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ABSTRACT
In this paper, we present a methodology for extracting structured

metadata from museum artifacts in the field of silk heritage. The

main challenge was to train on a relatively small and noisy data

corpus with highly imbalanced class distribution by utilizing a

variety of machine learning techniques. We have evaluated the

proposed approach on real-world data from five museums, two

English, two Spanish, and one French. The experimental results

show that in our setting using traditional machine learning al-

gorithms such as Support Vector Machines gives comparable

and in some cases better results than multilingual deep learning

algorithms. The study presents an effective approach for catego-

rization of text described artifacts in a niche domain with scarce

data resources.

KEYWORDS
Information extraction, Text classification, Silk heritage, Trans-

formers, Support Vector Machines.

1 INTRODUCTION
When looking to improve the understanding of silk heritage we

find that the data available in the museums often lack seman-

tic information on the artifacts or have them to some extent

included in textual descriptions. To facilitate automatic analysis

of silk heritage data and support digital modeling of the weaving

techniques, we propose multilingual metadata extraction from

textual descriptions provided by the museums.

We propose the usage of machine learning techniques tomodel

the target variables, referred here as slots to align with the ter-

minology of information extraction. Using machine learning

methods we build a model for each of the target variables in

order to annotate the text. This enabled us to add metadata to

the silk heritage artifacts of the museums. The domain experts

collaborating on Silknow project [9] have identified four kinds

of metadata information that would be useful and are contained

in texts of at least some of the targeted museums. We treat these

as four slots for information extraction, where the list of possible

slot values for each of the four was defined by the domain experts.

Based on that we formed a multi-class dataset for each slot.

The corpora of text included were in three different languages

(English, Spanish, and French) from five different museums, with

a total of 500 museum records used in the study. After the data
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processing and annotation, we generated 24 binary datasets and

19 multi-class datasets (four for English, two for Spanish, and

one for French). Using machine learning techniques we trained

classifiers on the labeled data examples to predict the labels (slot

values) based on the textual descriptions. Despite relatively small

and unbalanced data corpora, using sampling techniques and

weighted loss function helped mitigate the issue. In an experi-

mental evaluation, we observed that on our data using traditional

methods might be as good as using deep learning models when

the data is scarce. However, using deep learning allows for build-

ing multilingual models that scale across different languages.

The main contribution of this paper is in proposing an ap-

proach to adding metadata to historical artifacts based on ap-

plying machine learning on multilingual textual descriptions of

the artifacts. Moreover, we have defined the learning problem in

collaboration with domain experts and performed evaluations on

real-world data in English, Spanish, and French. The rest of this

paper is structured as follows. Section 2 provides a description of

the data, Section 3 describes the proposed methodology, Section

4 gives the results of the evaluation and Section 5 concludes the

paper summarizing the approach and the findings.

2 DESCRIPTION OF DATA
We used the SilkNow knowledge graph [8] as our source of data.

The source consists of records of different museums in different

languages as shown in Table 1. The largest are MET with8364

artifacts in English, VAM with 7231 artifacts in English, and Ima-

tex with 6799 artifacts in Spanish. We have used a subset of the

data that contain artifacts with provided metadata and textual

descriptions in related fields that were pointed out as relevant by

the domain experts. Each record consists of the basic information

about the object, such as the title and the museum it belongs to,

along with two other sets of attributes, textual attributes, and

categorical attributes. Textual attributes hold a textual descrip-

tion of the object in several fields, such as physical description

and a technical description. The categorical description holds

metadata information, such as technique or materials used. How-

ever, the data quality varies across the museums and records.

Some museums are rich in both textual and categorical attributes,

like the VAM museum, and others have short/low-quality textual

attributes like Imatex. Also, some records have a text description

in their categorical attributes instead of a single category value.

