
Learning Robotic Handwriting with Convolutional
Image-to-Motion Encoder-Decoder Networks

Barry Ridge
Dept. of Automatics, Biocybernetics, and Robotics, Jožef

Stefan Institute
Ljubljana, Slovenia
barry.ridge@ijs.si

Rok Pahič
Dept. of Automatics, Biocybernetics, and Robotics, Jožef

Stefan Institute
Ljubljana, Slovenia
rok.pahic@ijs.si

ABSTRACT
Learning to recognize and reproduce handwriting is a familiar skill
taught to every educated human being but is challenging to teach
to a robot given its tight coupling between perception and motion.
In this work, we address the specific task of recognizing digits
in single images and reproducing the digits in the form of robot
end-effector trajectories encoded as dynamic movement primitives
(DMPs) used to control the pen strokes. Here we present a convo-
lutional image-to-motion encoder-decoder deep neural network
architecture that takes the raw digit images as input and produces
the DMP parameters as output, learning a mapping between the
two as a latent representation. The architecture is tested on several
challenging noisy digit datasets under different training regimes
and compared to an architecture without convolutional layers in
the image encoder where it is shown to provide robust results for
the digit writing task.

KEYWORDS
deep neural networks, dynamic movement primitives

1 INTRODUCTION
Effectively learning to predict action mappings directly from per-
ceptual input is a highly challenging problem in robotics research
that has seen a broad variety of approaches attempting to solve it
in different settings. The particular setting under consideration in
this work is depicted in Fig. 1, in which a robot must learn direct
mappings between handwritten characters in input images and
the motion trajectories needed to draw them. In previous work
we proposed a fully-connected encoder-decoder network architec-
ture [6] that used dynamic movement primitives (DMPs) [5] for
movement representation and this proved to be an effective choice
both for representation and learning with the neural network and
ultimately for control of the robot when drawing the actual digits.
The fully-connected architecture, however, was not ideal for image
representation.

Here we investigate a different architecture that combines the
benefits of convolutional layers for image encoding with those

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IS2019, October 7–11, 2019, Ljubljana, Slovenia, Europe
© 2019 Copyright held by the owner/author(s).

of a fully-connected encoder-decoder architecture for DMP pa-
rameter prediction and image-to-motion representation in a low-
dimensional latent space. This combination allows for relatively
robust prediction compared to the previously proposed architecture,
even when the input images are heavily corrupted by noise. The
use of convolutional layers has the added benefit of significantly
reducing the number of network parameters and by pre-training
these layers on images from a similar image domain, the learning
process is further improved.

Figure 1: Writing digits with a robot using image-to-motion
encoder-decoder network prediction.

Autoencoders [3], as well as variational autoencoders [4], have
been demonstrated to be quite effective when it comes to calculat-
ing DMP-based representations of human motion. Since our focus
is on learning direct mappings between images and actions, instead
of using such autoencoder networks in which the DMP encoding
occurs in the latent space, we use an encoder-decoder architecture
in which the image is encoded from the input layer, the DMP pa-
rameters are predicted at the output layer and the transformation
and generalization of the image-to-motion representation occurs
in the low-dimensional latent space. Encoder-decoder networks in
combination with convolutional layers have proven to be useful in
computer vision. A well-known example is SegNet [1], in which pre-
trained convolutional layers from a convolutional neural network
(CNN) were adapted to form a fully-convolutional encoder-decoder
architecture for semantic pixel-wise segmentation.

UsuallywhenCNNs are used for supervised learning of perception-
action couplings, they are used i combination with another neu-
ral network in two separately trainable parts. In [9], Yang et al.
first used a deep convolutional autoencoder for finding camera
image features and then in combination with recorded robot an-
gles, formed sequences for the learning task dynamics with a time
delay neural network. Pervez et al. [7] used a pre-trained CNN for
finding task parameters from input images, while using a another
fully-connected neural network to learn to generate forcing terms

IS2019, October 7–11, 2019, Ljubljana, Slovenia, Europe Ridge, et al.

