
CmoPy: Constrained Multiobjective Optimization in Python

Aljoša Vodopija
Jožef Stefan Institute and

Jožef Stefan International Postgraduate School
Jamova cesta 39

SI-1000 Ljubljana, Slovenia
aljosa.vodopija@ijs.si

Bogdan Filipič
Jožef Stefan Institute and

Jožef Stefan International Postgraduate School
Jamova cesta 39

SI-1000 Ljubljana, Slovenia
bogdan.filipic@ijs.si

ABSTRACT
Python is one of the most frequently used programming
languages for solving multiobjective optimization problems
(MOPs). Although there exist Python packages covering a
wide range of multiobjective optimization tools, there is still
a lack of implemented constraint handling techniques (CHTs).
This paper introduces a new package for Constrained Multi-
objective Optimization in Python (CmoPy). It describes the
package implementation, the included CHTs and benchmark
problems, and shows examples of using the package. With
five state-of-the art CHTs and 22 benchmark constrained
MOPs, CmoPy is currently the most comprehensive Python
package for constrained mutliobjective optimization.

Keywords
Python, constrained multiobjective optimization, multiobjec-
tive evolutionary algorithms, constraint handling techniques,
NSGA-II algorithm

1. INTRODUCTION
Real-world optimization problems regularly involve both
multiple objectives and constraints. Such problems are called
constrained multiobjective optimization problems (CMOPs).
A CMOP can be formulated as

minimize fm(x), m = 1, . . . ,M

subject to gn(x) ≤ 0, n = 1, . . . , N

where x = (x1, . . . , xD)T is a decision vector (solution),
fm : S → R are objective functions, gn : S → R constraint
functions, S ⊆ RD is a decision space of dimension D, and
M and N are the numbers of objectives and constraints, re-
spectively. Additionally, fm(x) is an objective value, gn(x) a
constraint value, φn(x) = max(gn(x), 0) constraint violation
and φ(x) =

∑
n φn(x) the overall constraint violation. A

solution satisfying all the constraints is a feasible solution
and otherwise an infeasible solution.

A feasible solution x(1) is said to dominate a feasible solution
x(2) if and only if fm(x(1)) ≤ fm(x(2)) for all m ∈ {1, . . . ,M}
and fm(x(1)) < fm(x(2)) for at least one index m. A fea-
sible solution x∗ is a Pareto-optimal solution, if there are
no feasible solutions from S dominating x∗. The set of all
Pareto-optimal solutions from S is called a Pareto-optimal
set and its image in the objective space a Pareto front. The
goal of multiobjective optimization is to find an approxima-
tion of the Pareto front that represents trade-offs between
the objectives.

Python is one of the most frequently used programming lan-
guages for solving multiobjective optimization problems. Due
to its simplicity, versatility and accessibility of numerous open
source optimization tools, it is suitable for academic research
as well as for real-world applications. In the Python Package
Index—the biggest repository of Python software—there are
currently six packages dealing with (nonlinear) multiobjective
optimization problems: DEAP [7], inspyred [9], jMetalPy [1],
PaGMO 2.0 [2], Platypus [10] and pymoo [3]. All these pack-
ages implement the most common evolutionary algorithms for
multiobjective optimization, such as Nondominated Sorting
Genetic Algorithm II (NSGA-II) [5], Multiobjective Opti-
mization Evolutionary Algorithm Based on Decomposition
(MOEA/D) [18] and others.

However, constraint handling techniques (CHTs) are not
explicitly addressed in these packages. In jMetalPy, PaGMO
2.0 and Platypus, only the constrained-domination principle
(CDP) [5] is implemented to deal with constraints. In pymoo
and inspyred, constraints are not considered at all, while
DEAP implements a CHT based on a penalty function. For
this reason, there is still a great need for a more comprehen-
sive package covering the area of constrained multiobjective
optimization.

In this paper, we present a new package for constrained
multiobjective optimization named CmoPy, which stands for
Constrained Multiobjective Optimization in Python. The
package is designed as a potential functionality in the SciPy
Python tool [12]. It implements five state-of-the-art CHTs
and an ensemble method capable of including multiple CHTs
to handle constraints. In addition, several widely used
CMOPs are included for benchmarking purposes.

The rest of this paper is organized as follows. Section 2
describes the implementation of CmoPy. Section 3 is dedi-
cated to the CHTs implemented in the package, while the
included CMOPs are covered in Section 4. In Section 5, some
examples of using the package are shown. Finally, Section 6
summarizes the CmoPy presentation and provides ideas for
future work.