The metadata fields that we have considered are weaving

technique, weave, motifs, and style. The list of labels or slot

values for each of the metadata field (i.e. slot for information

extraction) were compiled by the domain experts. These values

describe the silk artifacts’ nature and structure. Each of those

slot values is represented by a term and a list of alternatives, up

to four alternatives per term. Examples of slot values are satin,

twill, and tabby, representing possible values of the weave slot.
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Museum Language Count
CER Spanish 1296

Garin Spanish 3101

Imatex Spanish 6799

Joconde French 376

MAD French 763

MET English 8364

MFA English 3297

MTMAD French 663

RISD English 3338

VAM English 7231

Table 1: Museums from the Silknow knowledge graph
showing the language of the artifacts and the number of
artifacts included in the knowledge graph.

3 METHODOLOGY
3.1 Annotating datasets with slot values
Based on the data and target variables, two types of datasets

were formed for two types of text classification tasks. The first

type is binary classification dataset, in which the target class

is one of the slot values. The other is multi-class classification

dataset, in which a dataset is formed for each of the four slots in

each museum, where the target classes are the slot values that fall

under the selected slot in addition to extra "other" class indicating

that the example doesn’t fall under any of them.

For forming the binary classification dataset we used a simple

string matching approach. For each target class in each museum,

examples were formed out of textual attributes of the museum

records that contain a mention of either one of the possible value

terms or its alternatives. Categorical attributes of the same record

were used to determine the label of the example. The task is to

classify whether the example has the slot value against the other

slot values of the same slot. Each item is classified as True if

the categorical attributes contain only the target value or one

of its alternatives but not any of the other slot values’ terms

or their alternatives. If there is no mention of the slot value

term or alternatives, then it’s classified as false. If it contains

this slot value’ term along with other slot values’ terms then it’s

considered as indeterminate and the example is removed.

To form the multi-class datasets, we merged the datasets of

the same museum with target classes representing slot values

that fall under the same slot. The true items of each slot value

dataset formed the set of the examples with that slot value as the

labels. The items that are false in each slot value dataset formed

the "Other" class in the multi-class dataset.

3.2 Binary Classification Tasks
For binary classification, we used TFIDF word-vector represen-

tation for generating the feature vectors and trained a Linear

Support Vector Machines (SVM) as the classifier using scikit-

learn library [5]. All dataset were split into train and test using

80-20 stratified split. We performed a grid search with 5-fold

cross validation on the training part using the following options:

• stemming, lemmatisation, or none

• max document frequency: [0.95.1.0]

• min document frequency: [0,0.05]

• SVM tolerance: [1e-4,1e-5]

The features were generated from sequences of words, referred

to as n-grams, of length 1, 2, and 3. The remaining parameters

were left unchanged from their default values. We used nltk [1]

library for tokenization, SpaCy [4] for lemmatization, and Snow

Ball Stemmer [6] for stemming.

Due to the methodology of data labeling, we sometimes ended

up with a highly imbalanced datasets having a lot more negatives

than positives. Therefore, in the binary dataset, we took a random

subset from the negative examples to match the positive count. In

addition, some examples were generated from the same records,

by having more than one textual record with mentions of the

same class’s term/alternatives, therefore, corrections have been

applied to the dataset by putting all examples of the same record

in either train or test but not in both. This process was done to

ensure no leakage occurs by potentially having highly similar

textual text in train and text.

3.3 Multi-class Classification Tasks
For multi-class classification, we used a deep learning approach.

The architecture consists of a pre-trained transformer, an LSTM

layer, a dropout layer, a dense (linear) layer, and finally a soft-max

activation layer. For the transformer we used BERT [3], multi-

lingual BERT, and XLM-ROBERTA [2]. The loss function used

was a cross-entropy loss with Adam as the optimizer. We used

PyTorch framework [7] and hugging-face transformers library

[10].

Considering that some of the datasets have a large class imbal-

ance, which can be a couple of thousand examples of the majority

class and only a few examples of the minority classes, we exper-

imented with several class-weighting schemas. First, we tried

assigning weights to the classes in the loss function is inversely

proportional to the number of examples of each class. In addi-

tion, when we used weighted sampling with return for loading

the examples into batches. This had the effect of over-sampling

the minority classes and under-sampling the majority classes to

achieve as balanced batch representation as possible. Finally, we

tried a derivable version of F1 Macro as a loss function where the

prediction matrix is taken as a probability rather than a binary

value.