Figure 2: The CIMEDNet architecture.

from the clock signal and task parameters, before combining both
networks in an end-to-end training scheme. Both of these two ex-
amples produce the next step from the image of the current step
while working in online loop, whereas our method, by contrast,
uses just single images for generating entire trajectories.

2 CONVOLUTIONAL IMAGE-TO-MOTION
ENCODER-DECODER NETWORKS

The structure of the data under consideration in this work is the
same as in [6] where the input and output data pairs take the form
D =

{
Cj ,Mj

}M
j=1 whereM is the number of input and output train-

ing pairs, Cj ∈ R
H×W are the input images of widthW and height

H , and Mj the corresponding movements associated with each
image, i. e. Mj =

{
yi, j , ti, j

}Tj
i=1 . Here yi, j ∈ Rd are the vectors

describing the movement’s degrees of freedom, e. g. Cartesian posi-
tions or joint angles, ti, j ∈ R the measurement times for the j-th
movement, and d is the number of degrees of freedom. However,
it should be noted that in this paper, we convert the movements
Mj to DMPs and construct all of the datasets used to train the net-
work models as follows: D′ =

{
Cj , kj

}M
j=1, where kj are the DMP

parameters calculated for each movement Mj and are represented
as

kj =
{
{wk }

N
k=1, τ , д, y0

}
. (1)

The construction of DMPs and the nature of the parameters {wk }
N
k=1,

τ , д and y0 are explained in detail in the following subsection.

2.1 Motion Representation with DMPs
Letting a time-dependent movement trajectory be denoted asy(t) ∈
Rd , a DMP specifying this trajectory is given by the following
system of differential equations

τ Ûz = αz (βz (д − y) − z) + diag(д − y0)F(x), (2)
τ Ûy = z, (3)

where y0 ∈ Rd is the initial position on the trajectory, д ∈ Rd

the final position on the trajectory, diag(д − y0) ∈ Rd×d a diagonal
matrix with components of vector д−y0 on the diagonal, F(x) ∈ Rd

a nonlinear forcing term, z ∈ Rd a scaled velocity of motion, and
x ∈ R the phase defined by the following equation

τ Ûx = −αxx . (4)

The phase x is used instead of time to avoid explicit time depen-
dency. It is fully defined by setting its initial value to x(0) = 1. Eq.
system (2) – (4) constitutes a dynamic movement primitive (DMP).

If the parameters τ ,αx ,αz , βz ∈ R are defined appropriately, e. g.
τ ,αx > 0 and αz = 4βz > 0, then the linear part of equation sys-
tem (2) – (3) becomes critically damped and y, z monotonically
converge to a unique attractor point at y = д, z = 0. The forcing
term F(x) is usually defined as a linear combination of radial basis
functions

F(x) =

∑N
k=1wkΨk (x)∑N
k=1 Ψk (x)

x , (5)

Ψk (x) = exp
(
−hk (x − ck)

2
)
, (6)

where ck are the centers of Gaussians distributed along the phase
of the trajectory, and hk their widths. The role of F is to adapt the
dynamics of (2) – (3) to the desired trajectoryy(t), thus enabling the
system to reproduce any smoothmovement from the initial position
y0 to the final configuration д. This can be accomplished by com-
puting the free parameterswk ∈ Rd using regression techniques.
See [8] for more details.

αz , βz , and αx are usually constants that do not change between
movements. Thus the neural network needs to learn the other
parameters of differential equation system (2) – (4) to fully specify
a DMP as defined in Equation (1).

2.2 Network Architecture
In our improved architecture, images are encoded via convolutional
layers that are pre-trained as part of a basic CNN classifier that
was trained on the original MNIST dataset. The input is a 40 ×

40 × 1 grayscale pixel image, followed by a convolutional layer
with 5 × 5 kernel size and 10 feature maps, a convolutional layer
with 5 × 5 kernel size and 20 feature maps, a 0.5 dropout layer, a
fully-connected layer of size 320, a fully-connected layer of size
50 and the output layer of size 10 matching the number of digits.
After training the classifier, the fully-connected layers are removed
and the convolutional layers are retained and are used to form the
first layers of the encoder in our proposed architecture. These two
convolutional layers are followed by two added fully-connected
layers with sizes of 600 neurons and 200 neurons, illustrated on the
left side of Fig. 2.