2. PACKAGE IMPLEMENTATION
The main function in CmoPy is nsga_ii. When called, this
function executes the NSGA-II algorithm to solve the given
CMOP. The nsga_ii function resembles the original NSGA-
II [5] in all segments except for minor modifications in the
survivor selection phase, where the population is selected for

the new generation, to allow for the inclusion of additional
CHTs (see [17] for details on these modifications and Section 3
for a summary of CHTs implemented in CmoPy). The input
and output parameters of the nsga_ii function are described
below.

The input parameters of the nsga_ii function:

• problem (Problem): A custom object including four
parameters:

– fun (callable): A Python callable (function)
consisting of objective and constraint functions.
Must be of the form f(x, *args) where x is the
argument in the form of a 1-D ndarray and args is
a tuple of all additional fixed parameters needed
to fully specify the objective and/or constraint
functions. The output must be a 1-D ndarray of
objective and constraint values. Note that only
inequality constraints of the form g(x) ≤ 0 are
accepted. Equality and other forms of constraints
need to be reformulated as inequality constraints.

– bounds (list of tuple): Bounds of the form
(min, max) that define the lower and upper bounds
for the arguments of fun.

– no_cons (int, optional): The number of con-
straints. Default is 0.

– args (tuple, optional): Any additional param-
eters needed to completely specify the objective
and/or constraint functions. Default is None.

• max_iter (int, optional): The maximum number
of generations to be executed by the optimizer. Default
is 250.

• pop_size (int, optional): Number of solutions in
the population. Default is 100.

• max_fun (int, optional): The maximum number of
function evaluations. Default is 25,000.

• mut_prob (float, optional): The probability for a
solution to be mutated. Default is 1/D.

• cross_prob (float, optional): The probability for
parents to be altered by crossover. Default is 0.9.

• mut_eta (int, optional): The distribution index for
the polynomial mutation. Default is 20.

• cross_eta (int, optional): The distribution index
for the simulated binary crossover. Default is 20.

• seed (int, optional): This parameter controls the
seeds of the stochastic processes applied during the
algorithm run. If no value is specified, a random seed
is used.

• init (str or ndarray, optional): The type of the
population initialization. It can be "lhs" for the latin
hypercube sampling, "rand" for random population
initialization, or a ndarray of predefined solutions. In
the last case, the parameter pop_size is equal to the
number of rows in the array. Default is "lhs".

• cht (tuple of str, optional): The required con-
straint handling technique. It can be "nds" for non-
dominated sorting, "cdp" for constrained-domination
principle, "dpf" for dynamic penalty function, "str"
for stochastic ranking, "mcr" for multiple constraint
ranking, or a tuple of any set of these methods. In
the latter case, the ensemble of specified CHTs is used.
The default value is "nds" if there are no constraints
and "cdp" otherwise.

The output parameter is a custom object named Result.
It is a multiobjective extension of the object OptimizeRe-

sult used to represent results in the optimization module
of SciPy [12]. The object Result includes the following
parameters:

• x (ndarray): Solutions from the final population.

• x_all (ndarray): All nondominated feasible solutions
found during the entire optimization run.

• success (bool): Whether or not the optimizer exited
successfully.

• status (int): The optimizer termination status.

• message (str): The description of the termination
cause.

• fun (ndarray): The objective and constraint values
of solutions from the final population.

• fun_all (ndarray): The objective and constraint val-
ues of all nondominated feasible solutions found during
the entire run.

• nfev (int): The number of the fun function evalua-
tions.

• nit (int): The number of generations executed by
the optimizer.

• maxcv (float): The maximum overall constraint vio-
lation.

The implementation of CmoPy follows the guidelines for
contributing to SciPy. The only dependency apart from
SciPy needed to use the package is NumPy [14].

3. CONSTRAINT HANDLING
TECHNIQUES

In CmoPy, there are five widely used CHTs and an ensemble
method combining any desired set of single techniques:

• Nondominated sorting [5]: This method selects the new
generation of solutions according to the dominance re-
lation, not considering constraint violations at all. This
method is used as the default CHT for unconstrained
problems.

• Constrained-domination principle [5]: This CHT can
be seen as an extension of the nondominated sorting,
where feasible solutions dominate infeasible ones, and
infeasible solutions are ranked according to the overall
constraint violation. This method is used as the default
CHT for constrained problems.

• Dynamic penalty function [6]: This method augments
the fitness of a solution by adding a penalty that is
proportional to the overall constraint violation. The
penalty pressure is increased in each generation.

