
Handling Real-World Problems within the COCO Platform

Tea Tušar
Jožef Stefan Institute
Ljubljana, Slovenia
tea.tusar@ijs.si

Vanessa Volz
modl.ai

Kopenhagen, Denmark
vanessa@modl.ai

Dimo Brockhoff
Inria, CMAP, Ecole

Polytechnique
IP Paris, France

name.surname@inria.fr

Nikolaus Hansen
Inria, CMAP, Ecole

Polytechnique
IP Paris, France

name.surname@inria.fr

ABSTRACT
Until recently, the problems employed for benchmarking op-
timization algorithms within the Comparing Continuous Op-
timizers (COCO) platform needed to have continuous vari-
ables and known optimal values. In addition, they had to be
implemented within the platform (in the C language). These
restrictions made COCO difficult to use for benchmarking
algorithms on real-world problems. This paper describes the
adaptations to the COCO platform that facilitate its use on
real-world and other problems with integer or mixed-integer
variables and unknown optimal values. Evaluation of so-
lutions can now be done with external programs that are
interfaced with COCO through socket communication.

Keywords
Real-world problems, algorithm benchmarking, the COCO
platform

1. INTRODUCTION
Although Evolutionary Computation (EC) methods are of-
ten applied to real-world problems, they are almost exclu-
sively benchmarked on artificial ones [7]. This is especially
problematic in the field of Evolutionary Multi-Objective Op-
timization (EMO) where the most popular test problem
suites like DTLZ [2] and WFG [5] have some unintended
characteristics that stem from their construction and are
not likely to be present in the real world. Consequently,
we cannot expect algorithms that perform well on such test
problems to also work well on real-world problems, which
defies an important aspect of algorithm benchmarking [8].

To amend this issue, new test problems from the real world
are being proposed. For example, the Mazda problem is
a highly constrained problem with a large number of inte-
ger variables and two objectives [6]. It requires setting the
thickness of several car parts so that their total weight is
minimized and the number of parts with common thickness
is maximized. The main challenge of this problem stems
from its large search space dimension and the difficulty of
finding feasible solutions due to the many constraints. An-
other example is the suite of three diverse design optimiza-
tion problems that require Computational Fluid Dynamics
(CFD) simulations for evaluating solutions [1]. The prob-
lems have a different number of objectives (two are single-
and one is bi-objective) and can have varying search space

dimension. Since the CFD simulations are time-consuming,
the biggest challenge is to find good solutions to the prob-
lems in reasonable time.

Using such problems for algorithm benchmarking is nontriv-
ial since nothing is provided but the problems themselves.
A researcher who wants to use these problems in a bench-
marking study still needs to take care of the performance as-
sessment methodology as well as run additional algorithms
on the same problems to acquire data for comparisons.

An alternative is to propose real-world problems within a
framework that takes care of the cumbersome aspects of
algorithm benchmarking. The Comparing Continuous Op-
timizers (COCO) platform1 was designed exactly for facil-
itating this task [3]. It incorporates several suites of test
problems, takes care of all the performance assessment and
makes it easy to include data from previous experiments in
the comparisons. The selection of its problem suites was re-
cently extended to include mixed-integer problems [9] as well
as real-world problems based on games [12]. This required
some adaptations of the platform that are also expected to
simplify future inclusions of real-world problem suites.

This paper presents the modifications that were needed for
COCO to support problems with integer variables, problems
with unknown optimal values and external evaluation of so-
lutions. They were not previously explained in [9] and [12].

After a brief presentation of the COCO platform and its
latest suites in Section 2, we explain the adaptations needed
to support real-world problems within COCO in Section 3.
The paper ends with concluding remarks in Section 4.

2. THE COCO PLATFORM
2.1 Overview
The aim of the COCO platform [3] is to simplify the bench-
marking of numerical optimization algorithms and make the
data from those experiments available to the scientific com-
munity. The platform consists of two main parts (see Fig-
ure 1). The first, called COCO experiments, is implemented
in C. It is used for running an algorithm on the chosen test
problem suite and recording its performance. The algorithm

1https://github.com/numbbo/coco

https://github.com/numbbo/coco

COCO experiments

Test suites:
– bbob
– bbob-biobj(-ext)
– bbob-largescale
– bbob-mixint
– bbob-biobj-mixint

– rw-top-trumps
– rw-top-trumps-biobj

– rw-gan-mario
– rw-gan-mario-biobj

Logging functionality

C

External evaluation for
rw-gan-mario(-biobj)

C++

External evaluation for
rw-top-trumps(-biobj)

