Preparing multi-modal data for natural language processing

Erik Novak
Jozef Stefan Institute
Jozef Stefan International
Postgraduate School
Ljubljana, Slovenia
erik.novak@ijs.si

ABSTRACT

In education we can find millions of video, audio and text educa-
tional materials in different formats and languages. This variety and
multimodality can impose difficulty on both students and teachers
since it is hard to find the right materials that match their learning
preferences. This paper presents an approach for retrieving and
recommending items of different modalities. The main focus is on
the retrieving and preprocessing pipeline, while the recommenda-
tion engine is based on the k-nearest neighbor method. We focus
on educational materials, which can be text, audio or video, but the
proposed procedure can be generalized on any type of multi-modal
data.

KEYWORDS

Multi-modal data preprocessing, machine learning, feature extrac-
tion, recommender system, open educational resources

ACM Reference Format:

Erik Novak, Jasna Urban¢i¢, and Miha Jenko. 2018. Preparing multi-modal
data for natural language processing. In Proceedings of Slovenian KDD Con-
ference (SiKDD’18). ACM, New York, NY, USA, Article 4, 4 pages. https:
//doi.org/10.475/123_4

1 INTRODUCTION

There are millions of educational materials that are found in dif-
ferent formats — courses, video lectures, podcasts, simple text doc-
uments, etc. Because of its vast variety and multimodality it is
difficult for both students and teachers to find the right materi-
als that will match their learning preferences. Some like to read a
short scientific papers while others just like to sit back and watch
a lecture that can last for hours. Additionally, materials are written
in different languages, which is a barrier for people who are not
fluent in the language the material is written in. Finding a good
approach of providing educational material would help improving
their learning experience.

In this paper we present a preprocessing pipeline which is able
to process multi-modal data and input it in a common semantic
space. The semantic space is based on Wikipedia concepts extracted
from the content of the materials. Additionally, we developed a con-
tent based recommendation model which uses Wikipedia concepts

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SiKDD’18, October 2018, Ljubljana, Slovenia

© 2018 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06.

https://doi.org/10.475/123_4

Jasna Urbancic¢
Jozef Stefan Institute
Ljubljana, Slovenia
jasna.urbancic@ijs.si

Miha Jenko
Jozef Stefan Institute
Ljubljana, Slovenia
miha. jenko@ijs.si

to find similar items based on the model input. Throughout the
paper we focus on educational material but the approach can be
generalized to other multi-modal data sets.

The reminder of the paper is structured as follows. In section 2
we go over related work. Next, we present the data preprocessing
pipeline which is able to process different types of data - text, video
and audio — and describe each component of the pipeline in section
3. A content based recommendation model that uses Wikipedia
concepts to compare materials is presented in section 4. Finally, we
present future work and conclude the paper in section 5.

2 RELATED WORK

In this section we present the related work which the rest of the
paper is based on. We split this section into subsections — multi-
modal data preprocessing and recommendation models.
Multi-modal Data Preprocessing. Multi-modal data can be seen
as classes of different data types from which we can extract similar
features. In the case of educational material the classes are video,
audio and text. One of the approaches is to extract text from all
class types. In [6] the authors describe a Machine Learning and
Language Processing automatic speech recognition system that can
convert audio to text in the form of transcripts. The system can
also process video files as they are also able to extract audio from
it. Their model was able to achieve a 13.3% word error rate on an
English test set. These kind of systems are useful for extracting
text from audio and video but would need to have a model for each
language.
Recommendation models. These models are broadly used in
many fields - from recommending videos based on what the user
viewed in the past, to providing news articles that the user might
be interested in. One of the most used approaches is based on
collaborative filtering [16], which finds users that have similar
preferences with the target user and recommends items based on
their ratings. Recommender systems now do not contain only one
algorithm but multiple which return different recommendations.
Authors of [10] discuss about the various algorithms that are used
in the Netflix recommender system (top-n video ranker, trending
now, continue watching, and video-video similarity), as well as the
methods they use to evaluate their system. A high level description
of the Youtube recommender system is found in [3]. They developed
a candidate generation model and a ranking model using deep
learning. Both Netflix and Youtube recommend videos based on
users’ interaction with them and the users history. To some extent
this can be used for educational resources but cannot be generalized
on the whole multi-modal data set since we cannot acquire data
about users’ interaction with, for instance, text.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

