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ABSTRACT 
One third of all epileptic patients is resistant to medical treatment. 
The construction of machines, that would detect an imminent 
epileptic attack based on EEG signals, represents an efficient 
alternative, that would help to increase their quality of life. In this 
article we described the implementation of an automatic detection 
method, based on the signal of different frequency sub-bands, using 
topographic maps and deep learning techniques. We constructed an 
ensemble of five convolutional neural networks, to classify samples 
of each sub-band and chose the final decision by a majority voting. 
The ensemble obtained 99.20% accuracy, 96.48% sensitivity and 
99.27% specificity when detecting seizures of one patient. 
Moreover, when the networks were trained with samples taken 
randomly from the inter-ictal intervals, we identified on 18 of 21 
seizures some false positive classifications close to the seizure 
onset, thus anticipating the detection of the seizure. Such 
misclassifications did not occur when training was performed with 
samples taken within five minutes of the seizure onset. 

KEYWORDS 
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1 Introduction 

Epilepsy is a neurological disorder characterized by sudden 
seizure attacks, that may cause in patients loss of consciousness and 
motor control. It is esteemed that epilepsy affects about 50 million 
people world-wide and represents up to 1% of the global burden of 
disease[6]. Although in the last decades many anti-epileptic drugs 
(AEDs) have been introduced[4], to more than 30% of the patients 
these treatments are ineffective. Therefore, their daily life activities 
are very restricted because of the unpredictability of the attacks. 
The development of different approaches, that could timely inform 
patients of an imminent epileptic attack is necessary to increase 
their quality of life. 

The most used tool to monitor brain's electrical activity is the 
electroencephalogram (EEG). However, due to the complexity of 
the EEG signals, visual detection of epileptic seizures from the 
signal often results misinterpreted or mistaken. Therefore, in the 
last decades much research has been oriented towards finding 
automated detection procedures, that would efficiently analyze 

large chunks of signals, timely give out warnings and help the 
medical staff to deliver treatment on time[8]. 

Since the first studies of epilepsy seizures with EEG, it is known 
that an epileptic attack has a detectable electrical discharge in the 
brain (EEG onset), prior to the manifestation of convulsions, loss 
of consciousness and others symptoms (clinical onset)[7]. The time 
window between these events usually ranges between 0 to 30 
seconds, sometimes reaching over 1 minute. Therefore, being able 
to detect early enough the EEG onset of the seizure could give 
enough time to the patient to get the treatment or at least to reach a 
safe environment. 

Based on these motivations, we constructed the following 
model for epilepsy seizure detection, based on topographic maps 
generated from EEG signals and deep machine learning classifying 
techniques.  

2 Experimental Setting 

In this work we used data from the EPILEPSIAE database[5]. 
We selected a single patient, with a defined focal epilepsy in the 
temporal lobe. The recording of the patient of about 161.1 hours 
contained 22 seizures, averaging 3.28 seizures per day. However, 
one seizure was discarded from the study since it was described as 
not reliable. The sampling frequency of the machine was 256 Hz.  

The work is composed by two studies, which follow the general 
processing pipeline: raw data is preprocessed and transformed from 
time to frequency domain, then the relative powers calculated from 
the signals of the frequency sub-bands are used to generate 
topographic maps, which are then fed to the classifier. After a 
regularization procedure, the performance of the model is 
evaluated. Figure 1 schematically describes the mentioned pipeline. 

 
Figure 1: Processing pipeline of the DM process  

 

2.1 Study 1: 80% overlap 

2.1.1 Pre-Processing and Feature Extraction 
Raw data needs to undergo few pre-processing steps, before it 

can be used to generate topographic maps. Here, we used functions 
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from the EPILAB® [3] package. Next, with a high-pass filter kept 
the frequencies between 0.1Hz and the Nyquist frequency, which 
in this case was 128 Hz, and then a 50 Hz notch filter was applied 
to remove possible power line artifacts. 

EEG signals are non-stationary. Many mathematical tools for 
analysis assume the stationarity of the signal. One way to enforce 
an “artificial” stationarity is by segmenting the signal and making 
the analysis of the segments globally valid[11]. Initially, the chosen 
length of segments (sliding time windows) was 5 seconds, with an 
overlap of 80%. This allows to assume stationarity in these five 
second windows and preserve frequency resolution. Furthermore, 
by overlapping by 80% we obtain four time more samples than we 
would have obtained without it and we might detect additional 
information that could not be captured between the end of a window 
and the beginning of another. Five seconds window's length 
represent a good compromise to keep sufficient time and frequency 
resolutions and is often used in EEG analysis [2]. 

While pre-processing the data in time windows, 5 basic 
frequency features were extracted. Features corresponded to the 
relative powers of different frequency sub-bands obtained with the 
Discrete Fourier Transform (delta, theta, alpha, beta, gamma). 

