
Counting Bites with a Smart Watch
Mitja Luštrek1, 2, Benjamin Fele1, Nina Reščič1, 2, Vito Janko1, 2

1 Jožef Stefan Institute, Department of Intelligent Systems
2 Jožef Stefan Postgraduate School

Jamova cesta 39, 1000 Ljubljana
Slovenia

{mitja.lustrek, nina.rescic, vito.janko}@ijs.si, benjamin.fele@gmail.com

ABSTRACT

The work described in this paper is a part of the WellCo project,

which is developing a virtual coach for healthy lifestyle. An

important aspect of a healthy lifestyle is nutrition, and knowing

as much as possible about the users’ current nutrition can

contribute to better coaching. We therefore set out to count the

number of times the users take food to their mouths (bites) using

smartwatch sensors. This enables identifying the meals as well

as estimating the caloric intake and the speed of eating. We

compare three approaches: two that rely on classical machine

learning and hidden Markov models, and one that uses deep

learning. The F-scores of the approaches range from 0.63 to 0.91,

and the percentages of miscounted bites from 6.9 % to 10.7 %,

with a different approach scoring best on each metric.

Keywords

Nutrition, monitoring, bite counting, wearables, smart watch,

machine learning, hidden Markov models, deep neural networks

1. INTRODUCTION
The WellCo project is developing a virtual coach for seniors,

which will provide advice on healthy lifestyle and wellbeing. To

provide quality coaching and maximise the chances of achieving

behaviour change, the advice should be fully personalised – not

only adapted to the user’s needs and wishes, but also to their

current situation. To do so, the WellCo system uses smartphone

and smart-watch sensors to monitor the users. One of the areas of

coaching and therefore monitoring is nutrition. We want to know

both what the users eat, as well as when and how they do it. The

first part is addressed by questionnaires described elsewhere [1],

while this paper deals with detecting eating and counting the

number of times food is taken to the mouth (bites).

To count bites, the accelerometer and gyroscope in the

smartwatch are used. These two sensors detect movement of the

hand when the user is eating, and with the help of machine

learning, these can be translated into individual bites. Section 2

briefly presents some related work on sensor-based nutrition

monitoring, both using inertial sensors in wearables, as well as

other approaches. In Section 3, we present the public dataset that

was used to train and evaluate our methods. In Section 4, we

describe three approaches to bite recognition and counting,

starting with the simplest and ending with one using two

(modestly) deep neural networks. Section 5 presents the

experimental evaluation of the methods. Section 6 concludes the

paper with a discussion of the integration of the described

methods in the WellCo system, as well as some directions for

future work.

2. RELATED WORK
The traditional tools for nutrition monitoring are questionnaires.

However, these often prove inaccurate, especially regarding the

quantity of food consumed – in one case it was underreported by

up to 30 % for normal-weight subjects and 50 % for obese adults

and children [2]. Therefore automated monitoring solutions are

becoming increasingly important. By analysing photos of meals,

one can determine the type and amount of food [3]. Using

wearable sensors, it is possible to recognise the time, quantity

and to some degree the type of food consumed in each bite. With

development of smart watches and other (watch-like) wristbands,

gesture recognition has been explored for this purpose [4][5].

With such devices, it is possible to recognise eating gestures,

count bites and estimate the caloric intake. On-ear microphone or

throat microphone can be used to detect chewing sounds [6][7],

and swallows can be counted using a neck-worn sensor [8]. Out

of these approaches, those relying on wrist-worn devices are the

least intrusive and were thus selected for the WellCo system.

3. DATASET
We used the publicly availably Food Intake Cycle (FIC) dataset

(https://mug.ee.auth.gr/intake-cycle-detection/) in the research

described in this paper. It contains triaxial signals from

accelerometers and gyroscopes in wrist devices with the

sampling frequency of 100 Hz. 21 meal sessions by 12 unique

subjects were recorded in the restaurant of the university using

two commercial devices: Microsoft Band 2 for 10 out of the 21

meals, and Sony Smartwatch 2 for the remaining meals (both

were worn on the dominant hand). In addition, the start and end

moments of each food intake cycle (bite) as well as of each

micromovement was labelled throughout the dataset.

4. BITE RECOGNITION METHODS
The most straightforward approach to bite recognition is to adopt

the method usually used for activity recognition: split the stream

of sensor data into windows and recognise the activity in each

window using a machine-learning model. These activities – when

they are a part of the bite cycle – are termed micromovements in

this paper. This method on its own is not sufficiently accurate, so

in Section 4.1, we describe an extension that applies smoothing

and other postprocessing. In Section 4.2, we describe the most

commonly used approach for bite recognition, which uses two

HMMs – one for bites and one for non-bites [9]. Micromovement

sequences are fed into both and classified based on which HMM

they fit better. In Section 4.3, we describe a conceptually similar

approach that replaces the classical machine-learning model for

micromovement recognition with one neural network and the

HMMs with another [10].