4 RESULTS
4.1 Experimental Datasets
The dataset collection methodology was applied to 10 museums

and 4 categories holding more than 150 class values overall. How-

ever, most of the datasets have no positive items. In this research,

we have selected datasets with at least 10 positive examples for

binary classification tasks and at least 10 non-other in multi-

class tasks. This final list consists of 24 binary datasets and 19

multi-class datasets. These datasets are used for training machine

learning classifiers.

4.2 Binary Classification Tasks
For binary Classification, we applied the described methodology

on all the datasets with at least 10 positive examples. The results

of binary classification are consolidated in Table 2.

The graph in figure 1 displaying the correlation between the

number of examples and the F1 score reveals a weak correlation

of 0.19. We can see that when having more than 600 examples, we

achieve F1 over 0.8. Upon closer inspection on the museum level,

we found that the best results are achieved in theMFAmuseum on

motifs and weaving technique and Joconde museums on weave.
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Museum Slot value Slot Language #Exs Accuracy Precision Recall F1
cer bordado weaving technique Spanish 278 0.89 0.87 0.93 0.9

cer motivo vegetal motifs Spanish 146 0.57 0.56 0.6 0.58

cer tafetÃ¡n weave Spanish 581 0.77 0.9 0.6 0.72

cer terciopelo weaving technique Spanish 118 0.67 0.67 0.67 0.67

garin brocatel weaving technique Spanish 932 0.88 0.85 0.92 0.89

garin damasco weaving technique Spanish 1748 0.9 0.92 0.87 0.89

garin espolÃn weaving technique Spanish 972 0.88 0.89 0.88 0.88

joconde Satin weave French 159 0.91 0.9 0.95 0.93
joconde Taffetas weave French 110 0.95 0.92 1 0.96
mfa Lace motifs English 190 0.92 0.9 0.95 0.92
mfa plain weaving technique English 130 1.00 1.00 1.00 1.00
vam brocade weaving technique English 634 0.87 0.87 0.87 0.87

vam damask weaving technique English 480 0.84 0.85 0.83 0.84

vam Ear motifs English 262 0.83 0.84 0.81 0.82

vam Edge motifs English 178 0.81 0.87 0.72 0.79

vam embroidery weaving technique English 1614 0.85 0.86 0.83 0.84

Table 2: Results for the binary classification task.

Overall the best results are achieved by MFA and Joconde with

an average F1 of .96 and .95 respectively followed by Garin, VAM,

and CER with the average F1 of .89, .81, and .72 respectively.

Figure 1: F1 score vs #Examples showing good perfor-
mance on the largest datasets, when the number of exam-
ples is at least 600.

4.3 Multi Class Classification Class
4.3.1 Use Case: Detecting Weave Slot from VAM museum. We

selected the VAM Weave slot as a use case dataset to perform

hyperparameter tuning and select the best configurations for

weighting. The dataset contains 2760 items with a baseline of

52.9% distributed across 4 classes: Satin, Tabby, Twill, and Other.

The dataset was split into train, test, and validation in the form

of 60-20-20 split. The results in Table 3 show that using class

weighting in both loss function and sampling provides the best

results w.r.t both classification accuracy and F1. Using F1 as a loss

function sometimes provided good results but was discarded as

it was not stable across different datasets. In addition, decreasing

the learning rate improved results and stabilized the training

curve. Finally, using the XLM-ROBERTA transformer showed an

improvement in accuracy. The number of epochs was determined

based on the accuracy performance of the validation dataset. The

training would stop when the accuracy did not improve for the

last 15 epochs. The accuracy (F1 micro) was chosen over F1 macro

because of the large fluctuation in F1 macro value across training

epochs caused by having minority classes with few examples.

