, can slightly improve the results, but still cannot 
recognize correctly the falls. Combination of neck and ankle 
accelerometer proved best results with 94.2% accuracy. On 
the other hand, an accelerometer on the ankle can distinguish 
walking, standing and laying, but has problems with picking 
up an object and also recognizing the falls. Most of the fall 
activities are recognized as standing or laying. By combining 
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Table 3: Comparison of activity recognition accuracy using different number of accelerometers (1, 2, 3 or 4) placed on 
ankle, belt, neck and wrist 
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this sensor with neck accelerometer, the algorithm can 
distinguish each of the discussed activities.  

Because of situation like this, we decided to compare the 
results using different number of accelerometers and 
different body placements. The idea is to use as few sensors 
as possible to maximize the user’s comfort, but to use enough 
of them to achieve satisfactory performance.  

Figure 3: Confusion matrix for Neck and Ankle 
Accelerometer 

We must make a trade-off between correctly detecting 
simple activity and speciϐic fall. The results showed that neck 
and ankle accelerometers are best suited for fall detection 
with overall accuracy of 94.19%. The confusion matrix for 
neck and ankle accelerometers is shown in Figure 3. The 
most false positive predictions for fall activities are predicted 
as laying. Also, very small percent of the non-fall activities are 
predicted as falls, which dismiss the false alarms for falls.  

5 CONCLUSION 
In this paper we presented an approach to human activity 
recognition and how location and number of sensors can 
impact on the process of HAR. Our aim was to build a model 
who can correctly recognize and classify the fall activities 
using small number of accelerometers, but still can obtain 
high accuracy scores.  With one accelerometer placed on the 
ankle or the neck we got high accuracy scores, but by 
combining these two sensors the model can classify the falls 
more precisely. 

The main input to our system is the data from the inertial 
sensors. Because the data is sensory, additional attributes 
are calculated. This process of feature extraction is general 
and can be used in similar problems. Next, the algorithms for 
the ϐinal tasks of activity recognition and fall detection are 
designed and implemented using the data from the ankle 
accelerometer. We used a machine learning approach for 
solving the problem of activity recognition. We evaluated the 

models and Random Forest showed best results. Then, we 
compared the best model on different data, and we got the 
conclusion that the data from ankle and neck sensors was 
sufϐicient for human activity recognition and fall detection 
process with accuracy of 94.2%. 
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