SiKDD’18, October 2018, Ljubljana, Slovenia

A collaborative filtering based recommendation system for the
educational sector is presented in [8]. They evaluated educational
content using big data analysis techniques and recommended courses
to students by using their grades obtained in other subjects. This
gives us insight into how recommendations can be used in educa-
tion but our focus is to recommend educational materials rather
than courses. In a sense courses can be viewed as bundles of ed-
ucational material; thus, our interest is recommending “parts of
courses” to the user.

3 DATA PREPROCESSING

In this paper we focus on open educational resources (OER), which
are freely accessible, openly licensed text, media, and other digi-
tal assets that are useful for teaching, learning and assessing [21].
These are found in different OER repositories maintained by univer-
sities, such as MIT OpenCourseWare [12], Universita di Bologna [7],
Université de Nantes [4] and Universitat Politécnica de Valéncia [5],
as well as independent repositories such as Videolectures.NET [20],
a United Nations award-winning free and open access educational
video lectures repository.

For processing the different OER we developed a preprocessing
pipeline that can handle each resource type and output metadata
used for comparing text, audio and video materials. The pipeline is
an extension of the one described in [11]; its architecture is shown
in figure 1. What follows are the descriptions of each component
in the preprocessing pipeline.

formating

text
extraction

textract transLectures

wikification

storing

Figure 1: The preprocessing pipeline architecture. It is de-
signed to handle each data type as well as extract features to
support multi- and cross-linguality.

Erik Novak, Jasna Urbanci¢, and Miha Jenko

Crawling. The first step is to acquire the educational materials. We
have targeted four different OER repositories (MIT OpenCourse-
Ware, Universita di Bologna, Université de Nantes and Videolec-
tures.NET), for which we used their designated APIs or developed
custom crawlers to acquire their resources. For each material we
acquired its metadata, such as the materials title, url, type, language
in which it is written and its provider. These values are used in the
following steps of the pipeline as well as to represent the material
in the recommendations.

Formatting. Next, we format the acquired material metadata. We
designate which attributes every material needs to have as well as
set placeholders for the features extracted in the following steps
of the pipeline. By formatting the data we set a schema which
makes checking which attributes are missing easy. We do not have
a mechanism for handling missing attributes in the current pipeline
iteration but we will dedicate time to solve this problem in the
future.

Text Extraction. The third step, we extract the content of each
material in text form. Since the material can be a text, video or
audio file to handled each file type separately.

For text we employed textract [1] to extract raw text from the
given text documents. The module omits figures and returns the
content as text. The extracted text is not perfect - in the case of
materials for mathematics it does not know how to represent mathe-
matical equations and symbols. In that case, it replaces the equations
with textual noise. Currently we do nothing to handle this problem
and use the output as is.

For video and audio we use the subtitles and/or transcriptions
to represent the materials content. To do this, we use transLectures
[18] which generates transcriptions and translations of a given
video and audio. The languages it supports are English, Spanish,
German and Slovene. The output of the service is in dfxp format
[17], a standard for xml caption and subtitles based on timed text
markup language, from which we extract the raw text.
Wikification. Next, we send the material through wikification - a
process which identifies and links material textual components to
the corresponding Wikipedia pages [15]. This is done using Wikifier
[2], which returns a list of Wikipedia concepts that are most likely
related to the textual input. The web service also supports cross- and
multi-linguality which enables extracting and annotating materials
in different languages.

Wikifier’s input text is limited to 20k characters, because of
which longer text cannot be processed as a whole. We split longer
text into chunks of at most 10k characters and pass them to Wikifier.
Here we are careful not to split the text in the middle of a sentence
and if that is not possible, to at least not split any words.