4.1 Micromovement Recognition with

Smoothing

4.1.1 Classical Micromovement Recognition
The first step of this approach was to recognise micromovements

related to the bite cycle – No movement, Pick, Upwards, Mouth,

Downwards and Other. The Other label was used for non-eating

activities, such as gesticulating. We used a 0.2-s sliding window

(0.1 s overlapping) to compute features. Time-domain features

that proved themselves in our previous work [11][12] were used.

These features were designed for accelerometer data, and most of

them were calculated only on the acceleration (and derived) data

streams. However, the features that were also meaningful for

gyroscope data were calculated from those data streams as well.

After the features were computed, a feature selection using the

methodology from our previous work was performed to filter out

the redundant and uninformative ones.

In the above-mentioned previous work, features were calculated

on acceleration data filtered with low-pass and band-pass filters.

In the present work, we also filtered accelerometer data with a

low-pass filter, however, we used “relative acceleration” instead

of the band-pass filter. This was proposed by the authors of the

FIC dataset. We computed relative acceleration by subtracting

the first element of each window from all values in the window

of length n.

arel (i) = a (i) – a (1); i = 1, 2, …, n

The random forest algorithm was used to build the

micromovement recognition model. We built two versions – the

first using all six micromovements as possible class values, and

the other using all the micromovements except Other. We opted

for the latter in further steps of our approach since the

recognition of Other proved very difficult and made the model

highly inaccurate.

4.1.2 Smoothing and Other Postprocessing

Figure 1: Example hidden Markov model
(licensed under Creative Commons Attribution 3.0 Unported license by Tdunning).

The second step of our approach was to smooth the recognised

micromovements with a hidden Markov model (HMM). An

HMM is defined by the following:

• Hidden states, which are labelled as X1 … X3 in the

example in Figure 1, and correspond to true

micromovements in our approach. They are called

hidden because one cannot observe them directly – like

true micromovements are hidden, otherwise our task

would be trivial.

• Possible observations or emissions, which are labelled

as y1 … y4 in Figure 1. These correspond to the

micromovements as recognised by the first step of our

approach.

• Emission probabilities – each emission j has a

probability of occurring in each hidden state i, which is

labelled as bij in Figure 1. These probabilities

correspond to the probabilities of recognising a

micromovement i as micromovement j by the first step

of our approach.

• Transition probabilities – these are the probabilities of

transitioning between each pair of hidden states

(micromovement in our case) i and j, which are

labelled as aij in Figure 1.

We built an HMM to describe the training portion of the FIC

dataset, with the emission probabilities set based on the results

of the micromovement recognition, and the transition

probabilities extracted from the dataset. On the test portion of

the dataset, we used the Viterbi algorithm to compute the most

probable sequence of hidden states corresponding to the observed

emissions. This means that we computed the most probable

sequence of true micromovements based on the recognised

micromovements, or, in other words, that we smoothed the

recognised micromovements.

The smoothed micromovements were still not all correct,

particularly where the true micromovement was Other, since our

micromovement-recognition model was not trained to recognise

that. We therefore trained a dedicated model to recognise the

Other micromovement. It worked on the outputs of the

micromovement-recognition model. One instance for this model

was a continuous segment in which the same micromovement

was recognised by the micromovement-recognition model. The

features were the probability of each class output by

micromovement-recognition model averaged over the segment,

the standard deviations of these probabilities, and the length of

the segment. This Other-recognition model was tuned so that it

had precision above 90 % (while the recall was only 28.1 %) –

we wanted to correct only the micromovements for which we

were very confident they are Other, since the final step of the

approach was capable of dealing with many of the remaining

mistakes.

The final step looked at each quartet of consecutive segments,

and penalised them based on how much they deviated from the

ideal bite quartet of micromovement segments Pick, Upwards,

Mouth and Downwards. Each segment s in the quartet was

penalised if its length was atypical:

length

)(length
)(



lengths
spenalty

−
−=

Penalty of –2 was added to the quartet if one of the expected

segments was missing or if an incorrect segment was inserted.

More than one mistake of this type was not tolerated. In the end,

each quartet with the penalty above the experimentally set

threshold of –5.4 was considered a bite. An example of true and

smoothed micromovements, and penalty, is shown in Figure 2.