Python

Results of the
user-provided
algorithms

Log files

COCO
post-processing

Python

Results of other
algorithms

Log files

Tables

Latex, HTML

Plots

2 3 5 10 20 40

1

3

5

15 instances
target Df: 1e-8 v2.2.1.216

1 Sphere
MCS huyer nois
NELDERDOERR do
NEWUOA ros noi
RANDOMSEARCH a
NIPOPaCMA losh
lmm-CMA-ES aug
BFGS-P-StPt

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RANDOMSEA

MCS huyer

NELDERDOE

BFGS-P-St

lmm-CMA-E

NEWUOA ro

NIPOPaCMA

best 2009bbob f1-f24, 20-D
51 targets: 100..1e-08
15 instances

v2.2.1.216

2 3 4 5

2

3

4

5
21 targets: 100..1e-8
15 and 15 instances

v2.2.1.218

10 Ellipsoid

lo
g1

0�
�

 � -
ev

al
s �

log10�� �-evals �

PDF, SVG

Web pages with results

HTML

Paper templates

Latex

C/C++
interface

C

Python
interface

Python

Java
interface

Java

Matlab/Octave
interface

Matlab

User-provided
algorithm

Matlab

Figure 1: The COCO platform scheme. Its main components are presented in black, while the user-provided
algorithm and its results are shown in red. Blue color is used to denote the recent additions.

can be connected to the platform using one of the available
interfaces in C/C++, Python, Java and Matlab/Octave.
During the algorithm run, its results are logged into files
whenever one of the performance targets is achieved.

The second part, called COCO post-processing, is imple-
mented in Python. From the log files created by the ex-
periments, it produces plots and tables with information on
the performance of the algorithm as well as HTML pages to
facilitate browsing through them and paper templates with
the most relevant results already included. With COCO
post-processing it is very easy to add the performance of
other algorithms to the comparisons. Currently, results of
more than 200 experiments are available. Most were col-
lected on the bbob suite of 24 continuous single-objective
problems without constraints or noise [4].

Until of late, all the problem suites in COCO were based on
the bbob problems. For example, the bbob-largescale suite
contains large-scale instantiations of the bbob problems [11],
while the bbob-biobj and bbob-biobj-ext suites consist of
bi-objective problems constructed by using the bbob func-
tions as their separate objectives [10].

2.2 Recent Problem Suites
We have recently proposed a total of six new problem suites
that are more real-world-like than those previously included
in COCO [9, 12]. Table 1 shows summary information for
some of their properties. All can be initialized with various
search space dimensions and provide multiple instances that
represent small perturbations of the problems. In all these
suites the bi-objective problems were created by using two

Table 1: Basic properties of the six recently pro-
posed problem suites.

Suite name bbob-mixint bbob-biobj-mixint

objectives 1 2
Dimensions 5, 10, 20, 5, 10, 20,

40, 80, 160 40, 80, 160
functions 24 92
instances 15 15

Suite name rw-top-trumps rw-top-trumps-biobj

objectives 1 2
Dimensions 88, 128, 168, 208 88, 128, 168, 208
functions 5 3
instances 15 15

Suite name rw-gan-mario rw-gan-mario-biobj

objectives 1 2
Dimensions 10, 20, 30, 40 10, 20, 30, 40
functions 28 10
instances 7 7

single-objective functions as the two objectives.

The bbob-mixint and bbob-biobj-mixint suites contain
single- and bi-objective mixed-integer problems, respectively.
They were constructed by discretizing the first 80% of the
variables of the corresponding bbob and bbob-biobj prob-
lems. Because of this, the problem dimensions were set to be
larger than those of the bbob problems, while the functions

and instances remained the same.

The problems from the single- and bi-objective suites rw-

top-trumps and rw-top-trumps-biobj are based on the Top
Trumps card game. The goal (optimization problem) is to
construct a deck for the game with desirable properties (ob-
jectives). The number of dimensions corresponds to the
number of cards (22, 32, 42, 52) multiplied by the number of
categories on a card (4), and the all-integer variable values
are the values of the categories on the cards. Out of the five
different single objectives that measure a quality indicator
of the deck, two can be computed directly and three require
simulations of gameplay. The three bi-objective functions
are constructed from the five single-objective ones in such a
way that the two objectives are (at least partially) conflict-
ing.

Lastly, the rw-gan-mario and rw-gan-mario-biobj suites
contain single- and bi-objective problems of constructing lev-
els for the well-known Super Mario Bros. platformer game
to optimize the chosen objectives. The levels are computed
by a Generative Adversarial Network (GAN), i.e., the so-
lutions correspond to continuous latent vectors [13]. The
dimension of the search space therefore matches the dimen-
sion of the latent vectors and can be set almost arbitrary.
Out of the 28 single objectives, ten can be computed di-
rectly and the rest require simulations of gameplay. Again,
the bi-objective functions were constructed by looking at the
conflicts between objectives.