We split the text as follows. First we make a 10k characters long
substring of the text. Next, we identify the last character in the
substring that signifies the end of a sentence (a period, a question
mark, or an exclamation point) and split it at that character. If there
is no such character we find the last whitespace in the substring
and split it there. In the extreme case where no whitespaces are
found we take the substring as is. The substring becomes one chunk
of the original text. We repeat the process on the remaining text
until it is fully split into chunks.

When we pass these chunks into Wikifier, it returns Wikipedia
concepts related to the given chunk. These concepts also contains

Preparing multi-modal data for natural language processing

the Cosine similarity between the Wikipedia concept page and the
given input text. To calculate the similarity between the concept
and the whole material we aggregated the concepts by calculating
the weighted sum

where Sy, is the aggregated Cosine similarity of concept k, n is the
number of chunks for which Wikifier returned concept k, L; is the
length of chunk i, L is the length of the materials raw text, and
sk; is the Cosine similarity of concept k to chunk i. The weight
% represents the presence of concept k, found in chunk i, in the
whole material. The aggregated Wikipedia concepts are stored in
the materials metadata attribute.

Data Set Statistics. In the final step, we validate the material at-
tributes and store it in a database. The OER material data set consists
of approximately 90k items. The distribution of materials over the
four repositories is shown in figure 2.

AMS Campus Madoc Universitede
University of Bologna Mantes

MIT OpenCourseWare Videolectures. NET

Figure 2: Number of materials per repository crawled in log-
arithm scale. Most materials come from MIT OpenCourse-
Ware followed by Videolectures.NET.

Some of the repositories offer material in different languages.
All repositories together cover 103 languages, however for only 8
languages the count of available materials is larger than 100. The
distribution of items over languages is shown in figure 3 where we
only show languages with more than 100 items available. Most of
the materials is in English, followed by Italian and Slovene. The
“Unknown” column shows that for about 6k materials we were
not able to extract the language. To acquire this information, we
will improve the language extraction method in our preprocessing

pipeline.
& & & R & o = o 4
S A & S

1 I
£
o
& -~ of & R Ex & & & s

& * G & o .
o & [= ‘:\b

Figure 3: Number of materials per language in logarithm
scale. Most of the material is in English, followed by Italian
and Slovenian.

As shown in before the preprocessing pipeline is designed to
handle different types of material - text, video and audio. Each type

SiKDD’18, October 2018, Ljubljana, Slovenia

can be represented in various file formats, such as pdf and docx
for text, wmv and mp4 for video, and mp3 for audio. We visualized
the distribution of materials over file types in figure 4, but we only
show types with more than 100 items available.

10000
1000
100
1 1B
1
PDF

MP4 PRTX DOCX Ms Other
Figure 4: Number of items per file type in logarithm scale.
The dominant file type is text (pdf, pptx and docx), followed
by video (mp4).

As seen from the figure, the dominant file type is text (pdf, pptx
and docx) followed by video (mp4). The msi file type is an installer
package file format used by Windows but it can also be a textual
document or a presentation. If we generalize the file type distribu-
tion over all OER repositories we can conclude that the dominant
file type is text. This will be taken into count when improving the
preprocessing pipeline and recommendation engine.

4 RECOMMENDER ENGINE

There are different ways of creating recommendations. Some em-
ploy users’ interests while other are based on collaborative filter-
ing. In this section we present our content based recommendation
engine which uses the k-nearest neighbor algorithm [13]. What
follows are descriptions of how the model generates recommenda-
tions based on the user’s input, which can be either the identifier
of the OER in the database or a query text.

Material identifier. When the engine receives the material identi-
fier (in our case the url of the material) we first check if the material
is in our database. If present, we search for k most similar mate-
rials to the one with the given identifier based on the Wikipedia
concepts. Each material is represented by a vector of its Wikipedia
concepts where each value is the aggregated Cosine similarity of
the corresponding Wikipedia concept page to the material. By calcu-
lating the Cosine similarity between the materials the engine then
selects k materials with the highest similarity score and returns
them to the user. Because of the nature of Wikipedia concepts this
approach returns materials written in different languages - which
helps overcoming the language barrier.