Figure 2: Bite recognition with micromovement

recognition and smoothing.

4.2 Bite vs. Non-Bite HMM
The first step of this approach consisted of micromovement

recognition as described in Section 4.1.1. The sequence of

micromovements served as the input to the second step, which

was implemented with two HMMs.

To build the HMMs for bite recognition, we randomly selected

1,000 bite and 1,000 non-bite instances from the FIC dataset.

Each instance was 4 s long, which was the average length of a

bite in the dataset. For an instance to be considered a bite, it

needed to have an 80 % overlap with the ideal bite quartet of

micromovement segments Pick, Upwards, Mouth and

Downwards. For an instance to be considered a non-bite, it

needed to have less than 60 % overlap with any such complete

bite. The bite and non-bite datasets were then used to train

(adjust parameters of) the two HMMs using the Baum-Welch

algorithm. The number of hidden states in the models was

experimentally set to 10.

After the models were built, we could pass over an input

sequence of micromovements with a 4 s sliding window. We

used the Forward-backward algorithm to estimate the probability

that the content of the window was generated by the bite and

non-bite model. We then subtracted the score returned for the

non-bite model from the score returned for the bite model (the

scores expressed log probabilities). The difference was

proportional to the probability that the window contained a bite.

Figure 3: Bite recognition with bite vs. non-bite HMM.

The difference score was unfortunately not adequate to detect

bites directly. Therefore, we first applied a Butterworth low-pass

filter in a longer window to smooth it (5th order with a cut-off

frequency of 1 Hz). Afterwards, we detected peaks in the score –

each peak corresponds to one bite. For a peak to be detected, the

score had to be larger than its neighbours, it had to be higher

than an experimentally set threshold of 1, and it had to at least

2.5 s from the previous peak. An example of true bites, the

difference score and recognised bites is shown in Figure 3.

4.3 Deep Neural Network

4.3.1 CNN Micromovement Recognition
This step corresponds to the micromovement recognition from

Section 4.1.1, except that a convolutional neural network was

used instead of the random forest algorithm. A 0.2 s sliding

window with a step of 0.1 s was used again. The input data were

transformed using a median filter and a high-pass filter with the

cut-off frequency of 1 Hz. The data were then normalized so that

each data stream had the mean of 0 and standard deviation of 1.

The neural network consisted of two convolutional layers, each

of them followed by a max pooling layer. The first convolutional

layer used 64 filters, while the second used 128 filters, with both

having the filter size set to 6. They were followed by a dropout

and a fully-connected layer, after which the probability

distribution of the five micromovements was retrieved with a

softmax activation function. Categorical cross entropy was used

as the loss function when training the model.

4.3.2 LSTM Bite Recognition
This step corresponds to the bite recognition from Section 4.2,

except that a long short-term memory (LSTM) neural network

was used instead of HMMs. A 3.6 s sliding window was used,

which was the median length of a bite in the dataset, with a step

of 0.1 s. The sequence of micromovement probability

distributions from the first step of the approach was fed into two

LSTM layers with 64 units each, again followed by a dropout and

a fully-connected layer. The network output was a value gated

using a sigmoid activation function. Binary cross entropy was

used as the loss function when training the model.

To correctly recognise individual bites, we applied an

experimentally set threshold of 0.87 to the output from the

LSTM network. For each set of probabilities above the threshold,

we found the maximum value, which denotes the bite moment.

Then we disregarded all bites detected less than 2 s after the

previous one. An example of the network’s output with the true

and recognised bites is shown in Figure 4.

Figure 4: Bite counting with deep neural network.

5. EXPERIMENTAL EVALUATION
To evaluate the smartwatch-based nutrition monitoring, we again

used the FIC dataset described in Section 3. The evaluation of

the micromovement recognition used the was straightforward,

using the leave-one-meal-out approach. This means that the

feature selection and training of the model were performed on

the data of all meals but one, and tested on the data of the

remaining meal. The procedure was repeated for all the meals

and the results averaged.

The evaluation of bite recognition was somewhat more involved.

It was first evaluated in terms of precision and recall: precision is

the fraction of instances recognised as bites that were in fact

bites, while recall is the fraction of bite instances that were

recognised as such. The first recognised bite inside each true bite

interval was considered a true positive, and any other recognised

bites inside that interval were considered false positives. Any

true bite interval without recognised bites was considered a false

negative. Bite recognition or bite counting was also evaluated in

terms of the percentage by which it miscounted the number of

bites in a meal. The three approaches described in Section 4

were compared to a baseline approach that considered every

segment with the Mouth micromovement a bite. The results are

shown in Table 1.

