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ABSTRACT 

The work described in this paper is a part of the WellCo project, 

which is developing a virtual coach for healthy lifestyle. An 

important aspect of a healthy lifestyle is nutrition, and knowing 

as much as possible about the users’ current nutrition can 

contribute to better coaching. We therefore set out to count the 

number of times the users take food to their mouths (bites) using 

smartwatch sensors. This enables identifying the meals as well 

as estimating the caloric intake and the speed of eating. We 

compare three approaches: two that rely on classical machine 

learning and hidden Markov models, and one that uses deep 

learning. The F-scores of the approaches range from 0.63 to 0.91, 

and the percentages of miscounted bites from 6.9 % to 10.7 %, 

with a different approach scoring best on each metric. 
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1. INTRODUCTION 
The WellCo project is developing a virtual coach for seniors, 

which will provide advice on healthy lifestyle and wellbeing. To 

provide quality coaching and maximise the chances of achieving 

behaviour change, the advice should be fully personalised – not 

only adapted to the user’s needs and wishes, but also to their 

current situation. To do so, the WellCo system uses smartphone 

and smart-watch sensors to monitor the users. One of the areas of 

coaching and therefore monitoring is nutrition. We want to know 

both what the users eat, as well as when and how they do it. The 

first part is addressed by questionnaires described elsewhere [1], 

while this paper deals with detecting eating and counting the 

number of times food is taken to the mouth (bites). 

To count bites, the accelerometer and gyroscope in the 

smartwatch are used. These two sensors detect movement of the 

hand when the user is eating, and with the help of machine 

learning, these can be translated into individual bites. Section 2 

briefly presents some related work on sensor-based nutrition 

monitoring, both using inertial sensors in wearables, as well as 

other approaches. In Section 3, we present the public dataset that 

was used to train and evaluate our methods. In Section 4, we 

describe three approaches to bite recognition and counting, 

starting with the simplest and ending with one using two 

(modestly) deep neural networks. Section 5 presents the 

experimental evaluation of the methods. Section 6 concludes the 

paper with a discussion of the integration of the described 

methods in the WellCo system, as well as some directions for 

future work. 

2. RELATED WORK 
The traditional tools for nutrition monitoring are questionnaires. 

However, these often prove inaccurate, especially regarding the 

quantity of food consumed – in one case it was underreported by 

up to 30 % for normal-weight subjects and 50 % for obese adults 

and children [2]. Therefore automated monitoring solutions are 

becoming increasingly important. By analysing photos of meals, 

one can determine the type and amount of food [3]. Using 

wearable sensors, it is possible to recognise the time, quantity 

and to some degree the type of food consumed in each bite. With 

development of smart watches and other (watch-like) wristbands, 

gesture recognition has been explored for this purpose [4][5]. 

With such devices, it is possible to recognise eating gestures, 

count bites and estimate the caloric intake. On-ear microphone or 

throat microphone can be used to detect chewing sounds [6][7], 

and swallows can be counted using a neck-worn sensor [8]. Out 

of these approaches, those relying on wrist-worn devices are the 

least intrusive and were thus selected for the WellCo system. 

3. DATASET 
We used the publicly availably Food Intake Cycle (FIC) dataset 

(https://mug.ee.auth.gr/intake-cycle-detection/) in the research 

described in this paper. It contains triaxial signals from 

accelerometers and gyroscopes in wrist devices with the 

sampling frequency of 100 Hz. 21 meal sessions by 12 unique 

subjects were recorded in the restaurant of the university using 

two commercial devices: Microsoft Band 2 for 10 out of the 21 

meals, and Sony Smartwatch 2 for the remaining meals (both 

were worn on the dominant hand). In addition, the start and end 

moments of each food intake cycle (bite) as well as of each 

micromovement was labelled throughout the dataset. 

4. BITE RECOGNITION METHODS 
The most straightforward approach to bite recognition is to adopt 

the method usually used for activity recognition: split the stream 

of sensor data into windows and recognise the activity in each 

window using a machine-learning model. These activities – when 

they are a part of the bite cycle – are termed micromovements in 

this paper. This method on its own is not sufficiently accurate, so 

in Section 4.1, we describe an extension that applies smoothing 

and other postprocessing. In Section 4.2, we describe the most 

commonly used approach for bite recognition, which uses two 

HMMs – one for bites and one for non-bites [9]. Micromovement 

sequences are fed into both and classified based on which HMM 

they fit better. In Section 4.3, we describe a conceptually similar 

approach that replaces the classical machine-learning model for 

micromovement recognition with one neural network and the 

HMMs with another [10]. 



4.1 Micromovement Recognition with 

Smoothing 

4.1.1 Classical Micromovement Recognition 
The first step of this approach was to recognise micromovements 

related to the bite cycle – No movement, Pick, Upwards, Mouth, 

Downwards and Other. The Other label was used for non-eating 

activities, such as gesticulating. We used a 0.2-s sliding window 

(0.1 s overlapping) to compute features. Time-domain features 

that proved themselves in our previous work [11][12] were used. 

These features were designed for accelerometer data, and most of 

them were calculated only on the acceleration (and derived) data 

streams. However, the features that were also meaningful for 

gyroscope data were calculated from those data streams as well. 