Query text. When the engine receives the query text we search
for materials with the most similar raw text using the bag-of-words
model. Each material is represented as a bag-of-words vector where
each value of the vector is the tf-idf of the corresponding word. The
materials are then compared using the Cosine similarity and the
engine again returns the k materials that have the highest similarity
score. This approach is simple but it is unable to handle multilingual
documents. This might be overcome by first sending the query text
to Wikifier to get its associated Wikipedia concepts and use them
in a similar way as described in the Material identifier approach.

SiKDD’18, October 2018, Ljubljana, Slovenia

4.1 Recommendation Results

The described recommender engine is developed using the QMiner
platform [9] and is available at [14]. When the user inputs a text
query the system returns recommendations similar to the given
text. These are shown as a list where each item contains the title, url,
description, provider, language and type of the material. Clicking
on an item redirects the user to the selected OER.

We have also discussed with different OER repository owners
and found that they would be interested in having the recommen-
dations in their portal. To this end, we have developed a compact
recommendation list which can be embedded in a website. The rec-
ommendations are generated by providing the material identifier or
raw text as query parameters in the embedding url. Figure 5 shows
the embed-ready recommendation list.

0 Light, charges and brains

A set-output point of view on FDR
control in multiple testing

Spectral Clustering

Session 2

Mining for the Most Certain
Predictions from Dyadic Data

Epistemologia dell'lA

Stationary Subspace Analysis

000000

0 Scene Understanding Symposium

Powered by

Figure 5: An example of recommended materials for the lec-
ture with the title “Is Deep Learning the New 42?” published
on Videolectures.NET [19]. The figure shows cross-lingual,
cross-modal, and cross-site recommendations.

The recommendation list consists of the top 100 materials based
on the query input. As shown in the figure the recommendation
contain materials of different types, are provided by different reposi-
tories and written in different languages. We have not yet evaluated
the recommendation engine but we intend to do it in the future.

5 FUTURE WORK AND CONCLUSION

In this paper we present the methodology for processing multi-
modal items and creating a semantic space in which we can compare
these items. We acquired a moderately large open educational re-
sources data set, created a semantic space with the use of Wikipedia
concepts and developed a basic content based recommendation en-
gine.

Erik Novak, Jasna Urbanc¢i¢, and Miha Jenko

In the future we will evaluate the current recommendation en-
gine and use it to compare it with other state-of-the-art. We intend
to use A/B testing to optimize the models based on the user’s inter-
action with them. We wish to improve the engine by collecting user
activity data to determine what materials are liked by the users,
explore different deep learning methods to improve results, and
develop new representations and embeddings of the materials.

We also aim to improve the preprocessing pipeline by improving
text extraction methods, handle missing material attributes, and
adding new feature extraction methods to determine the topic and
scientific field of the educational material as well as their quality.

ACKNOWLEDGMENTS

This work was supported by the Slovenian Research Agency and
X5GON European Unions Horizon 2020 project under grant agree-
ment No 761758.

REFERENCES

[1] David Bashford. 2018. GitHub - dbashford/textract: node.js module for extracting
text from html, pdf, doc, docx, xls, xIsx, csv, pptx, png, jpg, gif, rtf and more!
https://github.com/dbashford/textract. Accessed: 2018-09-03.

[2] Janez Brank, Gregor Leban, and Marko Grobelnik. 2017. Annotating documents
with relevant Wikipedia concepts. Proceedings of SiKDD.

[3] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. ACM, 191-198.

[4] Université de Nantes. 2018. Plate-forme d’Enseignement de I'Université de Nantes.
http://madoc.univ-nantes.fr/. Accessed: 2018-09-03.

[5] Universitat Politécnica de Valéncia. 2016. media UPV. https://media.upv.es/#/
portal. Accessed: 2018-09-03.

