Autonomous learning of assembly policy

Mihael Simoni¢
Jozef Stefan Institute
Ljubljana, Slovenia
mihael. simonic@ijs.si

ABSTRACT

In the paper, we propose to learn an assembly task from the corre-
sponding disassembly. Autonomous learning of disassembly can
be easier than learning of the corresponding assembly task, be-
cause the admissible set of motions during disassembly is initially
fully constrained by the environment. During the disassembly the
robot exploits its compliance in order to detect admissible mo-
tions and takes appropriate decisions when multiple options exist.
Learning of the disassembly was realized using hierarchical rein-
forcement learning. The disassembly policy is then used to derive
the corresponding assembly policy. The proposed approach was
experimentally validated on the case of light-bulb assembly.

KEYWORDS

reinforcement learning, robot learning, autonomous assembly

1 INTRODUCTION

Developing robust assembly skills is one of the main challenges
in contemporary robotics. Assembly skills are needed not only in
production plants, but will also be important for the future gen-
eration of home and service robots. For fast deployment of such
tasks, new user-friendly tools for programming robot operations
are needed. Ideally, a robot would be able to derive assembly policy
autonomously.

Autonomous policy learning, is usually accomplished by utiliz-
ing reinforcement learning. Starting from an existing parameter-
ized policy, a robot tries to adapt to a new situation by randomly
changing task parameters and find out how to modify the policy to
maximize the reward function [9, 12]. However, the main challenge
is huge search space which characterizes an assembly policy. For
that reason, there were very few successful attempts of completely
autonomous learning of assembly tasks in robotics [4, 7]. Existing
techniques for reducing the search space of reinforcement learn-
ing usually assume prior information about process, either in an
explicit form or inherited from previous experiments and therefore
still rely on skilled robot operators that guide the robot through
the learning process [5].

In our previous research, we proposed an alternative approach to
autonomous policy learning, which unifies compliant motion con-
trol and reinforcement learning. Tasks that involve interaction with
the environment are traditionally considered as extremely hard to
learn due to the unknown and possibly changing environment. On

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

152019, October 7-11, 2019, Ljubljana, Slovenia, Europe

© 2019 Copyright held by the owner/author(s).

Ales Ude
Jozef Stefan Institute
Ljubljana, Slovenia
ales.ude@ijs.si

Bojan Nemec
Jozef Stefan Institute
Ljubljana, Slovenia
bojan.nemec@ijs.si

the other hand, interacting with the environment can be advanta-
geous to accelerate the learning process. Namely, if appropriately
addressed, learning of physically constrained tasks is more efficient
than the learning of tasks, where a robot can move completely freely
in space. The reason is that the environment limits the admissible
movement directions. Consequently, the number of parameters
that need to be learned can be greatly reduced. To implement this
type of learning, we need to make use of the natural robot motion
along with the constraints imposed by the environment. Compliant
robot control provides a suitable framework for implementing such
a strategy. This concept has been already successfully applied to
the learning of tasks such as autonomous learning for doors and
drawers opening [8].

In this paper, we present how the above-described methodology
can be extended to autonomous learning of assembly operations.
The main idea is that robot first learns the reverse action — dis-
assembly of an object. In an assembled object, the set of possible
motions is constrained, and typically only a single motion or oper-
ation is possible. During the disassembly, the motion becomes less
and less constrained until the part is completely disassembled and
the environment no more constrains motion of individual parts.
The situation is opposite during the assembly. The initially vir-
tually unlimited set of possible motions becomes more and more
constrained as the assembly process advances. Given no previous
knowledge about the task, learning of disassembly is therefore more
straightforward than learning of the assembly task. Imagine generic
peg-in-hole task: by removing a peg from a hole, we also learn the
exact pose of the hole, whereas we would first have to guess where
the hole is if we are to insert the peg into the hole without any
prior knowledge.

Similarly, we transfer the knowledge obtained during disassem-
bly to the corresponding assembly process. We assume that the
initial assembly policy can be obtained by reverse execution of
the learned disassembly policy. This is possible because in most
cases assembly and disassembly are mutually reversible operations.
Common assembly tasks such as putting/placing, peg-in-hole, or
screwing are directly reversible [6]. Tasks that result in structural
deformations or require external equipment (e.g. riveting pistol
and rivets) are not directly reversible, but can be omitted for the
purposes of disassembly learning and manually added to the final
assembly policy.

This paper is structured as follows. We first introduce our al-
gorithm for hierarchical reinforcement learning on the example
of maze learning in Section 2. Then we present the underlying
intelligent controller in Section 3. In section 4, we present our
methodology to learn assembly policy from disassembly policy,
along with experiential verification of the proposed framework in
Section 5. We conclude with a short summary.

