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ABSTRACT
In the paper we address the challenge of cardiac patient risk
stratification using the additional unlabeled data. The moti-
vation for using unlabeled data comes from the field of semi-
supervised learning (SSL), which has shown that additional
unlabeled data can improve accuracy of supervised learning
models. In addition to traditional SSL, we propose three
new approaches that are based on active learning (AL), fuzzy
learning (FL), and supervised clustering (SC). We evaluate
them on the UCI ML heart disease dataset and with four
different classification models. The results show that our
approaches increase the inductive performance compared to
the learning algorithms trained exclusively on labeled data.
The most favorable performance was achieved with the fuzzy
learning approach that utilizes a reliability estimate for se-
lection of the most beneficial additional examples.
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1. INTRODUCTION
Cardiovascular diseases (CVDs) are the leading cause of
morbidity and death worldwide, together with cancer and
chronic respiratory diseases. To prevent them, people with
increased risk need early identification and medical guid-
ance. In the past two decades, researchers have invested
a lot of effort to develop clinical decision support systems
for risk assessment of CVDs, but only some are included in
clinical guidelines [2].

In this paper we tackle the issue of developing a patient
risk stratification model, which classifies patients into lev-
els for having a serious cardiac event. To improve the pre-
dictive performance we utilize ideas from the field of semi-
supervised learning, which have shown that utilization of ad-
ditional unlabeled data can improve accuracy of supervised
learning models. Applying unlabeled data has advantages,
such as not relying on expertise to label examples, which
saves time, effort and reduces cost [12].

To perform knowledge transfer from unlabeled examples to
supervised learning, we apply our implementation of the fol-
lowing four approaches: traditional semi-supervised learning
as the baseline (SSL), active learning (AL), fuzzy learning
(FL), and supervised clustering (SC). In the latter three ap-
proaches we pay special attention on how to perform the

instance knowledge transfer to properly select the right ex-
amples for the training data.

The paper is structured as follows. Related work is presented
in Section 2. Our approaches are described in Section 3.
The evaluation and results are given in Section 4. The last
section concludes the paper and gives directions for future
work.

2. RELATED WORK
The rapid development of predictive models for cardiac and
cardiovascular disease diagnostics happened between years
2000 and 2013 [6]. In European guidelines, Systematic COro-
nary Risk Evaluation (SCORE) estimates the ten-year risk
for a fatal cardiovascular event, such as heart attack, stroke,
aneurysm of the aorta, by stratifying patients into four risk
groups: low, moderate, high, and very high. Different da-
tabases contain different risk level definitions. To facili-
tate an initial approach to the problem, we have chosen a
simpler public Cleveland database with two levels of risk.
The most commonly used machine learning (ML) algorithms
for heart disease diagnosis are: Support Vector Machine
(SVM), Naive Bayesian classifier (Naive Bayes), Artificial
Neural Network (ANN) and Decision tree (DT). Parthiban
et al. [10] used SVM with RBF kernel and Naive Bayesian
classifier for diagnosis of heart disease in diabetic patients.
The accuracy of their approach was 94.6% and 74%, re-
spectively. Dangare et al. [3] propose using ANN with an
extended feature set for heart diseases. They included in-
formation about obesity and smoking as the risk factors for
coronary heart disease. Das et al. [4] used the ensemble ap-
proach of three ANN with a tangent sigmoid function, sin-
gle hidden layer, and 14 neurons. The experimental results
gained 89% classification accuracy for heart disease diagno-
sis.

Lately, knowledge transfer (transfer learning) has become
popular in the field of machine learning [9, 7]. The reasons
for transferring knowledge are often associated with a lack of
learning data for the target problem or with the time it takes
to learn a new model. Partially labeled training data have
shown to improve performance in machine learning [8]. Such
data are often also easier and cheaper to obtain. Knowledge
transfer approaches are also found in different medical fields:
pneumonia risk assessment with multi-task learning, lifelong
inductive learning in the field of heart disease and sequen-
tial inductive a model for knowledge transfer in the field of
coronary artery disease diagnosis [7]. A problem that can
occur during the transfer of knowledge is the so-called neg-



ative transfer, which harms the learning success for the new
domain [9].

3. UTILIZATION OF UNLABELED
EXAMPLES

In this section we present four approaches for learning from
partially labeled data using knowledge transfer. Each ap-
proach uses a learning algorithm to derive the knowledge
from a small portion of labeled data. This knowledge is
then used to classify unlabeled examples, which afterwards
supplement the original training data set to increase the final
prediction accuracy.

3.1 Semi-Supervised Learning
A well-known approach of SSL is called self-learning [12]. It
first trains on labeled examples, then classifies the unlabeled
examples and combines the latter with the initially labeled
data. The extended dataset is used for further supervised
learning. This method allows us to build on top of it and
serves as a baseline in our experiments.