After the features were computed, a feature selection using the 

methodology from our previous work was performed to filter out 

the redundant and uninformative ones. 

In the above-mentioned previous work, features were calculated 

on acceleration data filtered with low-pass and band-pass filters. 

In the present work, we also filtered accelerometer data with a 

low-pass filter, however, we used “relative acceleration” instead 

of the band-pass filter. This was proposed by the authors of the 

FIC dataset. We computed relative acceleration by subtracting 

the first element of each window from all values in the window 

of length n. 

arel (i) = a (i) – a (1); i = 1, 2, …, n 

The random forest algorithm was used to build the 

micromovement recognition model. We built two versions – the 

first using all six micromovements as possible class values, and 

the other using all the micromovements except Other. We opted 

for the latter in further steps of our approach since the 

recognition of Other proved very difficult and made the model 

highly inaccurate. 

4.1.2 Smoothing and Other Postprocessing 

 

Figure 1: Example hidden Markov model  
(licensed under Creative Commons Attribution 3.0 Unported license by Tdunning). 

The second step of our approach was to smooth the recognised 

micromovements with a hidden Markov model (HMM). An 

HMM is defined by the following: 

• Hidden states, which are labelled as X1 … X3 in the 

example in Figure 1, and correspond to true 

micromovements in our approach. They are called 

hidden because one cannot observe them directly – like 

true micromovements are hidden, otherwise our task 

would be trivial. 

• Possible observations or emissions, which are labelled 

as y1 … y4 in Figure 1. These correspond to the 

micromovements as recognised by the first step of our 

approach. 

• Emission probabilities – each emission j has a 

probability of occurring in each hidden state i, which is 

labelled as bij in Figure 1. These probabilities 

correspond to the probabilities of recognising a 

micromovement i as micromovement j by the first step 

of our approach. 

• Transition probabilities – these are the probabilities of 

transitioning between each pair of hidden states 

(micromovement in our case) i and j, which are 

labelled as aij in Figure 1.  

We built an HMM to describe the training portion of the FIC 

dataset, with the emission probabilities set based on the results 

of the micromovement recognition, and the transition 

probabilities extracted from the dataset. On the test portion of 

the dataset, we used the Viterbi algorithm to compute the most 

probable sequence of hidden states corresponding to the observed 

emissions. This means that we computed the most probable 

sequence of true micromovements based on the recognised 

micromovements, or, in other words, that we smoothed the 

recognised micromovements. 

The smoothed micromovements were still not all correct, 

particularly where the true micromovement was Other, since our 

micromovement-recognition model was not trained to recognise 

that. We therefore trained a dedicated model to recognise the 

Other micromovement. It worked on the outputs of the 

micromovement-recognition model. One instance for this model 

was a continuous segment in which the same micromovement 

was recognised by the micromovement-recognition model. The 

features were the probability of each class output by 

micromovement-recognition model averaged over the segment, 

the standard deviations of these probabilities, and the length of 

the segment. This Other-recognition model was tuned so that it 

had precision above 90 % (while the recall was only 28.1 %) – 

we wanted to correct only the micromovements for which we 

were very confident they are Other, since the final step of the 

approach was capable of dealing with many of the remaining 

mistakes. 

The final step looked at each quartet of consecutive segments, 

and penalised them based on how much they deviated from the 

ideal bite quartet of micromovement segments Pick, Upwards, 

Mouth and Downwards. Each segment s in the quartet was 

penalised if its length was atypical: 
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Penalty of –2 was added to the quartet if one of the expected 

segments was missing or if an incorrect segment was inserted. 

More than one mistake of this type was not tolerated. In the end, 

each quartet with the penalty above the experimentally set 

threshold of –5.4 was considered a bite. An example of true and 

smoothed micromovements, and penalty, is shown in Figure 2. 



 

Figure 2: Bite recognition with micromovement  

recognition and smoothing. 

4.2 Bite vs. Non-Bite HMM 
The first step of this approach consisted of micromovement 

recognition as described in Section 4.1.1. The sequence of 

micromovements served as the input to the second step, which 

was implemented with two HMMs.  

To build the HMMs for bite recognition, we randomly selected 

1,000 bite and 1,000 non-bite instances from the FIC dataset. 

Each instance was 4 s long, which was the average length of a 

bite in the dataset. For an instance to be considered a bite, it 

needed to have an 80 % overlap with the ideal bite quartet of 

micromovement segments Pick, Upwards, Mouth and 

Downwards. For an instance to be considered a non-bite, it 

needed to have less than 60 % overlap with any such complete 

bite. The bite and non-bite datasets were then used to train 

(adjust parameters of) the two HMMs using the Baum-Welch 

algorithm. The number of hidden states in the models was 

experimentally set to 10.  

After the models were built, we could pass over an input 

sequence of micromovements with a 4 s sliding window. We 

used the Forward-backward algorithm to estimate the probability 

that the content of the window was generated by the bite and 

non-bite model. We then subtracted the score returned for the 

non-bite model from the score returned for the bite model (the 

scores expressed log probabilities). The difference was 

proportional to the probability that the window contained a bite. 