 Microm.

only

Microm. +

smoothing

Bite vs. non-

bite HMM

DNN

Microm.

accuracy
78.8 % 78.8 % 78.8 % 80.0 %

Bite vs. non-

bite precision
0.44 0.77 0.62 0.91

Bite vs. non-

bite recall
0.93 0.73 0.64 0.93

Bite vs. non-

bite F-measure
0.59 0.75 0.63 0.91

Bite count

relative error
110.7 % 6.9 % 8.7 % 10.7 %

Table 1: Accuracy of micromovement and

bite vs. non-bite recognition.

6. CONCLUSION
In this paper we presented three approaches for bite (or food

intake) counting using sensors in a smart watch. Each of them

consisted of two main steps: the recognition of bite-related

micromovements and the recognition of the actual bites based on

that. Classical and CNN-based micromovement recognition

proved comparable. The approach for bite detection based on

HMM smoothing proved best in terms of the number of

miscounted bites, while the DNN-based approach proved best in

terms of precision and recall (and comparable to the state of the

art). The contribution of the paper is the novel approach based

on HMM smoothing, and its comparison with the two other main

approaches known from the literature.

Since the success of the approach based on HMM smoothing was

heavily dependent on its parameter settings, we decided to

integrate the DNN-based method in the WellCo system. Our

main task for the future is to merge the recognised bites into

meals, and associate each meal with an estimate of the amount of

food eaten, since this is what the WellCo virtual coach needs.

7. ACKNOWLEDGMENTS
We thank Matej Sudac for his work on classical micromovement

recognition. The WellCo project has received funding from the

European Union’s Horizon 2020 research and innovation

programme under grant agreement No 769765.

8. REFERENCES
[1] Reščič, N., Valenčič, E., Mlinarič, E., Barbara Koroušić

Seljak, B., and Luštrek, M. 2019. Mobile nutrition

monitoring for well-being. To appear in UbiComp

conference, WellComp workshop.

[2] Champagne, C., Bray, G., Monteiro, J., Tucker, E., and

Volaufovaand, J. 2002. Energy intake and energy

expenditure: A controlled study comparing dietitians and

non-dietitians. Journal of the American Dietetic

Association, 102, 10, 1428–1432.

[3] Mezgec, S., and Koroušić Seljak, B. 2017. NutriNet: A

deep learning food and drink image recognition system for

dietary assessment. Nutrients 9, 7, 657.

[4] Dong, Y., Scisco, J., Wilson, M., Muth, E., and Hoover, A.

2014. Detecting periods of eating during free-living by

tracking wrist motion. Journal of Biomedical and Health

Informatics 18, 4, 1253–1260.

[5] Dong, Y., Hoover, A., Scisco, J., and Muth, E. 2012. A new

method for measuring meal intake in humans via automated

wrist motion tracking. Applied Psychophysiology and

Biofeedback 37, 3, 205–215.

[6] Liu, J., Johns, E., Atallah, L., Pettitt, C., Lo, B., Frost, G.,

and Yang, G.-Z. 2012. An intelligent food-intake monitoring

system using wearable sensors. In 2012 9th Intl. Conference

on Wearable and Implantable Body Sensor Network.

[7] Hosseini, A., Kalantarian, H., and Sarrafzadeh, M. 2016.

Adaptive data processing for real-time nutrition monitoring.

In 2016 38th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC).

[8] Alshurafa, N., Kalantarian, H., Pourhomayoun, M., Liu, J.

J., Sarin, S., and Shahbazi, B. 2015. Recognition of

nutrition intake using time-frequency decomposition in a

wearable necklace using a piezoelectric sensor. IEEE

Sensors Journal 15, 7, 3909–3916.

[9] Kyritsis, K., Lefkothea Tatli, C., Diou, C., and Delopoulos,

A. 2017. Automated analysis of in meal eating behavior

using a commercial wristband IMU sensor. In Proceedings

of 39th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC).

[10] Kyritsis, K., Diou, C., and Delopoulos, A., 2019. Modeling

wrist micromovements to measure in-meal wating behavior

from inertial sensor data. IEEE Journal of Biomedical and

Health Informatics.

[11] Cvetković, B., Drobnič, V., and Luštrek, M. 2017.

Recognizing hand-specific activities with a smartwatch

placed on dominant or non-dominant wrist. In Information

Society (IS) conference.

[12] Cvetković, B., Szeklicki, R., Janko, V., Lutomski, P., and

Luštrek, M. 2018. Real-time activity monitoring with a

wristband and a smartphone. Information Fusion 43, 77–93.

