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ABSTRACT 

The relationship between mind and world has always been one of 

the focal interests of cognitive science. Perception has been 

identified as one of the main sources of knowledge about the 

world and therefore a prime research interest. Evolutionary 

scientists claim that natural selection optimizes perception so that 

it accurately mirrors the outside world. In opposition, the interface 

theory of perception proposes that perception is a non-veridical 

interface between an organism and the outside world, 

evolutionarily fitted to the organism’s fitness and not the objective 

truth. It has been studied using genetic algorithms (GAs), which 

show that non-veridical perception offers more survival value to 

the modelled organism than veridical perception. However, the 

theory is based on cognitivist presuppositions about the mind, 

claiming that perception does not require action. We successfully 

replicated the GA model, then replaced cognitivist 

presuppositions with embodied-enactivist presuppositions, 

coupling action and perception by adding a sensorimotor loop. 

The sensorimotor loop bootstraps evolution, with organisms 

needing less information to perform better due to knowing how to 

perceive by taking appropriate actions. We also perform 

additional experiments to further corroborate our claims. 
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1. INTRODUCTION 
Perceptions have evolved not to describe the objective world, but 

to help us survive. In a way, they are similar to a computer 

desktop, which shows its elements, like icons, as to make them 

easily manipulatable, but ‘hides the truth’ behind them, like the 

underlying electrical current. This is the main idea of the interface 

theory of perception (ITP) [1]. 

Hoffman et al. [1] claim that perceptions are not isomorphic – “a 

structure-preserving relation between the physical-causal make-up 

of the system and the formal structure of the computational model 

supposedly instantiated by the system” [2, p. 7] – to the objective 

world, but to the evolutionary fitness of the perceiving organism. 

ITP therefore follows a more general upheaval in cognitive 

science (predictive coding [3], enactive approaches [4]) that goes 

against the idea that perception generates “a fully spatial virtual-

reality replica of the external world in an internal representation.” 

[5, p. 375]. Hoffman et al. use, among other methods, genetic 

algorithms (GAs) to back up their theory [6]. Their model 

generates a population of artificial organisms that can perceive 

and act, and evolves them. After a number of generations, the 

organisms that survive and reproduce do not perceive the 

objective world isomorphically – rather, they perceive it 

according to their internal needs, isomorphic to their payoff 

function.  

In our work, we replicate their GA model. Hoffman et al. make a 

claim that perceptual experience does not require motor 

movement [1, p. 1497]. We believe that is not true, following 

enactive approaches to sensorimotor cognition [7], and make our 

own GA model. In it, we replace cognitivist presuppositions on 

sensomotorics with embodied-enactivist ones by adding a 

sensorimotor loop. This also serves to offer further evidence for 

ITP’s idea. 

2. REPLICATION 
Hoffman et al.’s cognitivist model (CM) is based on Mitchell’s 

‘Robby, the Soda-Can-Collecting Robot’ [8]. Robby is an agent 

that forages soda cans scattered on a grid (Figure 1). It can make a 

move in a Von Neumann neighborhood (non-diagonally adjacent 

cells), which it perceives, as well as try to pick up a soda can. It 

gets points if there is a soda can in the cell it stands on. It loses 

points if there is no soda can or if it bumps into a wall 

surrounding the grid. The GA model generates many such grids 

with many Robbies, who start out with very bad strategies for 

foraging. Through evolution, where Robbies with better strategies 

are selected for DNA crossover, Robbies in the final generation 

become masters of their craft. Their DNA is composed of 

situation-move pairs, where the situation part describes a possible 

configuration of soda cans in a Von Neumann neighborhood, and 

the move part describes which move to make when Robby is in 

that situation. 

 
Figure 1: Robby and its world [from 6, p. 131]. 



Figure 4: Robbies’ foraging skills evolution in CM (top) and EAM (bottom). 

Hoffman et al. modify Mitchell’s model in a number of ways to be 

able to investigate ITP. They add a perceptual DNA (pDNA) to 

Robbies alongside their foraging DNA (fDNA) to evolve as well. 

The pDNA determines how Robbies see the cells in their Von 

Neumann neighborhood. They either see them colored in red or in 

green, depending on the number of soda cans in the perceived cell 

and their pDNA. As implied, Hoffman et al. also changed the 

number of possible soda cans in a cell from up to 1 to up to 10. 

The points Robbies get from picking up soda cans are modified as 

well – the payoff function is Gaussian, Robbies get 

(0,1,3,6,9,10,9,6,3,1,0) points for (0,1,2,3,4,5,6,7,8,9,10) cans, 

respectively (see Figure 2). Each gene in the pDNA represents 

one amount of soda cans, connecting it with one of the two colors. 

 

Figure 2: Robbies’ Gaussian payoff function for foraging soda 

cans. 

Robbies evolve similarly as in Mitchell’s model – they start with 

bad strategies and end with good ones. What is of interest is how 

their pDNA evolves during this time – the question is whether the 

perception is isomorphic or non-isomorphic to the outside world. 