Following the bottleneck of the network that forms the latent
space representation, a decoder is formed via a number of fully-
connected layers that gradually expand the number of units in each
layer until the final output layer which has a size set to 55 units
in order to match the DMP parameters {wk }

N
k=1, τ , д and y0. The

layers of the decoder are illustrated on the right side of 2 starting
with the bottleneck of size 20, followed by a layer of size 35 and
finishing with the output layer. This is the same decoder structure
as used [6] and we retain it here as-is, having found it to be effective
throughout our experiments for this particular use case. The cost
function used to evaluate the output of the network is the same
as that of Equation (9) in [6], which is defined for the j-th DMP as
follows:

Ep (j) =
1
2

(N∑
k=1

∥wk −wk, j ∥
2 + (τ − τj)

2+

+∥д − дj ∥
2 + ∥y0 − y0, j ∥

2
)
, (7)

Learning Robotic Handwriting with Convolutional Image-to-Motion Encoder-Decoder Networks IS2019, October 7–11, 2019, Ljubljana, Slovenia, Europe

where {{wk }
N
k=1, τ , д, y0} denotes the output of the neural net-

work and {{wk, j }
N
k=1, τj , дj , y0, j } the DMP parameters from the

training data kj ∈ D′. For further details on the gradient calcula-
tions required for minimizing the cost function via backpropagation
we refer the reader to [6].

3 EXPERIMENTS
In our experiments, we trained both the fully-connected image-to-
motion encoder-decoder architecture (IMEDNet) and the convolu-
tional architecture (CIMEDNet) on various digit image and motion
trajectory datasets. The IMEDNet architecture was the same as de-
scribed in [6] with fully-connected hidden layer sizes of 1500, 1300,
1000, 600, 200, 20, and 35 neurons, respectively. The CIMEDNet
architecture was as described in Section 2.2 and as illustrated in
Fig. 2.

In the case of CIMEDNet, we also experimented with either freez-
ing the convolutional layer weights or training the entire network
end-to-end. The results for these different training regimes are
cataloged in Table 1.

3.1 Datasets
In order to construct D, we employed the same scheme described
in [6] to generate 40 × 40 images of synthetically written digits
and associated two-dimensional artificial writing trajectory move-
ments. Briefly, the synthetic trajectory data was generated using
a combination of straight lines and elliptic arcs. These geometric
elements were used to generate grayscale digit images and their
paramaters were varied according to a uniform distribution. The
resulting images were processed with a Gaussian filter and some
moderate salt-and-pepper noise was added to the foreground pixels.
Finally, both the generated trajectories and the resulting images
were transformed using affine transformations composed of trans-
lation, rotation, scaling, and shearing. These parameters were again
taken from a uniform distribution. For the DMP representation of
the trajectories, 25 radial-basis functions were selected for every
dimension. The weights of these basis functions form together with
the common time constant (1 parameter) and the start and the goal
values of a planar movement (2 × 2 parameters), the full set of 55
DMP parameters that represent the motion. Using this procedure,
several datasets were generated both with and without similar noise
as used in the noisy MNIST (n-MNIST) datasets [2] as follows:

• s-MNIST: 2000 pairs of images and trajectories without any
added noise were generated for each digit, for a total of 20000
samples that were split in a 70%/15%/15% ratio between
training/validation/test data,

• s-MNIST-AWGN-19.0: 300 samples per digit/3000 total sam-
ples, using additive white gaussian noise with a signal-to-
noise ratio of 19.0,

• s-MNIST-AWGN-9.5: 300 samples per digit/3000 total sam-
ples, using additive white gaussian noise with a signal-to-
noise ratio of 9.5,

• s-MNIST-MB: 300 samples per digit/3000 total samples, us-
ing a motion blur filter emulating a linear motion of the
camera of 5 pixels and a 15 degree motion in the counter-
clockwise direction,

• s-MNIST-RC-AWGN: 300 samples per digit/3000 total sam-
ples, using a contrast range scaled down to half as well as
additive white gaussian noise with a signal-to-noise ratio of
9.5.