 

Figure 3: Bite recognition with bite vs. non-bite HMM. 

The difference score was unfortunately not adequate to detect 

bites directly. Therefore, we first applied a Butterworth low-pass 

filter in a longer window to smooth it (5th order with a cut-off 

frequency of 1 Hz). Afterwards, we detected peaks in the score – 

each peak corresponds to one bite. For a peak to be detected, the 

score had to be larger than its neighbours, it had to be higher 

than an experimentally set threshold of 1, and it had to at least 

2.5 s from the previous peak. An example of true bites, the 

difference score and recognised bites is shown in Figure 3. 

4.3 Deep Neural Network 

4.3.1 CNN Micromovement Recognition 
This step corresponds to the micromovement recognition from 

Section 4.1.1, except that a convolutional neural network was 

used instead of the random forest algorithm. A 0.2 s sliding 

window with a step of 0.1 s was used again. The input data were 

transformed using a median filter and a high-pass filter with the 

cut-off frequency of 1 Hz. The data were then normalized so that 

each data stream had the mean of 0 and standard deviation of 1. 

The neural network consisted of two convolutional layers, each 

of them followed by a max pooling layer. The first convolutional 

layer used 64 filters, while the second used 128 filters, with both 

having the filter size set to 6. They were followed by a dropout 

and a fully-connected layer, after which the probability 

distribution of the five micromovements was retrieved with a 

softmax activation function. Categorical cross entropy was used 

as the loss function when training the model. 

4.3.2 LSTM Bite Recognition 
This step corresponds to the bite recognition from Section 4.2, 

except that a long short-term memory (LSTM) neural network 

was used instead of HMMs. A 3.6 s sliding window was used, 

which was the median length of a bite in the dataset, with a step 

of 0.1 s. The sequence of micromovement probability 

distributions from the first step of the approach was fed into two 

LSTM layers with 64 units each, again followed by a dropout and 

a fully-connected layer. The network output was a value gated 

using a sigmoid activation function. Binary cross entropy was 

used as the loss function when training the model. 

To correctly recognise individual bites, we applied an 

experimentally set threshold of 0.87 to the output from the 

LSTM network. For each set of probabilities above the threshold, 

we found the maximum value, which denotes the bite moment. 

Then we disregarded all bites detected less than 2 s after the 

previous one. An example of the network’s output with the true 

and recognised bites is shown in Figure 4. 

 

Figure 4: Bite counting with deep neural network. 



5. EXPERIMENTAL EVALUATION 
To evaluate the smartwatch-based nutrition monitoring, we again 

used the FIC dataset described in Section 3. The evaluation of 

the micromovement recognition used the was straightforward, 

using the leave-one-meal-out approach. This means that the 

feature selection and training of the model were performed on 

the data of all meals but one, and tested on the data of the 

remaining meal. The procedure was repeated for all the meals 

and the results averaged. 

The evaluation of bite recognition was somewhat more involved. 

It was first evaluated in terms of precision and recall: precision is 

the fraction of instances recognised as bites that were in fact 

bites, while recall is the fraction of bite instances that were 

recognised as such. The first recognised bite inside each true bite 

interval was considered a true positive, and any other recognised 

bites inside that interval were considered false positives. Any 

true bite interval without recognised bites was considered a false 

negative. Bite recognition or bite counting was also evaluated in 

terms of the percentage by which it miscounted the number of 

bites in a meal. The three approaches described in Section 4 

were compared to a baseline approach that considered every 

segment with the Mouth micromovement a bite. The results are 

shown in Table 1. 

 Microm. 

only 

Microm. + 

smoothing 

Bite vs. non-

bite HMM 

DNN 

Microm. 

accuracy 
78.8 % 78.8 % 78.8 % 80.0 % 

Bite vs. non-

bite precision 
0.44 0.77 0.62 0.91 

Bite vs. non-

bite recall 
0.93 0.73 0.64 0.93 

Bite vs. non-

bite F-measure 
0.59 0.75 0.63 0.91 

Bite count 

relative error 
110.7 % 6.9 % 8.7 % 10.7 % 

Table 1: Accuracy of micromovement and  

bite vs. non-bite recognition. 

6. CONCLUSION 
In this paper we presented three approaches for bite (or food 

intake) counting using sensors in a smart watch. Each of them 

consisted of two main steps: the recognition of bite-related 

micromovements and the recognition of the actual bites based on 

that. Classical and CNN-based micromovement recognition 

proved comparable. The approach for bite detection based on 

HMM smoothing proved best in terms of the number of 

miscounted bites, while the DNN-based approach proved best in 

terms of precision and recall (and comparable to the state of the 

art).  The contribution of the paper is the novel approach based 

on HMM smoothing, and its comparison with the two other main 

approaches known from the literature. 

Since the success of the approach based on HMM smoothing was 

heavily dependent on its parameter settings, we decided to 

integrate the DNN-based method in the WellCo system. Our 

main task for the future is to merge the recognised bites into 

meals, and associate each meal with an estimate of the amount of 

food eaten, since this is what the WellCo virtual coach needs. 
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