Model configuration Accuracy F1
Base model 84.6 43.1

Weighted loss 82.1 47.2

Weighted sampling 82.6 52.2

F1 loss function 77.5 59.1

weighted sampling and f1 loss 52 22.8

Weighted loss and weighted sampling 84.8 54.7

+ Learning rate 1e-4 −→ 5𝑒 − 6 86.1 57.9

Multi-Lingual BERT 85.3 55.2

XLM-ROBERTA 87.5 53.6

Table 3: Comparison between different model configura-
tion on the Weave Slot detection in VAM Dataset

Comparing the learning curves of BERT and multi-lingual

BERT in figure 2 reveals that despite the comparable results,

the multi-lingual BERT took double the number of epochs to

stabilize and finish training compared to its BERT counterpart.

This can be due to the fact that Multi-lingual BERT is trained in

many languages and it needs more fine-tuning to adapt to any

certain language, whereas the BERT transformer was trained in

English-only documents.

4.3.2 Generalizing towards all datasets. After we experimented

with different parameter settings, we decided to use the follow-

ing parameters on all the datasets: Weighted Loss function and

Weighted Sampling for batches; learning rate of 5 ∗ 10−6; batch
size of 16 for BERT and 12 for multi-lingual BERT and XLM-

ROBERTA, due to memory limits; 1024 Units for LSTM Layer;

dropout layer of 0.5.

Moreover, the datasets were tested against three types of trans-

former: Language-Specific BERT, Multilingual BERT, and XLM-

ROBERTA, as well as the SVM classifier. The accuracy results in

Table 4 show that on most of the datasets SVM performs better

or comparable to the deep learning models.
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Museum Lang Slot Baseline # Cls # Exs SVM BERT Multi BERT XLM-ROBERTA
VAM English Weave 52.9 4 2760 82.8 86 85.3 87.5
VAM English Weaving Technique 35.9 14 3525 77.6 80.1 78 78

VAM English Motifs 84.8 9 5500 91 90.6 87.4 87

CER Spanish Weave 59.3 5 945 75.1 75.1 64 72

CER Spanish Weaving Technique 61.1 11 720 74.3 74.1 71.5 66

Joconde French Weave 55.6 4 180 66.7 30.6 86.1 91.7
Joconde French Weaving Technique 60 5 150 97.2 70 76.7 63.3

Table 4: Results for the multi-class classification task.

Figure 2: Comparison of a learning curve between BERT
and Multi-Lingual BERT as a transformer in the deep
learning model trained on the VAM museum Weave Slot
dataset.

5 CONCLUSION AND FUTUREWORK
We propose an approach to extracting metadata from a multilin-

gual text description of silk heritage domain museum artifacts.

The datasets had several specifics that made the model devel-

opment a non-trivial task. First, the size of the dataset some-

times was too small to train a model. Second, some class values

have considerably more examples than others, which caused

the datasets to be imbalanced. Finally, in the preparation phase,

the datasets were labeled to accommodate the described issues,

which in itself is an approximation and carries an inherent error

rate. We have improved the performance of the model by over-

sampling minority classes, under-sampling majority classes, and

using a class-weighted loss function. In addition, by perform-

ing cross-validation in the binary classification case or adding a

dropout layer and validating based on a validation dataset, we

managed to mitigate some of the over-fitting behavior caused by

having a little amount of data. We believe that the over-fitting

could be mitigated further by using regularization on the LSTM

layer, as well as using weight-decaying in the optimizer.

The experimental results show that with low data quality and

having not enough data, traditional methods such as SVM in

some cases outperform deep neural network models. We expect

that the results could be improved by having an assembly of

those models instead of using one of them only, which is a part

of the future work. Furthermore, one can fine-tune each model

independently to achieve better performance.

In future work, we plan to test cross-museum learning by

training on one museum and predicting other museums both in

the same language and in different languages using multi-lingual

transformers. This has practical value for labeling the data in the

museums that do not contain metadata information but do have

suitable textual descriptions of the artifacts.
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