3. SUPPORTING PROPERTIES OF REAL-
WORLD PROBLEMS

COCO was initially designed to work with the bbob prob-
lems that are continuous, have known optima and use the C
code within COCO experiments to evaluate solutions. Here
we explain in more detail the changes brought by the shift
to real-world problems, which do not share these properties
(see Figure 1).

3.1 Integer Variables
The Top Trumps and mixed-integer suites required support-
ing problems where either all or just some of the variables
are integer. This entailed adding an additional parameter,
which gives the number of integer variables to the internal
problem class in COCO experiments as well as to the in-
terfaces to all supported languages. Without any loss of
generality we set that all the integer variables come before
any continuous ones, which means that this single addition
is enough to support problems with (some) integer variables
(the parameter is naturally set to zero for continuous prob-
lems). The integer variables are internally still represented
as real values with double precision. It is then up to the eval-
uation function to make sure they are correctly interpreted
as integers.

In addition, the COCO loggers can be configured to out-
put these variables as integers, which can save considerable
space in case of a large number of integer variables (see the
Top Trumps suites). This is done through the observer’s
log_discrete_as_int parameter, which is set to false by
default.

3.2 Unknown Optimal Values
In COCO, an evaluation is logged whenever it surpasses
a target value. When an algorithm is run on problems
with known optimal values, the target values are defined
as differences to the optimal function value (in the single-
objective case) or to the optimal value of a multi-objective
performance indicator (in the multi-objective case). In the
usual benchmarking setting in COCO, the targets are chosen
equidistantly in logarithmic scale. Therefore, it is very im-
portant that the optimal value is known (or is at least very
well approximated). If the estimate of the optimal value is
(much) lower than the true optimal value, the smallest tar-
get values will never be reached. If, on the other hand, it is
(much) higher, the algorithm will be able to reach all targets
while still being arbitrarily far away from the optimal value.

The discretization of the bbob and bbob-biobj problems
that produced mixed-integer problems was performed in such
a way that the optimal values remained equal and are there-
fore known (see [9] for more details). This means that simi-
larly to their corresponding continuous predecessors, the op-
tima for the bbob-mixint problems are known, while for the
bbob-biobj-mixint problems, the ideal and nadir points are
known, but not the Pareto sets and fronts (in this case not
even for the double sphere function). In contrast, most Top
Trumps and Mario GAN problems have unknown optimal
values already in their single-objective formulation, which is
to be expected in the majority of real-world problems. Con-
sequently, neither the Pareto sets and fronts nor the ideal
and nadir points are known for the bi-objective game-based
problems.

While the issue of unknown optimal indicator values for the
bbob-biobj problems is amended by providing an estimate
of indicator values using all nondominated solutions from
several runs of a number of algorithms, this approach is not
feasible for real-world problems.

In order to support real-world problems with unknown opti-
mal values, we are using an infinite number of equally spaced
absolute target values aligned at zero with a step of 10−5. In
this way, the logger records an evaluation any time the algo-
rithm finds a function (or performance indicator) value that
improves the best found one by at least 10−5. Such a strat-
egy makes sure that the convergence to the optimal value
can be detected (up to the precision of 10−5) regardless of
its absolute value.

After the experiments, the targets of interest need to be
chosen for the post-processing part. This requires some pre-
liminary analysis of the results. Once the targets have been
chosen, they can remain the same for future experiments or
change in order to account for better solutions found in time.
This does not affect the ability to add previously computed
results to the comparison as the post-processing is always
run anew.

3.3 External Evaluations
While artificial problem suites can be implemented in C
with some moderate effort, this is much harder to do for
real-world problems (especially those that are not originally
available in C). To address this issue, we added the possibil-
ity to evaluate solutions using an external evaluator that is

not provided by COCO.

This is achieved by the means of socket communication,
where the external evaluator acts as a server waiting to be
queried and COCO as the client that continuously queries
the server with proposed solutions. In such a case, the ‘shell’
of the suite that provides the general information about its
problems still needs to be implemented in COCO, however,
this is rather straightforward and has been automated with
a script.

Evaluation of solutions using socket communication works as
follows. COCO (the client) sends to the external evaluator
(the server) a solution together with the information needed
to identify the problem, that is, the function and instance
identifier and the number of dimensions. If needed, other
parameters can also be passed at the same time. When the
external evaluator receives the query, it evaluates the given
solution with the right problem and returns the objective
and constraint values as a response to the query.