[6] Miguel Angel del Agua, Adria Martinez-Villaronga, Santiago Piqueras, Adria
Giménez, Alberto Sanchis, Jorge Civera, and Alfons Juan. 2015. The MLLP ASR
Systems for IWSLT 2015. In Proc. of 12th Intl. Workshop on Spoken Language
Translation (IWSLT 2015). Da Nang (Vietnam), 39-44. http://workshop2015.iwslt.
org/64.php

[7] Universita di Bologna. 2018. Universita di Bologna. https://www.unibo.it/it.
Accessed: 2018-09-03.

[8] Surabhi Dwivedi and VS Kumari Roshni. 2017. Recommender system for big
data in education. In E-Learning & E-Learning Technologies (ELELTECH), 2017 5th
National Conference on. IEEE, 1-4.

[9] Blaz Fortuna, J Rupnik, J Brank, C Fortuna, V Jovanoski, M Karlovcec, B Kazic,

K Kenda, G Leban, A Muhic, et al. 2014. » QMiner: Data Analytics Platform for

Processing Streams of Structured and Unstructured Data «, Software Engineering

for Machine Learning Workshop. In Neural Information Processing Systems.

Carlos A Gomez-Uribe and Neil Hunt. 2016. The netflix recommender system:

Algorithms, business value, and innovation. ACM Transactions on Management

Information Systems (TMIS) 6, 4 (2016), 13.

Erik Novak and Inna Novalija. 2017. Connecting Professional Skill Demand with

Supply. Proceedings of SiKDD.

Massachusetts Institute of Technology. 2018. MIT OpenCourseWare | Free Online

Course Materials. https://ocw.mit.edu/index.htm. Accessed: 2018-09-03.

Leif E Peterson. 2009. K-nearest neighbor. Scholarpedia 4, 2 (2009), 1883.

X5GON Project. 2018. X5GON Platform. https://platform.x5gon.org/search.

Accessed: 2018-09-04.

[15] Lev Ratinov, Dan Roth, Doug Downey, and Mike Anderson. 2011. Local and
global algorithms for disambiguation to wikipedia. In Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies-Volume 1. Association for Computational Linguistics, 1375-1384.

[16] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web. ACM, 285-295.

[17] Speechpad. 2018. DFXP (Distribution Format Exchange Profile) | Speechpad.
https://www.speechpad.com/captions/dfxp. Accessed: 2018-09-04.

[18] transLectures. 2018. transLectures | transcription and translation of video lectures.
http://www.translectures.eu/. Accessed: 2018-09-03.

[19] VideoLectures.NET. 2018. Is Deep Learning the New 42? - Videolectures.NET.
http://videolectures.net/kdd2016_broder_deep_learning/. Accessed: 2018-09-03.

[20] VideoLectures.NET. 2018. VideoLectures.NET - VideoLectures.NET. http://
videolectures.net/. Accessed: 2018-09-03.

[21] Wikipedia. 2018. Open educational resources - Wikipedia. https://en.wikipedia.
org/wiki/Open_educational _resources. Accessed: 2018-09-03.

[10

[11

[12

[
B

https://github.com/dbashford/textract
http://madoc.univ-nantes.fr/
https://media.upv.es/#/portal
https://media.upv.es/#/portal
http://workshop2015.iwslt.org/64.php
http://workshop2015.iwslt.org/64.php
https://www.unibo.it/it
https://ocw.mit.edu/index.htm
https://platform.x5gon.org/search
https://www.speechpad.com/captions/dfxp
http://www.translectures.eu/
http://videolectures.net/kdd2016_broder_deep_learning/
http://videolectures.net/
http://videolectures.net/
https://en.wikipedia.org/wiki/Open_educational_resources
https://en.wikipedia.org/wiki/Open_educational_resources

	Abstract
	1 Introduction
	2 Related Work
	3 Data Preprocessing
	4 Recommender Engine
	4.1 Recommendation Results

	5 Future Work and Conclusion
	Acknowledgments
	References