3.2 Active Learning
Active learning (AL) can similarly work with partially la-
beled data [11]. Its main goal is to find unlabeled examples
that have the greatest potential to improve performance and
present them to the teacher (oracle) who does the annota-
tion process. The labeling of example is thus done iteratively
rather than for all unlabeled dataset at once.

When selecting examples, we desire such that are labeled
the most reliably. To estimate this reliability, we apply two
metrics: (1) posterior class probability and (2) local model-
ing of prediction error with estimate CNK [1]. The posterior
class probability for a given an example is provided by the
learning algorithm. The reliability measure CNK estimates
the reliability of the prediction by observing the local predic-
tion error. In this work we adapt the original CNK estimate
(designed for regression) for classification and compute it for
each query example as:

CNK =

∑k
i PR(Ci)

k

where where Ci is an example from the local neighborhood
{C1, ..., Ck} of our query example, and PR(Ci) is the poste-
rior probability that the neighbor is classified into R, which
is the class into which our query example is also classified.
To summarize, CNK measures the average posterior proba-
bility for the classification into query example’s class within
its neighborhood. Such CNK estimate is defined on the in-
terval [0, 1], where 0 or 1 indicate unreliable or reliable clas-
sifications, respectively. In our experiments, we applied the
size of the neighborhood k = 5, as used in the authors’ orig-
inal work.

The algorithm stops when any of the following three stop-
ping criteria is reached. The first criterion defines the max-
imum number of iterations (N), which can be useful for
large data sets. The second criterion stops the algorithm
when there are no examples with reliable classifications. The
third criterion is fulfilled when all the unlabeled examples
have been utilized.

3.3 Fuzzy Learning
Our Fuzzy learning (FL) approach labels examples with
probabilities for belonging to all possible classes. We further
use these probabilities to assign class probabilities to unla-
beled examples as weighted class probabilities of the nearest
neighbors using the locally weighted regression (LWR). We
observe each class separately and assign a fuzzy class proba-
bility to each unlabeled example. A fuzzy class probability is
derived from the class probabilities of local neighbors, which
are weighted with the distance to the observed example and
then summed up.

The weighted probabilities are afterwards calibrated to scale
up to 1, to ensure probabilistic interpretation. We use mea-
sures of reliability, such as posterior class probability and
local modeling of prediction error (CNK, as already de-
scribed), to select examples which we include into the train-
ing set across multiple iterations. Finally, the learning algo-
rithm is trained on the combined training set.

The algorithm stops either when a maximum number of it-
erations is reached, it runs out of data, or when labeling is
not reliable enough to extend the training set.

3.4 Supervised Clustering
Supervised clustering (SC) differs from classical clustering
methods by considering class values during the clustering
process [13]. Our approach looks for representative examples
in the available data. We assign each example a class of the
closest representative. All examples are then used to train
the learning algorithm.

To find the representatives, we apply the iterative SRIDHCR

algorithm [5]. The algorithm first constructs a random set
of representatives, which represents the current solution. In
each iteration, a single non-representative is added and an-
other single representative is removed, generating two new
candidate sets of representatives. Next, the algorithm eval-
uates each generated candidate set X using the fitness func-
tion q(X):

q(X) = impurity(X) + β ∗

{√
|K|−c

N
|K| > c

0 |K| ≤ c

which minimizes cluster impurity and punishes large num-
ber of clusters. The punishment is controlled with the input
parameter β and takes effect if the number of clusters |K|
is higher than the number of classes c. The candidate set,
which improved the current best solution, is saved. In the
next iteration, the procedure repeats itself until the algo-
rithm cannot find a better set of representatives. The al-
gorithm also utilizes a parameter Ssize, which controls the
number of candidate sets generated in each iteration. A
higher value increases the probability of finding a better set
of representatives because the algorithm performs more per-
mutations.

Finally, we use the set of representatives from SRIDHCR to la-
bel the unlabeled data using the nearest neighbor approach.
The final model is then trained on the combined data.

4. EVALUATION AND RESULTS
We evaluated our approaches on the Cleveland heart disease
data from the UCI ML repository. The dataset has 297
patients of which 54% belong to low-risk (healthy) class and



46% to high-risk class. Two thirds of of patients are male
with the average age of 54 years, and the remaining are
female with the average age of about 56 years. We measured
the performance using the Area Under a ROC Curve (AUC),
which summarizes the overall performance of the model and
reflects the discriminating ability to diagnose patients with
and without the disease.