This is a quite flexible and efficient way to communicate
with an external evaluator. It is much faster than writing to
and reading from files. It is also very flexible—the external
evaluator can really be external (not even run on the same
computer as COCO), which might be important for some
real-world problems that cannot be disclosed.

4. CONCLUSIONS
By adding to COCO the support for problems with integer
variables, unknown optimal values and external evaluation
of solutions, we have opened its use for benchmarking opti-
mization algorithms on real-world problems. We hope that
the mixed-integer and game-based problem suites described
in this paper are just the start and other real-world prob-
lems, such as the Mazda problem and the CFD problems
mentioned in the Introduction will follow soon.

The code with the functionality described in the paper can
be found at https://github.com/ttusar/coco/tree/gbea.

5. ACKNOWLEDGMENTS
The first author acknowledges the financial support from the
Slovenian Research Agency (project No. Z2-8177).

6. REFERENCES
[1] S. J. Daniels, A. A. M. Rahat, R. M. Everson, G. R.

Tabor, and J. E. Fieldsend. A suite of computationally
expensive shape optimisation problems using
computational fluid dynamics. In Proceedings of the
15th International Conference on Parallel Problem
Solving from Nature, PPSN XV, pages 296–307.
Springer, Cham, Switzerland, 2018.

[2] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler.
Scalable test problems for evolutionary multiobjective
optimization. In A. Abraham, L. Jain, and
R. Goldberg, editors, Evolutionary Multiobjective
Optimization: Theoretical Advances and Applications,
pages 105–145. Springer London, 2005.

[3] N. Hansen, A. Auger, O. Mersmann, T. Tušar, and
D. Brockhoff. COCO: A platform for comparing
continuous optimizers in a black-box setting. ArXiv

e-prints, arXiv:1603.08785, 2016.

[4] N. Hansen, S. Finck, R. Ros, and A. Auger.
Real-parameter black-box optimization benchmarking
2009: Noiseless functions definitions. Technical Report
RR-6829, INRIA, 2009.

[5] S. Huband, P. Hingston, L. Barone, and R. L. While.
A review of multiobjective test problems and a
scalable test problem toolkit. IEEE Transactions on
Evolutionary Computation, 10(5):477–506, 2006.

[6] T. Kohira, H. Kemmotsu, A. Oyama, and
T. Tatsukawa. Proposal of benchmark problem based
on real-world car structure design optimization. In
Companion Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’18,
pages 183–184. ACM, 2018.

[7] Z. Michalewicz. Quo vadis, evolutionary computation?:
On a growing gap between theory and practice. In
Proceedings of the 2012 World Congress Conference
on Advances in Computational Intelligence, WCCI’12,
pages 98–121. Springer-Verlag, 2012.

[8] T. Tušar. On using real-world problems for
benchmarking multiobjective optimization algorithms.
In Proceedings of the International Conference on
High-Performance Optimization in Industry, HPOI
2018, 21st International Multiconference Information
Society, IS 2018, volume D, pages 7–10. Jožef Stefan
Institute, 2018.

[9] T. Tušar, D. Brockhoff, and N. Hansen. Mixed-integer
benchmark problems for single- and bi-objective
optimization. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’19,
pages 718–726. ACM, 2019.

[10] T. Tušar, D. Brockhoff, N. Hansen, and A. Auger.
COCO: The bi-objective black-box optimization
benchmarking (bbob-biobj) test suite. ArXiv e-prints,
arXiv:1604.00359, 2016.

[11] K. Varelas, A. Auger, D. Brockhoff, N. Hansen, O. A.
ElHara, Y. Semet, R. Kassab, and F. Barbaresco. A
comparative study of large-scale variants of cma-es. In
Proceedings of the International Conference on
Parallel Problem Solving from Nature (PPSN XV),
volume 11101 of Lecture Notes in Computer Science,
pages 3–15. Springer, 2018.

[12] V. Volz, B. Naujoks, P. Kerschke, and T. Tušar.
Single- and multi-objective game-benchmark for
evolutionary algorithms. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO
’19, pages 647–655. ACM, 2019.

[13] V. Volz, J. Schrum, J. Liu, S. M. Lucas, A. Smith, and
S. Risi. Evolving mario levels in the latent space of a
deep convolutional generative adversarial network. In
Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’18, pages 221–228.
ACM Press, New York, 2018.

https://github.com/ttusar/coco/tree/gbea
https://arxiv.org/abs/1603.08785
https://arxiv.org/abs/1604.00359

	Introduction
	The COCO Platform
	Overview
	Recent Problem Suites

	Supporting Properties of Real-World Problems
	Integer Variables
	Unknown Optimal Values
	External Evaluations

	Conclusions
	Acknowledgments
	References