It should be emphasized that in the results that follow, only the
s-MNIST dataset was used for training the presented models.

3.2 Results
The main quantitative results are presented in Table 1 while qual-
itative results for selected samples are presented in Fig. 3. After
training on the noiseless s-MNIST dataset each of the models were
tested on all five of the noiseless and noisy s-MNIST datasets de-
scribed in the previous section. The CIMEDNet architecture was
trained with two separate training regimes in which the convo-
lutional layer weights were frozen and the models were trained
end-to-end respectively. For the quantitative evaluation, dynamic
time warping was used to measure the mean pointwise pixel dis-
tance between the trajectories generated by the DMPs predicted by
the networks from the digit images and the actual digit trajectories.

Table 1: DMP reconstruction statistics. The results are in pix-
els. The best result for each dataset is highlighted in bold-
face.

IMEDNet
(End-to-End)

CIMEDNet
(Frozen Conv.)

CIMEDNet
(End-to-End)

s-MNIST 0.22 ± 0.08 0.26 ± 0.10 0.19 ± 0.08
s-MNIST-
AWGN-19.0 0.56 ± 0.20 0.54 ± 0.20 0.36 ± 0.14
s-MNIST-
AWGN-9.5 1.66 ± 0.60 1.48 ± 0.55 1.02 ± 0.45
s-MNIST-
MB 0.35 ± 0.15 0.47 ± 0.25 0.36 ± 0.12
s-MNIST-
RC-AWGN 2.32 ± 0.77 2.19 ± 0.76 1.93 ± 0.66

As can be seen in Table 1, the CIMEDNet model that is trained
end-to-end significantly out-performs the IMEDNet model on both
the noiseless s-MNIST dataset and on most of the noisy s-MNIST
datasets, apart from the dataset featuring motion blur noise. We
reason that this may be due to the fact that motion blur can sig-
nificantly distort overall object shape and edge profiles and given
that convolutional neural networks function the basis of exploiting
hierarchies of image filters often heavily represented by edge detec-
tors, this may impact on their effectiveness in such circumstances.
The CIMEDNet that was trained with frozen convolutional layers
also fared well, beating the IMEDNet model on the same noisy
datasets despite not scoring as well on the noiseless dataset. This
indicates that the feature detectors in the convolutional layers allow
for more robust generalization whereas fully-connected layers are
more inclined to overfit.

The qualitative result samples in Fig. 3, are also interesting. Here,
original trajectories are shown in blue whereas trajectories calcu-
lated by the neural networks are shown in red and samples inmatch-
ing dataset rows are identical for a fair comparison between each
network. Results using the s-MNIST-RC-AWGN dataset are omitted
as the noise levels are so pathologically difficult that the qualita-
tive results are comparatively worthless. However, the CIMEDNet

IS2019, October 7–11, 2019, Ljubljana, Slovenia, Europe Ridge, et al.

Figure 3: Example results for IMEDNet (rows 1, 2, 5, 6, 9,
10, 13 & 14) & CIMEDNet trained end-to-end (rows 3, 4, 7,
8, 11, 12, 15 & 16). Rows 1-4: s-MNIST, rows 5-8: s-MNIST-
AWGN-19.0, rows 9-12: s-MNIST-AWGN-9.5 and rows 13-16:
s-MNIST-MB.

model often performs surprisingly well given that it was not trained
or fine-tuned on the noisy data. Both models appear to produce
highly legible writing trajectories that closely match the actual tra-
jectories in the case of the s-MNIST-MB dataset, but the CIMEDNet
model is demonstrably superior to IMEDNet in many cases with
the s-MNIST-AWGN-19.0 and s-MNIST-AWGN-9.5 data, producing
much more legible results and demonstrating the robustness of the
convolutional layers in dealing with even high noise levels.