At the beginning of the evaluation process, we randomized
the data. Next, the data was split using the 5-fold cross-
validation into training and test sets. Since our experimental
data set does not contain unlabeled examples, we split the
training set into the labeled and unlabeled set (simulated,
by hiding examples’ classes). The ratio between the labeled
and unlabeled set is controlled with an input parameter. In
the experiments, we limited the AL and FL to 10 iterations
and set their threshold to select examples with reliability
at least 0.8. The SC generates 10 candidate sets for the
representatives. The penalty (β) is set to 1.0 to prevent
large numbers of representatives. The SRIDHCR algorithm
performs restarts 30 times during the search process.

We used four different learning algorithms – Decision Tree
(DT, using information gain and minimum number of 20
examples in leaves), K-Nearest Neighbors (KNN, with k =
5 and using Euclidean distance), Naive Bayesian classifier
(NB) and Support Vector Machine (SVM, with linear ker-
nel, regularization weight of 1 and termination criterion of
0.001). For each combination of approach and the learning
algorithm we computed the transductive and inductive per-
formance. The former reflects the quality of transfer learn-
ing by measuring labeling accuracy only of unlabeled exam-
ples prior their inclusion into the original learning data set.
The inductive performance measures the final performance
of the model that was built on the extended data set.

The transductive performance is shown in Table 1 and the
inductive performance in Table 2. The first column dis-
playes the percentage of labeled examples that were used
in the experiments. Approaches AL and FL are displayed
twice (with the use of posterior probability and with the
use of the CNK estimate). The results of the transductive
analysis show that on the average FL with CNK selection
method obtains the highest AUC. Using 20% initially la-
beled examples, the obtained AUC is equal to 0.85 ± 0.03
and increases to 0.90± 0.05, with 80% of labeled examples.
The AL approach shows low-averaged performance in com-
bination with SVM, which in some cases learned to predict
the opposite classes. The SC obtained the lowest transduc-
tive performance of 0.65 ± 0.14 on 20% and 0.75 ± 0.13 on
80% of labeled examples.

The inductive evaluation resembles the results of the trans-
ductive evaluation. The results of all approaches have de-
creased compared to transductive for about 0.05. FL ob-
tained the best results followed by AL. The significant dif-
ference compared to the transductive results can be seen for
SC. The predictive models obtain comparable performance,
even though many misclassified examples were introduced.
Using the 80% of initially labeled examples, the SC obtained
AUC of 0.81± 0.05, which is equal to the other approaches.

5. CONCLUSIONS
We experimented with four different approaches for includ-
ing unlabeled examples into risk stratification. The obtained

results are comparable to the results in related works. The
utilization of additional examples shows promising results,
especially with the fuzzy learning approach that utilizes re-
liability estimate CNK.

In the future, we shall evaluate the methodology on data-
bases with more complex risk levels. Secondly, we shall also
analyze the performance of supervised learning algorithms
and impact of their parameters. Thirdly, neural networks
and deep learning are opening promising directions also in
medical problems. Due to the limitation of resources, we did
not include them in this work, but shall also include them
in the work to follow.
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LABELS METHOD DT KNN NB SVM x̄ p-value

20%

SSL 0.71± 0.05 0.80± 0.02 0.77± 0.06 0.79± 0.04 0.77± 0.04 -
AL 0.75± 0.06 0.87± 0.03 0.79± 0.05 0.42± 0.42 0.70± 0.14 0.017

AL (CNK) 0.83± 0.04 0.82± 0.03 0.84± 0.03 0.68± 0.20 0.79± 0.07 < 0.001
FL 0.81± 0.05 0.81± 0.05 0.81± 0.05 0.81± 0.05 0.81± 0.05 < 0.001

FL (CNK) 0.85± 0.03 0.85± 0.03 0.85± 0.03 0.85± 0.03 0.85± 0.03 < 0.001
SC 0.64± 0.15 0.64± 0.13 0.67± 0.14 0.66± 0.13 0.65± 0.14 < 0.001
x̄ 0.77± 0.06 0.80± 0.05 0.79± 0.06 0.70± 0.15 - -

50%

SSL 0.75± 0.05 0.82± 0.02 0.79± 0.05 0.81± 0.02 0.79± 0.03 -
AL 0.82± 0.06 0.88± 0.03 0.84± 0.05 0.66± 0.39 0.80± 0.13 < 0.001

AL (CNK) 0.87± 0.03 0.85± 0.03 0.87± 0.03 0.74± 0.27 0.83± 0.09 < 0.001
FL 0.86± 0.03 0.86± 0.03 0.86± 0.03 0.86± 0.03 0.86± 0.03 < 0.001

FL (CNK) 0.88± 0.02 0.88± 0.02 0.88± 0.02 0.88± 0.02 0.88± 0.02 < 0.001
SC 0.70± 0.13 0.72± 0.12 0.73± 0.12 0.72± 0.13 0.72± 0.13 < 0.001
x̄ 0.81± 0.06 0.84± 0.04 0.83± 0.05 0.79± 0.14 - -