• Stochastic ranking [15]: This CHT uses a bubble-sort-
like process to rank solutions in the population. Two
feasible solutions are always compared based on their
fitness. On the other hand, if at least one of the solu-
tions is infeasible, then a random decision is made on
whether the two solutions are compared based on their
fitness or constraint violation.

• Multiple constraint ranking [8]: In this approach, the
solutions are ranked based on their fitness and con-
straint violation. If there are no feasible solutions, only
the rank generated from constraint violation is consid-
ered, otherwise a combination of both ranks is taken
into account.

• Ensemble of CHTs [17]: This approach combines multi-
ple single CHTs into an ensemble-based ranking. The
solutions are ranked based on a quality measure which
is averaged over all techniques in the ensemble.

4. INCLUDED BENCHMARK PROBLEMS
The CmoPy package contains 22 CMOPs that are frequently
used for benchmarking purposes (see, for example, [4, 16]).
Table 1 summarizes these problems considering three basic
characteristics: the dimension of the decision space, the
number of objectives and the number of constraints.

Table 1: Characteristics of the CMOPs included in
CmoPy : dimension of the decision space D, number
of objectives M and number of constraints N .

CMOP D M N
Belegundu [4] 2 2 2
Binh 1 [4] 2 2 2
Binh 2 [4] 2 3 2
C1-DTLZ1 [11] M + 4 ≥ 2 1
C1-DTLZ3 [11] M + 9 ≥ 2 1
C2-DTLZ2 [11] M + 9 ≥ 2 1
C3-DTLZ1 [11] M + 4 ≥ 2 M
C3-DTLZ4 [11] M + 4 ≥ 2 M
Car-side impact [11] 3 10 7
DTLZ8 [4] 30 3 3
DTLZ9 [4] 30 3 2
Jimenez [4] 2 2 4
Kita [4] 2 2 3
Obayashi [4] 2 2 1
Osyczka 1 [4] 2 2 2
Osyczka 2 [4] 6 2 6
Srinivas [4] 2 2 2
Tamaki [4] 3 3 1
Tanaka [4] 2 2 2
Vibrating platform [13] 2 5 5
Viennet [4] 2 3 2
Water resource planning [11] 5 7 3

5. EXAMPLES OF USING THE PACKAGE
This section illustrates the use of CmoPy on the well-known
Srinivas [4] problem. It also shows an example of adding a
new CMOP to the package.

We first need to install CmoPy. This can be achieved by
running the following commands:

$ git clone https://gitlab.com/cmopy/cmopy.git

$ cd cmopy

$ python setup.py

In the following example, the NSGA-II algorithm is run to
solve the Srinivas problem. The population size is set to 80
solutions (pop_size=80), while the number of generations is
kept at the default value of 250. In addition, CDP is used
for handling constraints as a default option.

>>> from cmopy.optimize import nsga_ii

>>> from cmopy.problems import srinivas, Problem

>>> nsga_ii(srinivas, pop_size=80)

To add new CMOPs to CmoPy, we need to implement the
problem object introduced in Section 2. In addition to the
callable object (test_fun) consisting of the objective and
constraint functions, we need to specify the bounds (bounds)
and the number of constraints (no_cons). The following
example shows the implementation of the Tanaka problem [4].

>>> import numpy as np

>>> def test_fun(x):

· · · x1, x2 = x

· · · g1 = 1 - x1 ** 2 - x2 ** 2 + \
· · · 0.1 * np.cos(16 * np.arctan(x1 / x2))

· · · g2 = (x1 - 0.5) ** 2 + \
· · · (x2 - 0.5) ** 2 - 0.5

· · · return np.array([x1, x2, g1, g2])

>>> bounds = [(0, np.pi)] * 2

>>> no_cons = 2

>>> test_cmop = Problem(test_fun, bounds, no_cons)

At this point, we can run the NSGA-II algorithm to solve
the implemented problem. Here, we use the dynamic penalty
function to handle constraints (cht="dpf").

>>> nsga_ii(test_cmop, cht="dpf")

If we want to run an ensemble combining multiple CHTs,
we need to specify all the desired techniques in a tuple. The
nsga_ii function automatically detects that an ensemble
method is required. In the following example, the optimizer
uses an ensemble combining the constrained-domination prin-
ciple and the dynamic penalty function to handle constraints
(cht=("cdp", "dpf")).

>>> nsga_ii(test_cmop, cht=("cdp", "dpf"))

Figure 1 shows the Pareto front approximations for the Srini-
vas problem (left) and the Tanaka problem (right) obtained
after running the above commands.