2.1.2 Topographic Map Generation 
Topographic maps were generated using the eegplot function by 

I. Silva [9], publicly available on MATLAB Exchange. A map was 
generated for every seizure timepoint, for all five features, resulting 
in 929 samples for each feature (dataset A). To balance the datasets, 
the same number of non-seizure samples was generated with 
randomly selected timepoints. Both sets of samples were further on 
divided for training (80%), validation during training (10%) and 
testing (10%). 

A second testing set was generated (dataset B), with non-seizure 
samples taken every second in series from the five-minute interval 
prior the seizure and half the number of seizure samples after the 
seizure. Unfortunately, due to limited data, the seizure samples 
were the same as the one used for training. The new testing set had 
6775 non-seizure samples and 929 seizure samples. A clear 
representation of the datasets is shown in Table 1. 
Table 1: Representation of the datasets 

Dataset Objective Description 

A Training - 929 ictal samples 

 + Testing - 929 non-ictal samples taken randomly 

  
Separation of data: 80% train., 10% valid., 
10% test 

B Testing - 929 ictal samples (same as data set A) 

  
- 6775 non-ictal samples (5 min before the 
seizure + 

  
half the number of seizure samples, after the 
seizure) 

2.1.3 Training and Classification 
The classifier we used was an ensemble of five convolutional 

neural networks, one for each feature. All networks had the same 
topography, however they differed in the hyperparameters’ value. 
The best hyperparameters for the networks were selected after a 

grid search on the initial training set. An example of the network 
structure is shown in Table 2. 

Table 2: Example of a network structure 

Layer: Name Output Learnables 

1 InputLayer 766x884x3 0 

2 Conv1 383x442x16 448 

3 BatchNorm1 383x442x16 32 

4 ReLu1 383x442x16 0 

5 MaxPool1 383x442x8 0 

6 Conv2 383x442x8 520 

7 BatchNorm2 192x221x4 8 

8 ReLu2 383x442x8 0 

9 DropOut1 383x442x8 0 

10 MaxPool2 192x221x8 0 

11 Conv3 192x221x4 132 

12 BatchNorm3 192x221x4 8 

13 ReLu3 192x221x4 0 

14 DropOut2 192x221x4 0 

15 FullCon1 1x1x32 5431328 

16 ReLu4 1x1x32 0 

17 FullCon2 1x1x2 66 

18 SoftMax 1x1x2 0 

19 ClassOutput  0 
The networks were trained for 32 epochs, using the RMSprop 

optimizer, randomly shuffled minibatches of 16 samples and the 
training performance was validated every 30 iterations. The same 
networks were also used to test the second testing set. 

 

2.2 Study 2: 98% overlap 
2.2.1 Pre-Processing and Feature Extraction 

Due to the limited ictal data in the first study, we decided to 
perform a second one with more samples. To augment the data, we 
increased the overlap to 98%, which produced ten times more 
samples. Besides the overlap, all the pre-processing steps were 
performed identically as in the first study. 

2.2.2 Topographic Map Generation 
In the second study the training samples were not selected 

randomly as in the first study, but they were picked from the 
intervals from five to one minute prior every seizure (dataset C). 
We intentionally kept the last minute out of training, with the intent 
of obtaining again the FP classifications close to the seizure onset. 
Furthermore, to balance the seizure and non-seizure datasets we 
added some more randomly picked non-seizure samples. 

Next, similarly as in the first study, we generated another testing 
set with the samples taken in series, starting from one hour before 
the seizure (dataset D). However, in the second study the samples 
were taken every two seconds, due to the notorious computational 
overhead. Again, a better representation of the datasets is shown in 
Table 3. 
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Table 3: Description of used datasets 

Dataset Objective Description 

C Training - 8342 ictal samples 

    - 5280 non-ictal samples (5-1 min before seizure) 

    - 3062 non-ictal samples (taken randomly) 

    20% of the samples were used for validation 

D Testing - 950 ictal samples 

    - 37800 non-ictal samples (1 hour before seizure, 

    samples taken every two seconds) 

2.2.3 Training and Classification 
In the second study we used the same topography of the 

classifier as in the first study, however the networks were trained 
with the new training set (dataset C). We opted to use the same 
hyperparameters as in the first study, since we used the same sub-
bands and the same seizures of the same patient. We used the same 
training procedure, apart from the number of epochs and validation 
frequency, which were set to 16 and 500 respectively, due to the 
augmented data. 

