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ABSTRACT
Robotic learning can effectively be applied for industrial applica-
tions. In this paper we show one such example, with a learning
algorithm applied to reach the optimal velocity of robotic motion
for visual quality inspection. If such learning is performed before
the start of the production, even if it takes a lot of repetitions, it
can achieve faster cycle times and thus greater productivity. The
described approach is general and can be used with different types
of learning and feedback signals. In the paper we analyze the ap-
propriate feedback signal and show the results of learning for a
standard area-scan camera.
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1 INTRODUCTION
Many operations are performed with autonomous robots in fac-
tories, and many more are expected in the factories of the future.
Often, visual feedback is used to provide the trajectory of the robot.
[16]. However, various vision techniques, such as time of flight,
structured light, laser triangulation, RGB cameras, stereo vision,
etc. are used for quality control processes in the industry [4, 9].
Quality control can take different modes. For example, discrete
checking of an object from a few viewpoints and comparing the
acquired images to predefined templates [11]. Another option is
to continuously acquire images with either moving the in-hand
camera, or moving the object in front of the camera. A plethora
of advanced methods for image processing for quality inspection
have been proposed, including deep learning methods [17].

For effective vision-based operations, the machine vision hard-
ware needs to be properly set-up and tuned. In large-scale auto-
mated production, it is typically set-up once, and then it remains
in the same configuration throughout its life cycle. Consequently,
machine vision hardware is often designed in a way that some ad-
justments can only be carried out manually. Many lenses thus have
a fixed focal length and manual adjustment of the iris and focus
[1]. However, even if the vision-hardware is set up only once, the
process still constitutes a tedious and demanding task. For example,
in continuous visual inspection, e. g., for visual inspection of weld
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Figure 1: The robot cell composed of a UR-10 robot, a Basler
acA1300-60gm area scan camera, a dedicated light source
(not shown) and the dummy flat object at a calibrated dis-
tance from the robot.

seams [18], requires the robot to follow the seam with the camera
at the end-effector. The image has to be sharp in all the positions
and at all velocities. Thus, for such continuous visual quality con-
trol, the operator has to define the correct robot path, but also the
correct speed, because too fast motion in front of the camera might
result in a blurry image.

The demands of the industry typically culmulate in having to
move as fast as possible in order to reach high cycle times. [19].
Thus, when programming robot motion for quality control, the
path can be properly configured by exporting the object CAD data
and appropriate robot-to-object calibration, but the speed of robot
motion is typically left to the operator, who spends a considerable
amount of time hand-tuning it. However, this tuning could be left
to an autonomous learning algorithm with proper feedback. In
this paper we briefly analyze possible visual filters for appropriate
feedback, and demonstrate how hand-tuning can be automated by
employing learning algorithms.

1.1 Problem Statement
We investigate learning of motion speed for continuous visual
quality inspection of products with a robot using an in-hand camera.
The system should:

• follow a predefined path,
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• autonomously optimize motion velocity using learning, so
that

• the velocity of motion does not introduce blurring, i. e., a
reduced focus measure.

We also analyze appropriate visual feedback filters to determine
image sharpness.

The following assumptions hold. i) A CAD system provides an
accurate robot path (trajectory) consisting of required positions and
orientations; ii) proper robot-object calibration can be achieved; iii)
The system operates under constant lighting and camera conditions.

To achieve seamless velocity modulation, we applied Dynamic
movement primitives (DMPs) developed by Ijspeert et al. [10]. We
used a variant of DMPs called Cartesian Space Dynamic Movement
Primitives [21] for the trajectory encoding. Other trajectory en-
coding approaches could easily be applied, for example Gaussian
Mixture Models [3]. For the learning we applied Iterative Learning
Control (ILC) [2, 6]. Again, other methods, such as reinforcement
learning [5, 13] could be applied.

2 FOCUS MEASURE
Visual quality inspection requires sharp, focused images. Only a
few industrial camera/lenses on the market provide autofocus, with
little information about how focus is determined in these cameras
[1].

We first used robot-driven autofocus as described in [1] to set
our fixed-focus camera at the right distance from the object for
inspection. To do this we used squared horizontal gradient focus
measure, as suggested by [1]. This focus measure has a distinct bell-
shape characteristics, with the best focus achieved at the peak. The
robot moves the camera perpendicularly to the object of inspection,
away and towards the object. After detecting the peak value (the
focus measure begins to decrease), the robot reverses its motion
and travels in the other direction at a slower speed, again until
crossing the peak value. These movements are repeated until the
accurate position resulting in peak focus measure ϕ is obtained.
Details of this method and results showing that the achieved focus
measure is higher than the one achieved by manually positioning
the camera, are presented in [1].