152019, October 7-11, 2019, Ljubljana, Slovenia, Europe

2 HIERARCHICAL REINFORCEMENT
LEARNING

In the reinforcement learning (RL) literature, maze learning has
been traditionally used as a benchmark for validating learning
algorithms. Maze learning also bears a lot of similarities with dis-
assembly process, where the robot should come from an initially
fully contained state into the final unconstrained state. Within a
maze, the agent mostly follows the corridors and only has to take
decisions in the crossings.

Traditional approaches rely on discrete state-space with prede-
fined set of actions as illustrated in Figure 1.

?

R

f _’b‘_

zats

¢
£
_<:>-

-
g B o
w

ST
.- iz

f
I}

YT

&2

—
B8 m8.
k{tg Q%},
JRaTIES

ot
T ° A

Figure 1: An example of maze with 9 X 11 cells. White cells
represent corridors where the agent can move, whereas gray
cells are walls. The state space for maze learning is repre-
sented with a graph. In each state (represented as node), the
agent can choose from a fixed set of possible actions (repre-
sented with edges): relative left, right, up and down move-
ment. The agent starts in the yellow node and should learn
to exit maze (arrive at green node).

g‘y
O-

{?«

wu

o

In contemporary robotics we need continuous policies. Within
the traditional RL framework, an approximation of continuous pol-
icy can be achieved by increasing the number of states and actions,
which substantively deceases the performance of the learning.

Considering the example in Figure 1, we can notice that in the
discretization of the maze many of the states are redundant and the
robot can not access them (wall cells). Following the corridor, the
agent eventually arrives either at a crossing, in a dead-end or to the
target. This suggests, that also the states between two crossings
and between a crossing and a dead-end or the target can be left out.

Therefore, we propose to dynamically assign states rather than
allocate them in advance. A suitable framework to achieve this is
hierarchical reinforcement learning, where we combine RL with
control algorithm as shown in Figure 2.

The upper hierarchical level is classical RL algorithm, where
the states are discovered online by the lower hierarchical level.
The later consists of an intelligent compliant controller, which au-
tonomously moves within the environment constraints and detects
where multiple movement options exist. The states for the upper
level are only assigned when multiple options are possible. There
are two main benefits of using such approach:

o The generated policies are inherently continuous.
e The number of states is greatly reduced.

Mihael Simoni¢, Ales Ude, and Bojan Nemec

Reinforcement learning

(T
inAm) ki
L

(O

-

$ policy learning

Search Intclhgcm
algorithm compliant
controller

Figure 2: Block scheme of the proposed hierarchical pol-
icy learning algorithm. The upper level is RL of the policy,
where the states and actions are represented with a directed
graph. The lower level is an intelligent controller, consisting
of a search algorithm and a Cartesian impedance controller.

The states and actions of hierarchical RL can be also represented
with nodes and edges, respectively, of a directed graph as shown in
the upper blue box in Figure 2.

3 INTELLIGENT COMPLIANT CONTROLLER

The lower level of the hierarchical learning utilizes a compliant
control framework. As the robot moves along the boundaries, the
controller searches for possible alternative movement directions.

In general, the physical constraints of the system are not known
in advance. To find a feasible initial motion direction, the controller
keeps applying force in random directions until this results in a
movement. We then use operational space compliant controller to
continue the motion in the initiated direction. The control parame-
ters make the robot more compliant in directions orthogonal to the
movement direction.

“ | a b

Figure 3: Searching path and possible states in restricted en-
vironment. The left part (a) shows Frenet-Serret frame at-
tached to the end effector in the labyrinth. The right part (b)
shows an instance, when the controller discovers a new state
for reinforcement learning. Both parts show how search
forces are applied in the normal and binormal direction.

We specify these directions using Frenet-Serret frames along the
resulting motion trajectory [10] as illustrated in Figure 3 a. The
Frenet-Serret frame can be expressed R, = [tp np by] with

Autonomous learning of assembly policy

e the unit vector ¢, = ﬁ tangent to the curve, pointing in

the direction of motion,

. _ _pxp
e the normal unit vector n), = o< X tp, and

e the binormal unit vector b, = np X t,

where p € R3 are the measured positions of the robot end-effector.

In order to follow environmental constraints, we exploit robot’s
compliance. We modified a passivity-based variant of impedance
control for manipulators with flexible joints [2] by allowing to set
the compliance along the operational space trajectory expressed
using Frenet-Serret frame rather than global frame. The task com-

mand input X, = [pz, a');r]T is then given by:

Pe = —RpyDpRyp+R,KyRyep,)

¢

~RoDoRIw + RoK,RIeq, (2)

where e), and e, are position and orientation tracking errors; K,
and K, € R¥3 are the diagonal matrices, which define the posi-
tional and rotational stiffness in the Frenet-Serret and global frames,
respectively. Likewise, Dj, and D, € R33 are diagonal damping

matrices, which are set to D = 2VK for critically damped system.
For other parameters, please see [1].