3 Results 

3.1 Study 1: 80% overlap 
The ensemble increased almost all the classification scores, 

comparing single individual networks, apart from the sensitivity in 

the theta sub-band network, which was originally higher than in the 
ensemble. The evaluation metrics are shown in Table 4. 
Table 4: Evaluation metrics  

  TP TN FP FN AC SS  SP 

Alpha 85 77 16 8 87.10% 91.40% 82.80% 

Beta  86 79 14 7 88.71% 92.47% 84.95% 

Gamma  80 86 7 13 89.25% 86.02% 92.47% 

Delta  80 80 13 13 86.02% 86.02% 86.02% 

Theta  89 88 5 4 95.16% 95.70% 94.62% 

Ensemble 1 88 91 2 5 96.24% 94.62% 97.85% 
When tested on the second set of samples, the specificity 

dropped to 89.88%, meaning that on this interval there was an 
increase of FPs. Since the samples were selected in series, we 
decided to apply a moving average filter (MAF5) to reduce FP 
predictions. Both AC and SP increased, while the SS dropped. 
These results are presented in Table 5. Furthermore, in Figure 2 is 
presented the effect of the MAF5 filter. 

After applying the MAF5 filter, on 18 of 21 seizures we could 
identify FP classifications, within 1 minute before the seizure (see 
Figure 2). Such misclassifications are promising, since they suggest 
the model could even anticipate the seizure onset. This was also a 
reason, that led us perform a second test. 
Table 5: Results of first study 

  AC SS SP 

Normal 90.99% 99.65% 89.88% 

MAF5 96.68% 92.56% 97.23% 

 

3.2 Study 2: 98% overlap 
In the second study we tested the networks directly on the 

dataset D. After applying the MAF5 filter, the ensemble obtained 
99.20% accuracy, 96.48% sensitivity and 99.27% specificity, as 
shown in Table 6. 
Table 6: Results of second study 

  AC SS SP 

Normal 85.34% 98.96% 84.99% 

MAF5 99.20% 96.48% 99.27% 
 
We also noticed that the FP classifications close to the seizure 

onset did not occur in the second study. Moreover, they appeared 
further away from the seizure, mostly from 40 minutes to 10 
minutes before (see ).  
 

4 Discussion 

The first ensemble increased almost all the classification scores 
compared to individual networks. However, when tested with a 
series of samples taken close from the seizure onset, the number of 
false positives increased, while the seizures remained correctly 
classified. We believe that this high classification score of the Figure 2: The effect of applying the MAF5 filter 
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seizure set was due the fact that 80% of the seizure samples used 
for this testing, were also the same used for training the network. 
Therefore, it is believed, that the network “remembered" those 
samples and classified them correctly. 

The high increase of false positive classifications with the new 
test set are believed to be due the fact that the samples used for 
training, which are taken randomly from all the non-ictal intervals, 
were distinct from the ones really close the seizure onset. This leads 
to believe, that there is a noticeable change in the signal while 
approaching the transition from the non-ictal to the ictal phase. 
However, by applying the MAF5 filter, the score increased. The 
MAF5 filter could potentially suit the real-time detection, since it 
only requires a delay of few samples. In the case of 5 second sliding 
windows, with 80% overlap, this delay would be of 2 seconds with 
the filter size 5, which fits early detection necessities. 

After applying a moving average filter, with a stride of five, to 
reduce the number of false positive classifications, we noticed that 
for 18 out of all 22 seizures, within a range of 1 minute, some false 
positive classifications persisted (as seen in Figure 2). This is 
curious, since these false predictions could anticipate the 
occurrence of an imminent attack. Thus, we retrained the networks 
with augmented data, to see if these false predictions persist. 

After testing the second ensemble on the dataset D, we could 
not identify the false alarms close to the seizure onset as in the 
previous testing. Moreover, only four seizures had a false alarm 
within five minutes before the seizure. We believe that this is a 
consequence of the training set C. Although samples from one 
minute before the onset were left out of training, with the intention 
of producing some false alarms, they were classified correctly in 
the test. Another evidence supporting our claim are the false 
predictions far from the seizure, that appear in most of the seizures. 
Hence, to get rid of them and produce the false predictions close to 
the seizure onset, the training set should include more samples that 
are far away from the seizure. However, these results show that 
there is a difference within non-ictal samples far from the seizures 
and non-ictal samples close to them. 

5 Conclusions 

As expected, the second study’s classification scores 
outperformed the first one, since it was trained on a larger dataset. 

It obtained a 99.20% accuracy, 96.48% sensitivity and 99.27% 
specificity. However, it failed to replicate the FP predictions close 
to the seizure onset, as the first one did.  

Overall, the model obtained scores that are comparable to the 
state-of-the-art results[1,8,10]. Although this model does not have 
an early prediction performance, it still yields good detection 
scores. Furthermore, both studies give some insights on the early 
detection, that might be possible to perform, due to the diversity of 
the non-ictal samples, located far and close to the seizure. 
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Figure 3: FPs appearing far from the seizure onset 