Using this approach we can set the camera into focus for one
point, for example above the starting point of the path of inspection.
We assume that the desired inspection path has been extracted
from a CAD model of the inspected object. To obtain the reference
values ϕ(t) for all points on the inspection trajectory, the robot
moves along the desired inspection path. However, the question is
whether speed has an effect on the focus measure, and furthermore,
out of many focus measures that exist, which will be most effected
by the speed.

Focus measures are based on different orders of differentiation
(first or second), image histogram, correlation and data compres-
sion [14]. Methods employing first-order gradients use different
operators, such as squared gradient, Sobel (horizontal, vertical, com-
bined), Laplacian, Scharr, and others. We tested several possible
focus measures. We moved the robot with an in-hand camera over
a dummy object at three different velocities, completing the motion
in 3s, 20s, and 60s. Figure 2 shows the relative focus measure as a
function of normalized time (phase), going from 0 to 1, for different

Figure 2: Different focus measures at different speeds of ro-
botmotion (top: 60s,middle: 20s, bottom: 3s), for normalized
time. The measures were normalized to the initial value.

measures. The label states the measures used. The feedback focus
measures were normalized to the initial value. As we can see, a
higher velocity indeed decreases the focus measure, and the effect
is different for different focus measures.

Figure 3 shows filtered values of relative difference between
slow and fast motion for the top 10 focus measures. We can see that
squared horizontal gradient focus measure is the most reactive to
change of velocity. Is is provided by

ϕ =
M−1∑
x=0

N−2∑
y=0

(I (x ,y + 1) − I (x ,y))2 . (1)

Here the image is sizedM × N , with I (x ,y) the intensity values at
pixels (x ,y).

The values would be the same for the vertical gradient if the cam-
era were rotated 90◦. The vertical horizontal gradient is calculated
by

ϕ =
M−2∑
x=0

N−1∑
y=0

(I (x + 1,y) − I (x ,y))2 . (2)

Brenner vertical and horizontal filters provide similar values.
They are defined by

ϕ =
M−1∑
x=0

N−3∑
y=0

(I (x ,y + 2) − I (x ,y))2 . (3)

for the horizontal and

ϕ =
M−3∑
x=0

N−1∑
y=0

(I (x + 2,y) − I (x ,y))2 . (4)

for the vertical filter.
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Figure 3: Filtered relative change of feedback values for 10
different focus measures.

3 TRAJECTORY ENCODING
In this paper we used the original formulation of Cartesian DMPs
from [21], expanded with temporal scaling, as originally proposed
for standard DMPs in [15].

The following parameters compose a CDMP: weightswwwp
k , www

o
k ∈

R3, k = 1, . . . ,N , which represent the position and orientation
parts of the trajectory, respectively; trajectory duration τ and the
final desired, goal position дддp and orientation дддo of the robot. Vari-
able N sets the number of radial basis functions that are used to
encode the trajectory. The orientation is in CDMP represented by
a unit quaternion. In this paper we only consider the positions.

ν (s)τ Ûz = αz (βz (gp − p) − z) + fp (s), (5)
ν (s)τ Ûp = z, (6)

Variable ν (s), as a function of the phase, provides temporal scal-
ing. Parameter zzz, denotes the scaled linear velocity (zzz = τ Ûppp). The
nonlinear parts, termed also forcing terms, fp and are defined as

fp (s) = DDDp

∑N
k=1w

p
kΨk (s)∑N

k=1 Ψk (s)
s, (7)

Forcing terms contain parameters wwwp
k , ∈ R

3. They have to be
learned, for example directly from an input Cartesian trajectory
{ppp j , Ûppp j , Üppp j , tj }

T
j=1. The scaling matrix DDDp , ∈ R

3×3 can be set to
DDDp = III . Other possibilities are described in [21]. The nonlinear
forcing terms are defined as a linear combination of radial basis
functions Ψk

Ψk (x) = exp
(
−hk (x − ck )

2
)
. (8)

Here ck are the centers and hk the widths of the radial basis
functions. The distribution of weights can be, as in [20], ck =

exp
(
−αx

k−1
N−1

)
, hk =

1
(ck+1 − ck )

2 , hN = hN−1, k = 1, . . . ,N . The

time constant τ is set to the desired duration of the trajectory, i. e.
τ = tT − t1. The goal position is usually set to the final position on
the desired trajectory, i. e. дддp = ppptT . Detailed CDMP description
and auxiliary math are explained in [21].