80%

SSL 0.77± 0.06 0.81± 0.05 0.81± 0.07 0.82± 0.06 0.80± 0.06 -
AL 0.82± 0.07 0.90± 0.04 0.86± 0.05 0.46± 0.46 0.76± 0.15 < 0.001

AL (CNK) 0.88± 0.05 0.87± 0.05 0.88± 0.05 0.56± 0.43 0.80± 0.15 < 0.001
FL 0.87± 0.06 0.87± 0.06 0.87± 0.06 0.87± 0.06 0.87± 0.06 < 0.001

FL (CNK) 0.90± 0.05 0.90± 0.05 0.90± 0.05 0.90± 0.05 0.90± 0.05 < 0.001
SC 0.75± 0.13 0.76± 0.11 0.72± 0.13 0.75± 0.16 0.75± 0.13 0.003
x̄ 0.83± 0.07 0.85± 0.06 0.84± 0.07 0.73± 0.20 - -

Table 1: Transductive AUC performance for different percentages of labeled examples, labeling approaches
and four classifiers. Statistically significant differences to the baseline (SSL) approach are underlined.

LABELS METHOD DT KNN NB SVM x̄ p-value

20%

BASE 0.72± 0.07 0.80± 0.05 0.78± 0.06 0.80± 0.06 0.77± 0.06 -
SSL 0.72± 0.07 0.80± 0.05 0.79± 0.06 0.80± 0.06 0.77± 0.06 0.938
AL 0.72± 0.08 0.83± 0.05 0.76± 0.06 0.66± 0.16 0.74± 0.09 0.032

AL (CNK) 0.72± 0.08 0.81± 0.05 0.80± 0.05 0.80± 0.07 0.78± 0.06 0.066
FL 0.76± 0.07 0.79± 0.05 0.77± 0.05 0.78± 0.06 0.78± 0.06 0.881

FL (CNK) 0.78± 0.05 0.80± 0.04 0.79± 0.05 0.80± 0.06 0.79± 0.05 0.016
SC 0.65± 0.15 0.67± 0.16 0.77± 0.08 0.68± 0.15 0.69± 0.14 < 0.001
x̄ 0.72± 0.08 0.78± 0.06 0.78± 0.06 0.76± 0.09 - -

50%

BASE 0.73± 0.07 0.80± 0.03 0.78± 0.06 0.81± 0.05 0.78± 0.05 -
SSL 0.73± 0.07 0.81± 0.04 0.79± 0.05 0.80± 0.06 0.78± 0.06 0.394
AL 0.74± 0.08 0.81± 0.04 0.79± 0.05 0.80± 0.05 0.79± 0.06 0.993

AL (CNK) 0.76± 0.07 0.81± 0.05 0.80± 0.05 0.81± 0.05 0.79± 0.05 0.071
FL 0.79± 0.05 0.77± 0.05 0.81± 0.05 0.82± 0.05 0.80± 0.05 0.087

FL (CNK) 0.82± 0.04 0.78± 0.05 0.81± 0.05 0.81± 0.05 0.81± 0.05 0.002
SC 0.71± 0.10 0.77± 0.08 0.80± 0.05 0.75± 0.12 0.76± 0.09 0.102
x̄ 0.75± 0.07 0.79± 0.05 0.80± 0.05 0.80± 0.06 - -

80%

BASE 0.77± 0.05 0.83± 0.04 0.81± 0.05 0.83± 0.06 0.81± 0.05 -
SSL 0.77± 0.05 0.83± 0.04 0.82± 0.05 0.82± 0.05 0.81± 0.05 0.851
AL 0.78± 0.04 0.83± 0.04 0.82± 0.05 0.82± 0.05 0.81± 0.05 0.334

AL (CNK) 0.77± 0.04 0.83± 0.04 0.82± 0.05 0.83± 0.05 0.81± 0.05 0.680
FL 0.81± 0.05 0.78± 0.07 0.83± 0.05 0.83± 0.06 0.81± 0.06 0.651

FL (CNK) 0.80± 0.03 0.78± 0.05 0.83± 0.05 0.83± 0.05 0.81± 0.05 0.899
SC 0.78± 0.05 0.83± 0.06 0.82± 0.06 0.82± 0.05 0.81± 0.05 0.818
x̄ 0.78± 0.05 0.82± 0.05 0.82± 0.05 0.83± 0.05 - -

100% BASE 0.79± 0.04 0.82± 0.04 0.82± 0.05 0.83± 0.03 0.82± 0.04 -

Table 2: Inductive AUC performance for different percentages of labeled examples, labeling approaches and
four classifiers. Statistically significant differences to the baseline (BASE - a model trained on initially labeled
data) approach are underlined.