By applying high positional gain in the direction of movement
and low gains in the orthogonal direction, the robot can autonomously
move along the environmental boundaries. However, following the
constraints alone can not discover new states for the upper RL level.
For this, small test forces are applied in the positive and negative
directions of the normal and bi-normal (see Figure 3). All test forces
are applied in each test position, which are placed in short intervals
along the entire trajectory. If the robot moves above some prede-
fined positional displacement threshold as a result of applying this
forces in multiple directions in the same test position, the controller
has found a new state (see Figure 3 b). In the new state each action
corresponds to applying the specific force, which results in a move-
ment in one of the admissible directions. The controller waits for
the decision of RL algorithm, which action to take.

We assume that motion can be stopped only due to the task
constraints. If the motion is interrupted, the controller searches
for a new feasible motion by applying a random force in a random
direction in the same manner as at the beginning. Following this
strategy, the robot eventually generates a continuous policy.

152019, October 7-11, 2019, Ljubljana, Slovenia, Europe

4 ASSEMBLY LEARNING BY DISASSEMBLY

We can apply the same algorithm as for maze learning to disassem-
bly operations. Key stages of disassembly and their analogies in the
graph representation and hierarchical reinforcement learning are
summarized in the Table 1.

A positive reward is given only when the robot has disassembled
the object, i.e the target state. Negative reward is assigned when the
robot arrived in a state where the motion could not be continued.

When the robot explores state si, the action-value function
Q(sk, ax) is updated according to the SARSA algorithm [11]:

Q(sg, ag) « Q(sg, ag)+a(re+yQ(sk+1, ak+1)-Q(sk-ar)), (3)

where s is the label of the k-th state, aj. is the label of the action
taken in sg, ri is the reward obtained in state s, 0 < @ < 11is
the learning gain and 0 < y < 1 is the discount factor, which
gives recent rewards higher importance. The optimal policy can be
obtained by applying e-greedy strategy in the form

argmax Q(s, a), with probability 1 — €,
@ 4)

n(s) =
random action, with probability e,

where parameter € is the ratio between the exploration and ex-
ploitation [12].

Using the hierarchical reinforcement learning, the robot not only
learns the disassembly policy, but identifies all crucial stages for
the corresponding assembly process.

We assume that assembly and disassembly are mutually re-
versible operations, therefore we obtain initial assembly policy
by merely reversing the disassembly policy. However, even if the
operation is reversible small deviations in part geometry, grasping,
material, etc. can result in failure. To account for this, we have to
apply appropriate control together with the exception strategies,
which mimic human behavior during the assembly.

We set high gains in all spatial directions until the parts to be
assembled are in contact. This assures precise path tracking during
the approach motion in assembly. When the parts are in contact,
we use the same compliance settings as during disassembly.

During the assembly, we measure contact forces and torques
and compare them with the measured forces and torques during
disassembly. Note that the forces/torques during assembly have the
opposite sign in relation to those measured at disassembly. If the
values are still notably different, we slow down the motion and if the
forces/torques are still increasing, we carry out a trajectory in the

Table 1: Key stages of disassembly and their analogies in hierarchical reinforcement learning and graph representation

Observation Lower level

Upper level Graph

Fully assembled product.

Controller tries to move in different directions and thereby

Start state Yellow node

determines admissible directions.

Partially disassembled product.

Controller follows the environmental constraints and moves

Action Edge

in the only admissible direction.

Multiple options to continue disassembly.

Controller tries to move in different directions and thereby State

Orange node

determines admissible directions.

Disassembly cannot be continued in the Goes in reverse direction.
same direction.

Fully disassembled product.

Controller can freely move.

Penalty state White node

Target state Green node

152019, October 7-11, 2019, Ljubljana, Slovenia, Europe

opposite direction for some time and then try again, as suggested
in [6].

For improving the obtained policies many different methods
exists. We apply iterative learning control, which has proven useful
for on-line adaptation of force profiles in manipulation tasks [1].

5 EXPERIMENTAL VERIFICATION

We experimentally verified the proposed disassembly learning on a
Franka Emika Panda robot. The control algorithm was implemented
as aros_control plugin in C++ using libfranka[3], while the learning
algorithm was implemented in Matlab as a ROS node.

We verified the proposed approach using a R5W car bulb and
corresponding plastic casing, used to fix the bulb above the reg-
istration plates. The RSW bulb is mounted into the plastic casing
using bayonet mechanism as shown in Figure 4.