Temporal scaling ν (s) provides a trajectory that defines a speed
profile of the motion. It is composed of a weighted combination of
kernel functions

ν (s) =

∑R
k=1w

ν
kΨk (s)∑R

k=1 Ψk (s)
. (9)

Here R defines the number of kernel functions, given in (8), for
temporal scaling. For simplicity, this number can be the same as N
in (7). The weights wν

k need to be learned in the same manner as
the weights for position trajectories.

4 IMPROVING SPEED OF QUALITY CONTROL
WITH LEARNING

Focus measure is repeatable, and there is a clear difference in ϕ for
different motion speeds, as evident from Fig. 2. Therefore, we can
use ϕ as the feedback for learning.

The goal of learning here is to achieve a fastest possible velocity
profile, where there will be only little or even no degradation of the
focus measure. Thus, the motion will be executed as fast as possible,
and the sharpness of the image, used for quality inspection, will
not degrade.

It should be noted that with the chosen parametric speed profile
representation, different means of learning open up, as was shown
in [5], or in [12]. In this paper we have chosen one of the variations
of iterative learning control. The advantage of using a learning
control method is that it requires very few iterations to improve
results. However, such methods never truly converge, but only
asymptotically approach the target value [2].

The chosen learning algorithm for learning was previously ap-
plied for coaching of robot motion through human intervention [7].
A short recap is provided for completeness of the paper. Its basis
is learning of weights of CDMPs, but in this case it is used for the
learning of the weights of the velocity profile ν . The weights of the
velocity profilewwwν are iteratively updated (for 1DOF) with

wν
i, j+1 = wν

i, j + Γi, j+1Pi, j+1rej (10)

Pi, j+1 =
1
λ

(
Pi, j −

P2i, jr
2

λ
Γi
+ Pi, jr2

)
(11)

ej = ftarg, j −wν
i, jr . (12)

Here j + 1 stands for the next time sample and i for the selected
weight. Pi , is the inverse covariance ofwi , r is the amplitude gain.
To apply this algorithm for modifying the speed profile based on
the focus measure ϕ, we replace (12) with

ej = k ∗ (ϕslow − ϕfast). (13)

here k is a positive constant gain. The whole algorithm is described
in procedure of Fig. 4. The learning takes place until a predefined
threshold of ej is reached. This threshold can be determined empir-
ically.

Instead of learning directly on the weights, one can also simply
generate the velocity profile from the weights and add to it a scaled
ej ,

νl+1(t) = νl(t) + kej (t), (14)
where the gain k is set empirically and l stands for iteration. The
resulting νl+1(t) is then again encoded into weights, for example
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procedure LearnProfile
record ϕ for slow (practically static) motion;
record ϕ for fast motion withwν

i = const;
while ϕlatest > threshold

execute motion with currentwν

calculate new error of ϕ with ϕ − ϕlatest
update wν using (10), (11) and (13)

end

Figure 4: Procedure for learning the velocity profile using
the squared gradient focus measure.
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Figure 5: Results of velocity learning for a dummy flat ob-
ject. The top lines shows absoluteϕ for slow 60smotion. The
bottom line shows ϕ for fast, 3s motion. ϕ over iterations is
shown between, with the final, red line almost the reference,
but at 19.12s.

iteratively using (10) – (12), or with a batch conversion, as shown
in [10].

Figure 5 shows the results of the algorithm, applied on a dummy
object, using the algorithm described in Fig. 4 and squared hor-
izontal gradient focus measure. Results on a curved object were
reported in [8].

5 CONCLUSION
Learning algorithms have tremendous potential to improve the
productivity of industrial processes today, not only in the future.
The results show that autonomous learning algorithms can improve
the performance of the robot, and that such algorithms can be
effectively applied optimizing production processes. Thus, they can
relieve and help operators/engineers. Fine-tuning and calibration
of the processes is a tedious, long process, requiring a lot of effort.
Time and money can be saved both in the set-up as well as in the
improved productivity.
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