4 CONCLUSIONS AND FUTURE WORK
We have presented an extended form of an encoder-decoder neural
network for image-to-motion prediction that employs convolu-
tional layers in the encoder in order to make the image recognition
component more robust to noisy input. We have demonstrated
that this architecture outperforms its predecessor on a variety of
different kinds of noise. Regarding future work, we intend to fur-
ther expand the capabilities of this model by incorporating layers
from more powerful pre-trained CNN models into the encoder and
training the network on more challenging image sets. One chal-
lenge here lies in either finding suitable image datasets that include
trajectory information in their target outputs or in finding other
means of producing images with corresponding motion trajectories,
e.g. by gathering both in a robot simulation environment.

ACKNOWLEDGMENTS
This work has received funding from the EU’s Horizon 2020 RIA
AUTOWARE (GA no. 723909); the Slovenian Research Agency un-
der GA no. J2-7360; JSPS KAKENHI JP16H06565; NEDO; the Com-
missioned Research of NICT; the NICT Japan Trust (International
research cooperation program); and JST-Mirai Program Grant Num-
ber JPMJMI18B8, Japan.

REFERENCES
[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. 2017. SegNet: A Deep Convolu-

tional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence 39, 12 (Dec. 2017), 2481–2495.

[2] Saikat Basu, Manohar Karki, Sangram Ganguly, Robert DiBiano, Supratik
Mukhopadhyay, Shreekant Gayaka, Rajgopal Kannan, and Ramakrishna Nemani.
2017. Learning Sparse Feature Representations Using Probabilistic Quadtrees
and Deep Belief Nets. Neural Processing Letters 45, 3 (June 2017), 855–867.

[3] N. Chen, J. Bayer, S. Urban, and P. van der Smagt. 2015. Efficient Movement Rep-
resentation by Embedding Dynamic Movement Primitives in Deep Autoencoders.
In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids).
434–440.

[4] N. Chen, M. Karl, and P. van der Smagt. 2016. Dynamic Movement Primitives in
Latent Space of Time-Dependent Variational Autoencoders. In 2016 IEEE-RAS
16th International Conference on Humanoid Robots (Humanoids). 629–636.

[5] Auke Jan Ijspeert, Jun Nakanishi, Heiko Hoffmann, Peter Pastor, and Stefan
Schaal. 2013. Dynamical Movement Primitives: Learning Attractor Models for
Motor Behaviors. Neural computation 25, 2 (2013), 328–373.

[6] Rok Pahič, Andrej Gams, Aleš Ude, and Jun Morimoto. 2018. Deep Encoder-
Decoder Networks for Mapping Raw Images to DynamicMovement Primitives. In
2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane,
Australia, 5863–5868.

[7] A. Pervez, Y. Mao, and D. Lee. 2017. Learning Deep Movement Primitives Using
Convolutional Neural Networks. In 2017 IEEE-RAS 17th International Conference
on Humanoid Robotics (Humanoids). 191–197.

[8] A. Ude, A. Gams, T. Asfour, and J. Morimoto. 2010. Task-Specific Generalization
of Discrete and Periodic Dynamic Movement Primitives. IEEE Transactions on
Robotics 26, 5 (Oct. 2010), 800–815.

[9] P. C. Yang, K. Sasaki, K. Suzuki, K. Kase, S. Sugano, and T. Ogata. 2017. Repeatable
Folding Task by Humanoid Robot Worker Using Deep Learning. IEEE Robotics
and Automation Letters 2, 2 (April 2017), 397–403.

	Abstract
	1 INTRODUCTION
	2 CONVOLUTIONAL IMAGE-TO-MOTION ENCODER-DECODER NETWORKS
	2.1 Motion Representation with DMPs
	2.2 Network Architecture

	3 EXPERIMENTS
	3.1 Datasets
	3.2 Results

	4 CONCLUSIONS AND FUTURE WORK
	Acknowledgments
	References