@

Lo O-—@
Figure 4: On the left illustration of a bayonet bulb with the
corresponding casing is shown. Bayonet mechanism consist
of radial pins, and a matching slot and spring to keep the two
parts locked together. On the right, a projection of the slot
in the casing to the plane is shown along with states than
can be discovered by the controller. In disassembly task in
order to release the lock, the robot first has to rotate the bulb
across the horizontal part of the slot and then the pin slides

into the vertical part of the slot. By lifting it upwards, the
robot eventually learns to remove the bulb.

This example shows why disassembly can be easier than the
assembly. In disassembly, the robot starts in state 1, and the only
decision it has to make is in the state 2 to arrive in the state 3. In
assembly, however, it has first to learn the proper pose of the state
3 and then search for the state 2.

The robot learns to remove the bulb from the casing as shown
in Figure 5.

Applying the procedure described in Section 4, the robot suc-
cessfully learns the assembly operation - bulb insertion.

6 CONCLUSIONS

Physical constrains can be used to structure and reduce search space
for reinforcement learning. During the disassembly the motion of
object parts is more constrained. As a consequence, learning of
disassembly can be easier than learning of assembly.

Hierarchical reinforcement learning, consisting of high level de-
cision making and intelligent compliant controller, has proven to
be an efficient framework for learning in the constrained environ-
ments, such as disassembly processes. The controller exploits its

Mihael Simoni¢, Ales Ude, and Bojan Nemec

Figure 5: On the left the bulb is mounted in the casing. On
the right the bulb is removed from the casing revealing its
two radial pins.

compliance in order to detect admissible motions. When motion
in multiple directions is possible, decisions are taken at the upper
hierarchical level.

The proposed approach was experimentally validated on the
case of light-bulb insertion. During the disassembly (bulb removal
from the casing), all crucial stages for the corresponding assembly
process (bulb insertion) can be learned autonomously and simplify
the assembly learning.

Our future research will focus on evaluation of the proposed
method for objects, composed of multiple parts.

ACKNOWLEDGMENTS

The research leading to these results has received funding by the
EU Horizon 2020 Research and Innovation Programme under grant
agreement No 820767, project CoLLaboratE.

REFERENCES

[1] Fares J. Abu-Dakka, Bojan Nemec, Jimmy A. Jergensen, Thiusius R. Savarimuthu,
Norbert Kriiger, and Ale§ Ude. 2015. Adaptation of manipulation skills in physical
contact with the environment to reference force profiles. Autonomous Robots 39,
2 (2015), 199-217.

[2] A. Albu-Schaffer, C. Ott, and G. Hirzinger. 2007. A Unified Passivity-based Control
Framework for Position, Torque and Impedance Control of Flexible Joint Robots.
The International Journal of Robotics Research 26, 1 (2007), 23-39.

[3] Franka Emika. 2019. libfranka: C++ library for Franka Emika research robots.
https://github.com/frankaemika/libfranka.

[4] T.Inoue, G. De Magistris, A. Munawar, T. Yokoya, and R. Tachibana. 2017. Deep
reinforcement learning for high precision assembly tasks. In 2017 IEEE/RS] Inter-
national Conference on Intelligent Robots and Systems (IROS). 819-825.

[5] J. Kober, J. a. Bagnell, and J. Peters. 2013. Reinforcement learning in robotics: A
survey. The International Journal of Robotics Research 32, 11 (aug 2013), 1238-
1274.

[6] J.S.Laursen, L.-P. Ellekilde, and U. P. Schultz. 2018. Modelling reversible execution
of robotic assembly. Robotica 36, 5 (2018), 625-654.

[7] Sergey Levine, Nolan Wagener, and Pieter Abbeel. 2015. Learning Contact-Rich
Manipulation Skills with Guided Policy Search. International Conference on
Robotics and Automation (2015), 156-163. arXiv:1501.05611

[8] B.Nemec, L. Zlajpah, and A. Ude. 2017. Door opening by joining reinforcement
learning and intelligent control. In 18th International Conference on Advanced
Robotics (ICAR). 222-228.

[9] Jan Peters. 2010. Policy Search for Motor Primitives in Robotics. Technical Report.
[10] R.Ravani and A. Meghdari. 2006. Velocity distribution profile for robot arm
motion using rational Frenet-Serret curves. Informatica 17, 1 (2006), 69-84.

[11] Gavin A Rummery and Mahesan Niranjan. 1994. On-line Q-learning using con-
nectionist systems. Vol. 37. University of Cambridge, Department of Engineering

Cambridge, England.
Richard S. Sutton and Andrew G. Barto. 2015. Reinforcement Learning: An Intro-
duction, Second edition. The MIT Press, Cambridge, London.

[12

https://github.com/frankaemika/libfranka
http://arxiv.org/abs/1501.05611

	Abstract
	1 Introduction
	2 Hierarchical reinforcement learning
	3 Intelligent compliant controller
	4 Assembly learning by disassembly
	5 Experimental verification
	6 Conclusions
	Acknowledgments
	References