6. CONCLUSIONS
We introduced CmoPy, a Python package designed for con-
strained multiobjective optimization. Unlike other Python
packages for multiobjective optimization, it contains a com-
prehensive set of CHTs. While other packages usually imple-
ment one simple method to deal with constraints, in CmoPy
there are five state-off-the-art CHTs and an ensemble-based

Srinivas problem Tanaka problem

25 50 75 100 125 150 175 200 225
f1

200

150

100

50

0
f 2

0.0 0.2 0.4 0.6 0.8 1.0
f1

0.0

0.2

0.4

0.6

0.8

1.0

f 2

Figure 1: Pareto front approximations generated by CmoPy for the Srinivas problem (left) and the Tanaka
problem (right). The former was solved by handling constraints with CDP, while the latter by applying an
ensemble of CHTs.

method combining multiple single techniques. Moreover, an
extensive set of benchmark CMOPs with various characteris-
tics is also included in CmoPy.

In the future, we plan to extend the package functional-
ity by adding other multiobjective optimizers, for example,
MOEA/D, and integrating the methods for visualizing the
results and algorithm performance.

7. ACKNOWLEDGMENTS
The authors acknowledge the financial support from the
Slovenian Research Agency (Young researcher program and
Research core funding No. P2-0209).

8. REFERENCES
[1] A. Beńıtez-Hidalgo, A. J. Nebro, J. Garćıa-Nieto,

I. Oregi, and J. D. Ser. jMetalPy: A Python framework
for multi-objective optimization with metaheuristics.
http://arxiv.org/abs/1903.02915, 2019.

[2] F. Biscani et al. PaGMO 2.0.
https://github.com/esa/pagmo2, 2019.

[3] J. Blank and K. Deb. pymoo: Multi-objective
optimization in Python. https://pymoo.org, 2019.

[4] C. A. Coello Coello, G. B. Lamont, and D. A.
Van Veldhuizen. Evolutionary Algorithms for Solving
Multi-Objective Problems, chapter 4, pages 179–238.
Springer-Verlag Berlin Heidelberg, 2nd edition, 2007.

[5] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[6] A. E. Eiben and J. E. Smith. Introduction to
Evolutionary Computing, chapter 8, pages 129–151.
Natural Computing Series. Springer-Verlag Berlin
Heidelberg, 2003.

[7] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner,
M. Parizeau, and C. Gagné. DEAP: Evolutionary
algorithms made easy. Journal of Machine Learning
Research, 13(1):2171–2175, 2012.

[8] R. D. P. Garcia, B. S. L. P. de Lima, A. C. D. C.
Lemonge, and B. P. Jacob. A rank-based constraint

handling technique for engineering design optimization
problems solved by genetic algorithms. Computers &
Structures, 187:77–87, 2017.

[9] A. Garrett. inspyred: Bio-inspired algorithms in
Python. https://github.com/aarongarrett/inspyred,
2019.

[10] D. Hadka. Platypus: Multiobjective optimization in
Python.
https://github.com/Project-Platypus/Platypus, 2019.

[11] H. Jain and K. Deb. An evolutionary many-objective
optimization algorithm using reference-point based
nondominated sorting approach, Part II: Handling
constraints and extending to an adaptive approach.
IEEE Transactions on Evolutionary Computation,
18(4):602–622, 2014.

[12] E. Jones, T. Oliphant, and P. Peterson. SciPy: Open
source scientific tools for Python. http://www.scipy.org,
2019.

[13] A. Messac. Physical programming: Effective
optimization for computational design. American
Institute of Aeronautics and Astronautics Journal,
34(1):149–158, 1996.

[14] T. E. Oliphant. A guide to NumPy, volume 1. Trelgol
Publishing USA, 2006.

[15] T. P. Runarsson and X. Yao. Stochastic ranking for
constrained evolutionary optimization. IEEE
Transactions on Evolutionary Computation,
4(3):284–294, 2000.

[16] R. Tanabe and A. Oyama. A note on constrained
multi-objective optimization benchmark problems. In
2017 IEEE Congress on Evolutionary Computation,
CEC 2017, pages 1127–1134. IEEE, 2017.

[17] A. Vodopija, A. Oyama, and B. Filipič.
Ensemble-based constraint handling in multiobjective
optimization. In Proceedings of the Genetic and
Evolutionary Computation Conference Companion,
GECCO ’19, pages 2072–2075. ACM, 2019.

[18] Q. Zhang and H. Li. MOEA/D: A multiobjective
evolutionary algorithm based on decomposition. IEEE
Transactions on Evolutionary Computation,
11(6):712–731, 2007.