If the pDNA were to evolve to be isomorphic, it would look like 

the top genome in Figure 3, which makes colors organize to 

reflect the lower and the higher amounts of soda cans. If it were to 

evolve to be non-isomorphic, it would look like the bottom 

genome in Figure 3, reflecting Robbies' fitness function. It is the 

latter that does evolve, making Robbies not see the world 

isomorphic to the outside world, but in a way that helps them 

survive – the number of soda cans that brings them the most 

points are of one color, the number that brings them the least 

points are of another color. 

Figure 3: Isomorphic (top) and non-isomorphic (bottom) 

perceptual DNA. 

3. EMBODIED-ENACTIVE MODEL 
We look at ITP from an embodied-enactive perspective [7], 

especially since Hoffman et al. claim that perception is possible 

without action. Therefore, we add a sensorimotor loop to Robbies. 

Our model’s (EAM) modifications are the following: previously 

able to see the Von Neumann neighborhood, now Robbies only 

see the cell they are in and the cell they are looking at. The latter 

implies another modification – Robbies first have to act to 

perceive. They have to turn towards a certain direction to see the 

cell in that direction. Robby therefore has the following ‘loop of 

life’:  

1. Depending on where Robby is looking at, perceive the 

cell’s color.  

2. Make a move depending on what Robby sees in the 

direction it is looking at and the cell it is standing on. 

3. Decide which cell to turn to, which will be perceived in 

step 1 of the process’ reiteration.  

The fDNA is modified to include turn-situation-move triplets, 

which are then evolved instead of only situation-move pairs as in 



CM. Figure 4 shows the results of how Robbies and their fitness 

(number of points on y-axis) evolve (time on x-axis) with CM on 

the top and EAM on the bottom. EAM’s Robbies’ pDNA evolves 

the same as in CM. 

4. ADDITIONAL EXPERIMENTS 
Four additional experiments were made with CM and EAM to 

further examine legitimacy of non-isomorphic perception 

prevailing over isomorphic perception. Robbies were 

implemented with pDNA coding the mapping from the external 

world to colors that was constant, unchanged neither by crossover 

nor by mutation. Four experiments were run:  

1. CM was implemented with a fixed isomorphic 

perceptual strategy. 

2. CM model was implemented with a fixed non-

isomorphic perceptual strategy. 

3. EAM was implemented with a fixed isomorphic 

perceptual strategy. 

4. EAM was implemented with a fixed non-isomorphic 

perceptual strategy. 

Figures 5, 6, 7 and 8 show graphs for CM with a fixed isomorphic 

perceptual strategy, CM with a fixed non-isomorphic perceptual 

strategy, EAM with a fixed isomorphic perceptual strategy and 

EAM with a fixed non-isomorphic perceptual strategy, 

respectively. 

 
Figure 5: CM with a fixed isomorphic perceptual strategy. 

The top graph shows the fitness score over generations, the 

bottom graph shows fitness score variance over generations. 

 
Figure 6: CM with a fixed non-isomorphic perceptual 

strategy. The top graph shows the fitness score over 

generations, the bottom graph shows fitness score variance 

over generations. 

 
Figure 7: EAM with a fixed isomorphic perceptual strategy. 

The top graph shows the fitness score over generations, the 

bottom graph shows fitness score variance over generations. 

 
Figure 8: EAM with a fixed non-isomorphic perceptual 

strategy. The top graph shows the fitness score over 

generations, the bottom graph shows fitness score variance 

over generations. 

Experiments mostly yielded nothing out of the usual. Both models 

with non-isomorphic perceptual strategies scored similarly 

between each other as well as to the original models without 

fixed, but evolving perceptual strategies. The slope of CM’s two 

graphs compared to EAM’s are again to be expected – the same 

happened in the models with evolving strategies. The same goes 

for variance. What is unexpected is that Robbies with isomorphic 

perceptual strategies in EAM score a lot higher than Robbies with 

the same perceptual strategy in CM. This might be again due to 

the varying variance and higher scoring individuals in EAM, 

where the sensorimotor loop works as an optimizer.  

Further experiments therefore yielded results that were expected, 

and showed that the fitness-based, non-isomorphic perceptual 

strategy makes Robbies more successful in picking up soda cans 

and navigating the modelled world. 

5. DISCUSSION AND CONCLUSIONS 
CM and EAM both evolve perceptions that are not isomorphic to 

the objective world, but rather to the perceiving organism’s needs. 

However, they diverge in how long it takes for Robbies to become 

master foragers. EAM implements active perception [9], which 

bootstraps evolution and optimizes the best foraging strategy 

discovery process. This means that actively choosing which (and 

less) information to take in beats more (‘free’) information which 

needs to be processed in CM. In our future work, we want to 

make Robbies more ‘enactively’ autonomous [10], meaning that 

there would be less designer-fixed agent architectures and more 

learning through non-deterministic dynamic interactions. We also 

want their fitness function more dependent on historical 

interactions [11]. Lastly, we want to conceptualize the role of 

such modelling in researching how presuppositions of different 



cognitive science paradigms influence our understanding of 

cognition [12]. 
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